Algorithmische Bioinformatik II

Abgabetermin: Freitag, den 24. Januar, 1200

Tutoraufgabe 1 (Vorbereitung bis zum 22.01.20)

Betrachte das folgende Modell $M(\theta)$ mit $\theta \in \Theta = \{p : p \in [0,1]\}$ für das Werfen einer Münze, wobei bei einem Wurf mit Wahrscheinlichkeit p Kopf erscheint. Angenommen, die Münze wurde N-mal geworfen und dabei ist n-mal Kopf erschienen. Bestimme den Maximum-Likelihood-Schätzer θ^* .

Hinweis: Stelle zuerst die Wahrscheinlichkeitsfunktion auf, dass bei N-maligen Werfen n-mal Kopf erscheint, und bestimme dann das Maximum dieser Funktion.

Aufgabe (Notenbonus) 2

Bestimme die Werte $w(\cdot, \cdot)$ einer 2-PAM aus der folgenden Matrix:

$n_{a,b}$	A	B	C	D
\overline{A}	0	3	7	9
B	3	0	5	1
C	7	5	0	8
D	9	1	8	0

Aufgabe (Notenbonus) 3

Bestimme für die folgenden Blöcke von Sequenzen die zugehörigen Häufigkeiten $H(\cdot, \cdot)$, die für die Erstellung der BLOSUM-60-Matrix benötigt werden.

$$\begin{array}{lll} s_1^{(1)} = {\rm AAAABBB} & s_1^{(2)} = {\rm ACCA} & s_1^{(3)} = {\rm AAACCCBBAA} \\ s_2^{(1)} = {\rm CCCACAB} & s_2^{(2)} = {\rm ACBA} & s_2^{(3)} = {\rm BAACCAAAAA} \\ s_3^{(1)} = {\rm BBCABAC} & s_3^{(2)} = {\rm AAAC} & s_3^{(3)} = {\rm ABABCACCAC} \\ s_4^{(1)} = {\rm CCCACBC} & s_4^{(2)} = {\rm CCBA} & s_4^{(3)} = {\rm CACCBAACAA} \\ s_5^{(1)} = {\rm AABABAB} & s_5^{(2)} = {\rm AABB} \\ s_6^{(2)} = {\rm BAAC} & s_4^{(2)} = {\rm CACCBAACAA} \end{array}$$