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Introduction

Gene regulatory networks comprise transcription factor:target gene (TF:TG) interactions as basic build-
ing blocks. Such interactions can be discovered by different experimental techniques such as chromatin
immunoprecipitation (ChlP). A range of computational methods have been proposed to complement ex-
perimentally derived interactions. Most inference methods depend on mutual information between the
expression of TFs and their TGs (e.g. CLR [1], ARACNE [2]). These simple models can only be applied
to prokaryotes as the precondition of mutual information is not satisfied for eukaryotes ([4]). Instead, a
supervised machine learning (ML) setting utilizing known interactions is required, as expression depen-
dencies between TFs and TGs are far more subtle than in prokaryotes.

Methods

The inference of TF:TG interactions is transformed into a set of binary classification problems. For each
TF, a dedicated local model (sirene approach, [3]) is trained to distinguish TGs of that TF from non-target
genes. In contrast to most inference methods, we propose to apply a range of different machine learning
methods (Decision Tree, SVM, Lasso, Elastic Net and Random Forest) to a range of different datasets
(more than 3000 yeast microarrays) in a three-fold cross-validation setting. Performance is evaluated
against three different yeast gold standards. Predictions derived from different methods and datasets are
combined to improve interaction predictions.

Results

We find that yeast interactions can be detected reliably by the sirene approach ([3]), which so far has
only been applied to prokaryotes. Even if only one ML method and one dataset is used, the AUC of
predictions is substantially above 0.5 (Fig. 1). Prediction performance steadily increases the more ML
methods and expression datasets are integrated. We will also present results on why certain TFs (Fig. 2)
or interactions are predicted better or worse by certain ML methods and on condition-specific regulation.
Here, we examine how the subset of TGs that is regulated by a given TF depends on the experimental
condition.
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Figure 1: Prediction performance (AUC, area under the sensitivity specificity curve) for all combinations of
methods (Me) and matrices (Ma).
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Figure 2: AUC values per transcription factor. For each transcription factor, consensus AUC values and
the AUC values achieved by each of the five methods is plotted. In brackets the number of

targets genes of the transcription factor is given.



