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ABSTRACT
Motivation: Current gene set enrichment approaches do not
take interactions and associations between set members into
account. Mutual activation and inhibition causing positive and
negative correlation among set members are thus neglected. As a
consequence, inconsistent regulations and contextless expression
changes are reported and, thus, the biological interpretation of the
result is impeded.
Results: We analyzed established gene set enrichment methods
and their result sets in a large-scale investigation of 1000 expression
datasets. The reported statistically significant gene sets exhibit only
average consistency between the observed patterns of differential
expression and known regulatory interactions. We present Gene
Graph Enrichment Analysis (GGEA) to detect consistently and
coherently enriched gene sets, based on prior knowledge derived
from directed gene regulatory networks (GRNs). Firstly, GGEA
improves the concordance of pairwise regulation with individual
expression changes in respective pairs of regulating and regulated
genes, compared to set enrichment methods. Secondly, GGEA yields
result sets where a large fraction of relevant expression changes
can be explained by nearby regulators, such as transcription factors,
again improving on set based methods. Thirdly, we demonstrate
in additional case studies that GGEA can be applied to human
regulatory pathways, where it sensitively detects very specific
regulation processes, which are altered in tumors of the central
nervous system. GGEA significantly increases the detection of gene
sets where measured positively or negatively correlated expression
patterns coincide with directed inducing or repressing relationships
thus facilitating further interpretation of gene expression data.
Availability: The method and accompanying visualization capabilities
have been bundled into an R package and tied to a grahical user
interface, the Galaxy workflow environment, that is running as a web
server.
Contact: {Ludwig.Geistlinger, Ralf.Zimmer}@bio.ifi.lmu.de

1 INTRODUCTION
Transcriptomic studies measure gene expression in different
conditions. Striking genes, which are differentially regulated
between the conditions, are of primary interest and investigated for
common features and membership in group of genes, which have
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the same function or belong to the same biochemical pathway.
A first impression of similar behavior of genes can be achieved
via clustering of genes (Eisen et al., 1998). The usually more
effective overrepresentation analysis (ORA) tests the overlap of a
predefined group of genes and the set of differentially expressed
genes assuming the hypergeometrical distribution under the null
hypothesis (Breitling et al., 2004). The method is widely accepted
and has been subject to modifications of diverse visual and model
related features (see Khatri and Draghici, 2005, for an overview),
though the basic statistical principle remained unchanged. However,
Goeman and Bühlmann (2007) criticize that the sampling procedure
of ORA is statistically invalid and leads to a hazardous interpretation
of the resulting p-value. Furthermore, the concentration on the
usually small group of significantly differentially expressed genes,
compared to the set of all the other, usually thousands of genes
analysed in the study that are ignored, is not suitable for an
investigation on a global scale.
Both points of criticism are resolved in Gene Set Enrichment
Analysis (GSEA) as it uses a valid sampling procedure and
computes over the whole scope of genes (Subramanian et al., 2005).
A Kolmogorov-Smirnov test statistic is applied to test whether the
ranks of the p-values of the genes in the gene set can be a sample
from a uniform distribution. Several modifications of GSEA have
been published (see Dinu et al., 2009, for an overview).
Though ORA and GSEA are convenient in the analysis of genes
that are independently expressed, a serious problem arises when
these methods are applied to gene set definitions extracted from
regulatory networks and metabolic pathways. The assumption of
independence among set members does not hold anymore; genes are
found to be correlated due to mechanisms of co-regulation and co-
expression. Initial steps to deal with that problem include implicit
accounting for the correlation structure (e.g. Barry et al., 2005) and
integration of network topology of undirected interaction networks
(e.g. Ulitsky and Shamir, 2007). Based on these first efforts, Liu
et al. (2007) have proposed Gene Network Enrichment Analysis
(GNEA) that uses ORA to test for overrepresentation of gene sets
in transcriptionally affected subnetworks of a global interaction
network.
As the sign of gene expression changes and the direction of
regulatory interactions are so far not taken into account, substantial
features of the data are still ignored and the dynamics of the
transcriptomic system are not realistically reflected. Activation and
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inhibition are essential regulatory mechanisms in the transcriptional
machinery of the cell and are causes for up- and down-regulation
of particular genes. Although processes like post-translational
modification and combinatorial effects between regulatory proteins
impair a straightforward causal relationship between regulation
and gene expression, it was shown that coexpression is correlated
with functional relationships between genes (Lee et al, 2004).
Additionally, integrative analysis of transcriptome, proteome
and interactome data revealed significant correlations between
expression profiles and regulatory interaction on the protein level
(Jansen et al., 2002; Ge et al., 2001). Hence, we explain
positive correlation in gene expression with activating edges of
the transcriptional network. Vice versa, we assume inhibition to
cause observed anti-correlation in gene expression patterns. In our
following definition of Gene Graph Enrichment Analysis (GGEA),
we exploit both fundamental regulation types in a novel enrichment
framework for signed and directed gene regulatory networks, to
judge whether the topology of the network is well fitted by the
expression data.

