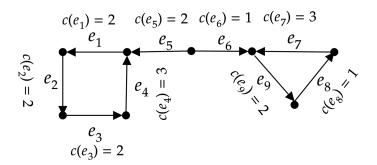
Praktische Informatik und Bioinformati Prof. Dr. Caroline Friedel Michael Kluge


Übungen zu Algorithmische Bioinformatik: Netzwerke, Graphen und Systeme

Blatt 7

Abgabetermin: Freitag, 14.06.2019, 9 Uhr Persönlich oder per Upload-Formular unter www.bio.ifi.lmu.de/studium/ss2019/vlg_ngs/uebungsabgabe

Aufgabe 1 (Edmonds-Branching-Algorithmus, Bonus-Aufgabe):

Bestimmen Sie mit dem Edmonds-Branching-Algorithmus ein Maximum Weight Branching für folgenden Graphen. Dabei sind alle Zwischenschritte anzugeben.

Aufgabe 2 (Wahrscheinlichste Pfade, Bonus-Aufgabe):

Gegeben sei ein gerichteter Graph G = (V, E) sowie eine Funktion $p : E \to (0, 1]$, d.h. $0 < p(u, v) \le 1$ für alle $(u, v) \in E$. p(u, v) beschreibt die Wahrscheinlichkeit, dass die Kante (u, v) existiert. Für einen Pfad $P_{u \to v}$ von u nach v in G ist die Wahrscheinlichkeit $p(P_{u \to v})$ definiert als das Produkt der Wahrscheinlichkeiten der Kanten auf diesem Pfad.

Beschreiben Sie einen möglichst effizienten Algorithmus, der für einen Knoten s den wahrscheinlichsten Pfad zu allen anderen Knoten $v \in V$ findet, die von s erreichbar sind. Analysieren Sie die Laufzeit ihres Algorithmus und beweisen Sie die Korrektheit.

Aufgabe 3 (Kürzeste Pfade):

Gegeben sei ein gerichteter Graph G=(V,E) mit Kantengewichten $c:E\to\mathbb{R}$. Für zwei Knoten u und v sei $\mu(u,v)$ wie folgt definiert:

$$\mu(u,v) = \left\{ \begin{array}{ll} \min_{P:P \text{ Pfad von } u \text{ nach } v} \max\{c(r,s) | (r,s) \in P\} & \text{falls es mindestens einen Pfad gibt} \\ \infty & \text{sonst.} \end{array} \right.$$

Das heißt μ ist das minimale Gewicht der maximal-Gewichts-Kante eines jeden Pfades von u nach v

Beschreiben Sie einen möglichst effizienten Algorithmus, der für einen Knoten s und all $v \in V$ den Wert von $\mu(s, v)$ bestimmt. Analysieren Sie die Laufzeit ihres Algorithmus und beweisen Sie die Korrektheit.