Algorithmen auf Sequenzen

Abgabetermin: Freitag, den 13. November, 0900 in Moodle

Aufgabe 1

Zeige, dass es für die Probleme MSS und AMSS aus der Vorlesung genügt, sich bei Lösungen auf Eingaben zu beschränken, die echt alternierende Folgen sind.

Hinweis: Eine Folge $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ heißt echt alternierend, wenn $a_i\cdot a_{i+1}<0$ für alle $i\in[1:n-1]$.

Aufgabe 2

Betrachte das folgende Problem:

MAXIMAL SCORING SUBSEQUENCE WITH LOWER BOUND (MSSLB)

Eingabe: Eine Folge $(a_1, \ldots, a_n) \in \mathbb{R}^n$ reeller Zahlen und eine natürliche Zahl $B \in \mathbb{N}$. **Ausgabe:** Eine Teilfolge (a_i, \ldots, a_j) , die unter allen Teilfolgen der Länge mindestens B (d.h. $(j-i+1) \geq B$) ihren Score $\sigma(i,j) = \sum_{\ell=i}^{j} a_{\ell}$ maximiert.

Konstruiere für die Lösung dieses Problems einen Algorithmus mit linearem Zeitbedarf.

Hinweis: Modifiziere den Linearzeit-Algorithmus aus der Vorlesung geeignet.

Laufzeitanalyse und Korrektheitsbeweis nicht vergessen.