2 METHODS

Gene Graph Enrichment Analysis (GGEA)
Given gene regulatory information, for example extracted from biochemical
pathways or a global transcriptional network, a gene set under investigation
and gene expression data sampling different conditions, GGEA performs
three essential steps (Fig. 1): First, the gene set is mapped onto the
underlying regulatory network, yielding an induced subnetwork. That is the
affected part of the network, which consists of edges that involve members
of the gene set. Second, each edge of the induced network is scored for
consistency with the expression data, i.e. the signs of the expression changes
of two interaction partners are evaluated for agreement with the regulation
type (activation/inhibition) of the link that connects both genes. Third, the
edge consistencies are summed up over the induced network, normalized
and estimated for significance using a permuation procedure.

Experimental Setup In the following, we consider the classical setup of
a transcriptomic study. This incorporates a setG of usually several thousand
genes gi (i = 1, . . . , n) measured for differential expression between two
conditions, each represented by a group of samples S1 = {s1, . . . , sk} and
S2 = {sk+1, . . . , sm}, respectively. The function

expr : G× (S1 ∪ S2)→ R (1)

returns the expression value for a gene and a sample at a time.

Measures of Differential Expression The most intuitive measure for
expression changes of a single gene between two conditions is the fold
change

fc : G→ R, (2)

defined as the ratio of the estimated expression values of a particular gene in
both sample groups

fc(gi) =
expr(gi, S1)

expr(gi, S2)
, (3)

where expr(g, S) computes the mean expression level of gene g in condition
S. We compute t-test derived p-values to assess the statistical significance
of the expression changes (Pan, 2002) and correct them for multiple testing.
Both measures are log-transformed

f̃c := log2(fc), p̃ := −log10(p), (4)

and the significance thresholds α = −log(0.05) and β = 1 (two-fold)
are used as defaults for p̃ and f̃c, respectively. Such sharp thresholds are of
course quite artificial and discriminate drastically between genes just over

and just below α or β. In addition, noise in the data, such as imprecise
and erroneous measurements of gene expression values, has to be expected
and to be dealt with. Hence, we divide the range of both measures into
two main categories and smooth the borders via introduction of a degree of
uncertainty, according to the mathematical concept of fuzzyfication (Zadeh,
1963; Windhager and Zimmer, 2008; Windhager et al., 2010). For the fold
change, we map

(f̃c < 0, f̃c > 0) 7→ (down, up), (5)

and compute membership values for both categories via the weighting
functions w : f̃c 7→ [0, 1] (displayed in Fig. 2b), resulting in a pair

〈fc〉 := fuzzy(f̃c) = 〈 wdown(f̃c), wup(f̃c) 〉. (6)

Analogously, we map p̃, using Fig. 2a, to areas of low and high significance
in the fuzzy concept

〈sig〉 := fuzzy(p̃) = 〈 wlow(p̃), whigh(p̃) 〉. (7)

For both measures, a third category can optionally be introduced to account
for unspecific signals in case of very noisy data. The fold change and p-value
categories are combined to a single measure of differential expression

de := 〈fc, sig〉, (8)

in order to simultaneously summarize and express whether the transcriptional
activity of a particular gene is reduced or enhanced in one sample group,
compared to the other.

