Algorithmische Bioinformatik: Bäume und Graphen

Abgabetermin: Samstag, den 15. Juli, 1000 in Moodle

Aufgabe 1

Gegeben seien die beiden folgenden 7×7 -Matrizen M_1 und M_2 . Entscheide, ob sie extern additiv sind oder nicht. Gib dazu entweder einen externen additiven Baum mit Hilfe des in der Vorlesung angegebenen Algorithmus oder eine Begründung an, warum dies nicht möglich ist.

M_1	1	2	3	4	5	6	7		M_2	1	2	3	4	5	6	7
1	0	5	5	6	6	3	7	-	1	0	7	3	7	7	8	3
2		0	4	5	5	6	6		2		0	2	6	6	3	6
3			0	3	5	6	6		3			0	2	2	3	2
4				0	6	7	7		4				0	4	7	6
5					0	7	3		5					0	7	6
6						0	8		6						0	7
7							0		7							0

Aufgabe 2

Gegeben seien die beiden folgenden 9×9 -Matrizen D_{ℓ} und D_h . Entscheide mit Hilfe des in der Vorlesung angegebenen Algorithmus, ob es eine ultrametrische Matrix $D \in [D_{\ell}, D_h]$ gibt oder nicht.

D_{ℓ}	1	2	3	4	5	6	7	8	9	D_h	1	2	3	4	5	6	7	8	9
1	0	3	6	4	4	4	1	5	5	1	0	6	9	7	8	8	4	9	7
2		0	6	4	4	7	5	5	1	2		0	9	6	8	8	7	8	4
3			0	5	5	6	6	2	5	3			0	7	7	8	8	5	9
4				0	5	6	5	5	2	4				0	9	8	8	9	4
5					0	3	6	5	5	5					0	5	8	6	9
6						0	5	6	5	6						0	8	8	8
7							0	6	5	7							0	8	7
8								0	7	8								0	9
9									0	9									0

Aufgabe 3

Gegeben sei die Menge $X=\{1,2,3,4,5,6\}$ und die folgenden Splits über X:

$$S_0 = \{\{1,3,4\}, \{2,5,6\}\},\$$

$$S_1 = \{\{1,4\}, \{2,3,5,6\}\},\$$

$$S_2 = \{\{1,3,4,6\}, \{2,5\}\},\$$

$$S_3 = \{\{1,6\}, \{2,3,4,5\}\},\$$

$$S_4 = \{\{1,2,4,6\}, \{3,5\}\}.$$

- a) Zeige, dass $\{S_0, S_1, S_2\}$ kompatibel ist.
- b) Zeige, dass $\{S_1, S_2, S_3, S_4\}$ schwach kompatibel ist.
- c) Sei Σ die Menge von Splits, die neben S_1, S_2, S_3, S_4 auch alle trivialen Splits von X enthält.

Konstruiere einen Splits-Graphen für Σ .