Induced Gene Regulatory Networks Enrichment analysis is the
determination of significant gene sets out of a predefined universe of gene
setsU , s.t. result sets accumulate differentially expressed features of the gene
expression data. GGEA uses an a priori defined gene regulatory network
(GRN), typically extracted from respective databases or compiled from the
relevant literature, to introduce and exploit the interdependencies between
gene set members. We model a regulatory interaction of the GRN as a
transition t (see Fig. 3) with an input place for the regulator and an output
place for its target, as well as an associated effect (activation, inhibition)
and the direction of the interaction. For a gene set u ∈ U , we construct the
induced subnetwork

GRN(u) := {t ∈ GRN | u ∩ (in(t) ∪ out(t)) 6= ∅}, (9)

Fig. 1. Key Steps of GGEA. Subsequent to differential expression analysis
dea of expression data Expr, yielding fuzzified measures de of differential
expression, target gene sets are first mapped onto the gene regulatory
network (GRN). The de-values are assigned to corresponding places in
resulting induced nets (de-nets). Second, consistency scores are computed
for each de-net and third, significance of the scores is estimated via
re-sampling, and exploited to rank the gene sets.
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(a) p-value (b) fold change

Fig. 2. Fuzzyfication of p-value and fold change. Both measures are
mapped onto two main categories, each having a membership function to
express the uncertainty of the mapping. Additional categories, e.g. a third
category medium and neutral, respectively, can be introduced for a more
detailed representation.

Fig. 3. Modelling regulatory interactions using PNFL. Shown is a KEGG
style representation of an activation and its transformation into a PNFL
transition f+. Tokens of combined fuzzy measures de of differential
expression assigned to Petri net (PN) places, represent the regulator and its
target. The regulatory effect is defined via a specific fuzzy rule for every
effect type of the GRN.

s.t. for each gene g of the gene set u all transitions are extracted, where g is
either the regulating or the regulated gene.

Gene Regulatory Networks as Petri Nets Petri net models are well
established in information theory (see Murata, 1989, for a review) and
have been extensively applied to biochemical processes, like metabolic
pathways (e.g. Küffner et al, 2000) and gene regulatory networks (reviewed
in Chaouiya, 2007). Given a GRN under investigation, we construct a
corresponding Petri net (PN) having features of fuzzy logic (FL), as it is
introduced as PNFL in Küffner et al. (2010), and illustrated in Fig. 3. The
regulations of the GRN are required to be specified with direction and effect.
In our model, regulator (R) and regulated target (RT) are represented via
PN places holding tokens of fuzzy values for both fold change (fc) and
significance of fc (sig). The variety of regulatory effects occuring in the
GRN are defined by specific fuzzy rules reg ∈ {f+, f−, f+−, f?, ...}
(Table 1), meaning activation f+, inhibition f− and dual effects f+−. The
concept is extendable, e.g. to other effects like interactions of unknown type
f?. The fuzzy rules compute output tokens from given input tokens. Thus,
consistency between expected (i.e. modeled) behavior and the measured
values can be evaluated. Consistency takes the direction of the effect,
the amount (fc) and its significance into account and is a straightforward
extension of the discrete notion of consistency (e.g. R up and f+ =⇒
RT up). Moreover, it appropriately models noise in the actual experimental
measurements.

Consistency of Regulatory Interactions The major problem of set
enrichment strategies, when applied to GRN-based gene sets, is that

Table 1. Fuzzy rule set for activation
and inhibition.

〈fc〉 〈sig〉
down up low high

f+ down up low high
f− up down low high

they accumulate evidence for differential expression of single genes to
estimate the enrichment of the whole set. Interfering and potentially
contrary constraints of the underlying GRN are ignored. For example, two
significantly up-regulated genes increase the enrichment of the set, even if
one gene inhibits the other. For that reason, we introduce the concept of
consistency.

Definition (consistency): A transition of a PNFL is consistent with
given expression data, if the measured and the modeled expression of
the regulated gene is in agreement. The modeled expression is estimated
from the regulatory effect and the expression of the regulator.

Intuitively, consistency for the special case of a simple activating or
inhibiting edge requires fold changes for regulator and target of the same
or opposite directions, respectively. It is implied for the above example that
an up-regulated inhibitor should result in reduced expression of the affected
gene.
For the PN constructed above, a consistent transition t with fuzzy regulation
function ft between an input place i and an output place o satisfies

deo ≈ ft(dei), (10)

i.e. the modeled predicted expression behavior agrees with the actual
observed behavior.

Scoring To determine if and to which extent t is consistent with the given
expression data, we calculate the consistency

C(t) := cons (deo, ft(dei)) , (11)

where the function cons estimates the (fuzzy) similarity between the
predicted and measured token on the output place of transition t. Consistency
computation is generic, an example implementation of cons incorporates
defuzzyfication of the fuzzy values back into real numerical values (Küffner
et al., 2010) and taking their reciprocal absolute difference. We compute the
raw GGEA consistency score S for the subnetwork GRN(u), induced by the
gene set u ∈ U , via summation over the consistencies of all transitions Tu

of GRN(u)

S :=
X

t∈Tu

C(t), (12)

and normalize it by the number of transitions |Tu|

S̄ :=
S

|Tu|
, (13)

to adjust for the size of GRN(u).

Significance and Ranking According to the recommendations of
Goeman and Bühlmann (2007) and Gatti et al. (2010), statistical significance
of the consistency score is estimated via a permutation approach based on
subject sampling, which is defined in a self-contained way:

1. Permute group assignment of samples N times.

2. Recalculate differential expression measures for each permutation.

3. Recalculate consistency score for each permutation.

4. Find the consistency p-value as the proportion of permutation scores
that are larger than the observed score.
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We compute the consistency p-value for each gene set u ∈ U and rank
the gene sets by the adjusted p-values, i.e. p-values corrected for multiple
testing (see again Fig. 1). Gene sets below the chosen significance niveau
are classified as significantly and consistently enriched.

Extensions To apply to regulation processes involving multiple regulators
and transcription complexes composed of several genes, we allow a
transition t to have an arbitray number of inputs It = {i1t , . . . , ikt } and
outputs Ot = {o1t , . . . , ol

t}. This is accomplished via generalization of
equation (10) to“

de(o1t ), . . . , de(ol
t)
”
≈ ft

h“
de(i1t ), . . . , de(ikt )

”i
. (14)

We model the combined effect via computation of the average behavior
of all effects, or optionally, by the effect of highest statistical significance
(the effect could, of course, also be modeled as a full-blown k-dimensional
(fuzzy) function).
Missing data, i.e. genes of the GRN, which are not measured in the study,
is resolved using transitivity. By going up and down, respectively, the
regulation path until a non-empty place is reached, an empty origin is filled
with the found token, which is adjusted to path length of the transitive
relation. The adjustment is due to the fact that the evidence for regulation
weakens, as the path length increases.

Implementation and Availability GGEA is implemented in the
statistical language R (Ihaka and Gentleman, 1996) and makes use of the
Bioconductor software suite (Gentleman et al., 2004). The GGEA
method and accompanying visualization capabilities have been bundled into
an R package and tied to a grahical user interface, the Galaxy workflow
environment (Goecks et al., 2010), that is running as a web server.

Consistency and Explainability Study Setup
Data Sampling and Network Construction Gene expression data of
E. coli was collected and sampled from the M3D database (Many Microbe
Microarrays Database, Faith et al., 2008). 1000 datasets were designed in
a two-class fashion, s.t. each class contained 15 samples. It was assured
that real-world distributions of fold changes and differential expression p-
values were matched. A global gene regulatory network for E. coli was
constructed using the regulatory interactions provided in the RegulonDB
database (Gama-Castro et al., 2008). From the union of all stored TF/gene,
TF/operon, TF/TF, σ/gene and σ/TU regulatory interactions (TF stands
for transcription factor, TU for transcriptional unit and σ for the RNA
polymerase σ-factor), we removed duplicated and ambiguous edges. The
final network connected 2097 unique nodes by 5784 edges, which were
clearly annotated as either activating or inhibiting.

Methods Collection and Gene Set Definitions For each dataset, we
applied the standard hypergeometrical overrepresentation test ORA1, and a
collection of array resampling methods that correctly control false positive
rates and gene correlation patterns (Gatti et al., 2010). These are the modified
resampling overrepresentation test ORA2 (Goeman and Bühlmann, 2007),
SAFE (Barry et al., 2005), GSEA (Subramanian et al., 2005) and SAM-GS
(Dinu et al., 2009). The gene set catalog for analysis was defined on the
one hand according to the KEGG pathway annotation (Ogata et al., 1999)
for E. coli, and, on the other hand, according to the GO classifications
(Ashburner et al., 2000) of E. coli. We restricted both catalogs to gene sets
having at minimum five and at maximum 500 set members. This yielded 83
and 446 gene sets for KEGG and GO, respectively.

Consistency Benchmark For each method, we collected for all datasets
with statistical significant outcome (p < 0.05) the top ranked gene
sets. As not all datasets produced significant outcome for all methods,
we uniformly chose 700 sets at random from these top ranked gene sets
and computed the percentage of consistent relations in the corresponding
induced regulatory networks. We took regulation direction, type and strength
into account and distinguished respective categories. Activating relations
required both interaction partners to be expressed in the same direction to

be consistent, while inhibiting relations required them to be expressed in
the opposite direction. Regulation strength was categorized as weak and
strong, depending on the differential expression p-value of the regulator. We
chose 0.5 and 0.05 as the thresholds for the weak and the strong category,
respectively. To estimate the null distribution in each category, we computed
the consistency of all gene sets in all datasets.

Explainability Benchmark The selected 700 top ranked sets were
restricted to differentially expressed genes of high statistical significance.
The significance niveau was set to 0.1. Minimum spanning trees (MST)
were computed for each of the reduced gene sets according to the underlying
global GRN, s.t. each significant gene of a top ranked set could be reached
by all other significant members of that set. Moreover, the corresponding
MST for such a set minimized the number of genes not contained in
the set. The direction of the regulatory link between two genes in the
network (activation/inhibition) as well as the direction of the expression
change of individual genes (down-/up-regulation) was ignored. We classified
a restricted result set as fully explainable if all members were directly
connected to another member in the corresponding MST. Otherwise, we
counted the number x of genes in the MST, which were not a member of
the set, and classified the set as explainable with x additional genes. As a
measure of explainability achieved by a method in all its 700 top ranked
sets, we calculated, for a chosen number x, the percentage of sets that were
explainable with at most x additional genes.

Case Study Setup
FiDePa and Local GGEA We applied GGEA to the glioma dataset that
has been investigated before with the method FiDePa (Keller et al., 2009).
The method exploits GSEA first to determine differentially regulated paths
of a particular length and uses the resulting paths for the construction of
a consensus network, which is subsequently tested for overrepresentation
of gene sets. In a similiar approach, we computed consistency scores
of regulatory links in all human non-metabolic KEGG pathways (gene
regulatory and signaling pathways) and the ten edges with the highest
consistency score were extracted from each of them. Duplicated edges were
removed and the consensus graph was further reduced via application of a
high pass consistency filter using the mean consistency score as threshold.
That yielded a total of 378 edges connecting 342 unique nodes, which were
tested, as in FiDePa, for overrepresentation.

3 RESULTS
Consistency Study
We conducted a meta-analysis of 1000 E. coli datasets and evaluated
the consistency within results of gene set enrichment methods,
based on the regulatory interactions found in the transcriptional
network of E. coli. Details of the study setup, the consistency
benchmark and the classification of interaction strength as weak and
strong are described in METHODS. The results are shown in Fig. 4.
We observe that the set enrichment methods systematically neglect
mutual regulation among set members. For KEGG gene sets,
weak regulations (Fig. 4a and Fig. 4b) are only slighly more
consistent than average (the null consistency) and the gene set
with maximal consistency is frequently not reported by the set
enrichment methods, regardless of activatory or inhibitory links.
Strong activators, with an expression change of high statistical
significance, and the effects on their targets are more consistently
aligned (Fig. 4c). However, the consistency gained in strong
activations is lost for strong inhibitions (Fig. 4d). The results for
KEGG sets are nearly replicated in GO gene sets (Fig. 4e-h). In
contrast, GGEA, which takes consistency into account for selecting
relevant gene sets in the first place, yields the most consistent gene
sets in all categories for both, KEGG and GO gene set definitions.
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(a) weak act, KEGG (b) weak inh, KEGG (c) strong act, KEGG (d) strong inh, KEGG

(e) weak act, GO (f) weak inh, GO (g) strong act, GO (h) strong inh, GO

Fig. 4. Consistency of Regulatory Interactions in Top Ranked Sets. Each of the set enrichment methods was applied to 1000 E. coli datasets using KEGG
and GO gene set definitions, respectively. From datasets with statistical significant outcome, the top ranked gene sets were collected and investigated for
consistency of weak and strong activation and inhibition (as described in METHODS). GGEA results are displayed in red. The plots show which fraction
(x-axis) of the identified gene sets had at most a consistency of y%. The y-axis shows the consistency of sets as the fraction of consistent regulatory interactions
in the respective gene set. The null consistencies were estimated via the overall consistency of all gene sets in all datasets and are displayed in dark blue.

Activations and inhibitions are similarily consistent, if adjusted
to background distributions of both regulation types, and stronger
signals are properly weighted in order to preserve the regulation
kinetics. Although stronger signals have an higher impact on the
GGEA score, weak regulations are also highly consistent in the sets
found by GGEA. In general, these findings are more pronounced for
GO sets, compared to KEGG gene set definitions. This is due to the
fact that the GO catalog (446 gene sets) is nearly six times larger and
contains more diverse composed gene sets than the KEGG catalog
(83 gene sets), which emphasizes differences between the set and
graph enrichment methods.

Explainability Study
As the consistency is substantially incorporated in the GGEA score,
we performed a second evaluation using the more independent
benchmark of explainability, as described in METHODS. The
main target of this investigation was to determine to which extent
statistical significant expression changes of single genes can be
explained by other set members. Considering that a statistical
significant finding for a gene set indicates differential regulation
of the corresponding biological process, it is in turn implied
that a part of the global regulatory network (here a subgraph of
RegulonDB) exists, which connects the differentially expressed
genes in this set. However, it is frequently observed that important
regulators or mediators are missing in a particular gene set, leaving
its differentially expressed genes not connected with each other.
As a result, the biological interpretation of the observed effect is

impeded. Based on these considerations, we have introduced above
the terms fully explainable and explainable with x additional genes,
to assess how easily a result set can be interpreted. Intuitively,
the less additional genes needed, the easier the interpretation: a
single additional gene could possibly be a regulator or mediator
not contained in the set, while the need of several additional
genes requires more complex assumptions to make the outcome
interpretable. For the explainabilty study, we explicitly made
the input regulatory network undirected, generalizing the edges,
s.t. possibly unknown inverse regulations are allowed. We enhanced
this feature by additionally removing the sign of the fold change and
only judged whether a gene was differentially expressed or not. The
results are shown in Fig. 5.
GGEA systematically reports more easily explainable sets than all
other methods for both, KEGG and GO gene set definitons. Similar
to the results of the consistency study, the gap is much bigger
between the performance of GGEA and the other methods when
using GO sets definitions, as also observed in the consistency study.
For example, GGEA needs in 73% of its top ranked gene sets a
single additional gene to make the differentially expressed genes in
a particular set connected, whereas the best set enrichment method,
ORA1, can explain only 42% of the sets with a single addition gene
(SAFE: 35%, GSEA: 34%, ORA2: 32%, SAMGS: 29%). Allowing
two additional genes, GGEA can explain more than 90% of all
reported genesets, while all other methods produce results around
60% or below.
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(a) GO

(b) KEGG

Fig. 5. Explainability of Expression Changes in Top Ranked Sets. The
700 top ranked gene sets (introduced in the consistency study above) of
each method were restricted to genes with expression changes of statistical
significance. For each restricted set, we computed the minimal number of
genes not in the set, but needed to connect the significantly regulated genes
of that set, to a regulation network. Displayed is the percentage of gene sets,
for which x or less additional genes are needed. E.g. for GO sets, a single
additional gene makes 73% of GGEA’s top ranked sets explainable, while in
case of ORA1 or SAMGS a single gene makes only 42% or 29% of the top
ranked sets, corresponding to each method, explainable.

Case Study
In a final case study, we investigated two expression datasets of
human neuronal tumours and compared results of GGEA and set
enrichment strategies. Though a comparative benchmark is hard to
find, due to a missing gold standard that classifies detected pathways
as right or wrong in the context of the investigated expression data,
we approached this matter via collection of biological evidence
in the scientific literature and focussed on the specificity of the
findings and the sensitivity of the method used. For consistency
evaluation, we used the regulatory interactions occuring in human
non-metabolic KEGG pathways (gene regulatory and signaling
pathways). In the first analysis, we applied GGEA to the glioma
dataset that was investigated before by Keller et al. (2009) with
the method FiDePa (see METHODS for details). We observe
large agreement in the result lists of both methods (Table 2); 17
pathways listed in the FiDePa result also occur in the top 25 of
the GGEA ranking. The positive control Glioma is better ranked

Table 2. Result comparison of GGEA and FiDePa application to
the glioma dataset. Arrows in the first column denote whether a
pathway is ranked higher or lower by GGEA, compared to FiDePa.

Pathway ORA p ORA p Rank
(GGEA) (FiDePa) (FiDePa)

↑ Pathways in cancer 1.8e-24 – –
↑ Focal adhesion 1.4e-18 2.5e-06 5
↑ T cell receptor signaling 1.2e-17 1.5e-05 7
↑ Neurotrophin signaling 5.5e-15 – –
↑ Colorectal cancer 1.1e-14 9.4e-05 11
↑ Pancreatic cancer 3.8e-14 0.0001 12
↑ Renal cell carcinoma 1.3e-13 – –
↑ VEGF signaling 1.5e-13 0.006 22
↔ Fc epsilon RI signaling 4.1e-13 1.9e-05 9
↓ Chronic myeloid leukemia 6.3e-13 1.65e-05 8
↑ ErbB signaling 8.9e-13 – –
↑ B cell receptor signaling 4.2e-12 0.001 17
↑ Glioma 5.1e-12 0.003 20
↑ Insulin signaling 3.2e-11 0.001 18
↑ Leukocyte trans. migration 3.9e-11 0.01 24
↓ Adherens junction 4.9e-11 1.4e-05 6
↓ GnRH signaling 6.5e-11 0.0003 16
↓ Nat. killer cell med. cytotox. 6.5e-11 1.4e-11 2
↑Wnt signaling 1.2e-10 – –
↓ Toll-like receptor signal. 1.2e-09 5.5e-05 10
↑ Endometrial Cancer 1.6e-07 – –
↑ Non-small cell lung cancer 3.4e-07 – –
↑ Acute myeloid leukemia 3.9e-07 – –
↓ mTOR signaling 1.2e-06 0.0002 15
↓MAPK signaling 4.4e-06 1.6e-25 1
. . . . . . . . . . . .
↓ Apoptosis 0.04 9.3e-11 3

(and has higher significance) by GGEA. Further, several unspecific
and disease unrelated pathways detected by FiDePa (e.g. Type I/II
diabetes mellitus, Cell cycle) are discarded by GGEA and replaced
by specific, cancer related pathways (e.g. Renal cell carcinoma,
Endometrial cancer). For the top rank, GGEA (Pathways in Cancer;
not detected by FiDePa) gives a clear disease related hint, while
FiDePa (MAPK signaling pathway) reports a general signaling
process. The Neurotrophin signaling pathway, which promotes
neuronal tumors via modulation of neuronal apoptosis (Miller and
Kaplan, 2001), is not identified by FiDePa, but listed by GGEA on
rank 4.
In the second evaluation study, we used neuroblastoma expression
data that was investigated for enrichment of metabolic pathways
before (Schramm et al., 2010). The application of GGEA to the
neuroblastoma dataset identified 17 significantly and consistently
enriched pathways (Table 3). Best ranked is the Neurotrophin
signaling pathway, which was already detected in the glioma study
to play an essential role in the development of neuronal tumors.
As this pathway seemed to be particularly striking for both tumors,
we determined regulations with highest consistency in that pathway,
in order to get a deeper insight into the disease causing dynamics:
We found that the high affinity nerve growth factor receptor, which
in humans is encoded by the NTRK1 gene, is up-regulated in
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Table 3. Result of GGEA application to the
neuroblastoma dataset.

Pathway p-value

Neurotrophin signaling 7.5e-06
Chemokine signaling 0.0004
Cell adhesion molecules (CAMs) 0.0021
Regulation of actin cytoskeleton 0.0068
Focal adhesion 0.0091
Nat. killer cell med. cytotox. 0.0092
Leukocyte trans. migration 0.0099
Pathways in cancer 0.01
T cell receptor signaling 0.016
Fc epsilon RI signaling 0.019
Long-term depression 0.023
Axon guidance 0.033
Vasc. smooth muscle contraction 0.035
p53 signaling pathway 0.035
Melanogenesis 0.039
MAPK signaling 0.043
Thyroid cancer 0.05

neuroblastoma cells and activates the adaptor protein SH2B3, the
growth factor receptor-bound protein 2 (GRB2), the Abelson murine
leukemia viral oncogene homolog 1 (ABL1), the phospholipase
gamma 2 (PLCG2) and the SHC-transforming protein 1 (SHC1).
A literature search revealed that all of the activated and associated
proteins are proliferating, oncogenic and/or apoptosis influencing
and thus, of cancer promoting importance (e.g. Ohmichi et al.,
1991; Borrello et al., 1994). In addition, the up-regulation of
the whole NTRK1 proliferation module in neuroblastoma was
experimentally validated (Evangelopoulos et al., 2004) some years
ago. This sensitive finding motivated a similar investigation for the
other pathways in Table 3, which we identified to be throughout
substantially involved in neuroblastoma formation. As an example:
GGEA detects the Chemokine signaling pathway. We found
that neuroblastoma impairs chemokine-mediated dendritic cell
migration (Walker et al., 2006) and chemokines strongly promote
neuroblastoma primary tumor and metastatic growth (Meier et al.,
2007).
Moreover, we wanted to know whether the findings of GGEA
are in concordance with the results for metabolic pathways. As
a showcase, we demonstrate this via the detected Fc epsilon
RI signaling pathway. In Schramm et al. (2010), only moderate
attention (discussed in their supplement) is paid to the extremely
significant findings for Phosphatidylinositol metabolism (p = 9e-
12) and for several pathways concerning the metabolism of lipids
and fatty acids, e.g. Fatty acid metabolism (p = 1.7e-9) and
Glycerophospholipid metabolism (p = 3.9e-7), which are listed
in Table 1 of that publication. As it can be verified in the
corresponding KEGG pathway maps, Fc epsilon RI signaling has
a regulatory impact on both - the Phosphatidylinositol metabolism
via modulation of the phospholipase (affected by the Neurotrophin
pathway); and the metabolism of lipids in general via stimulation of
arachidonic acid synthesis. Arachidonic acid is a polyunsaturated
fatty acid that is required for membrane phospholipid synthesis.

It is also involved in cellular signaling and known to activate
syntaxin-3, which causes cell membrane expansion of neuronal
cells (Darios and Davletov, 2006). Schramm et al. explain the
several revealed signals in lipid related metabolisms with TCA
based energy production; the GGEA results, explaining stimulation
of arachidonic acid synthesis, imply that the observed activated
production of fatty acids and lipids (which is based on the latter)
is rather due to the increased requirement of neuronal membrane
material (i.e. specific lipids) in the fast growing and dividing
neuroblastoma cells.

4 DISCUSSION
In this work, we presented Gene Graph Enrichment Analysis
(GGEA), a novel algorithmic framework to detect increased
agreement between positively and negatively correlated expression
patterns of genes, connected by activating and inhibiting edges
in signed and directed transcriptional networks. The method
exploits directed regulatory relations represented as fuzzy logic
rules to assess and identify graphs, which maximize the consistency
between the regulatory network and the expression data. GGEA
is a major improvement to current gene set enrichment strategies,
as we found experimentally validated regulatory interactions not
to be consistent per se with the expression data in top ranked
and statistically significant result sets of these methods. That
was validated in a large-scale consistency study of 1000 E. coli
chips using the E. coli RegulonDB, currently the best curated
regulatory network, for the investigation of consistency. As set
enrichment strategies ignore mutual regulation among set members,
we observed that activations and inhibitions are only average
consistent with the gene expression in these result sets. Even
strong causal signals, i.e. a regulator with differential expression
of high statistical significance, in pairwise directed regulations were
frequently not properly reflected. Inhibitions were more seriously
neglected than activations. This is partly due to a data bias, as
there are more activations than inhibitions in the database. Hence,
more genes, and thus also more significant genes, are involved in
activations just by chance. As gene set enrichment analysis mainly
computes upon the leading edge of the ranked p-value vector of
genewise differential expression (see Subramanian et al., 2005),
gene sets with a majority of activating genes are more likely to be
reported. On the other hand, we found activitations clearly better
conserved than inhibitions across all experiments stored in the M3D
database. For GGEA, we observed, under consideration of this bias,
that activations were nearly optimally consistent and inhibitions
were preserved in a large fraction of regulations. GGEA achieved
the highest concordance between the regulation direction and the
expression behavior of the incorporated regulator and regulated
target gene. It should be emphasized that GGEA consistently
aligned weak (only moderately differentially expressed) signals,
which are usually not taken into account by set enrichment methods.
That improved sensitivity enables preference of weak, but coherent
regulations over strong, but contextless signals. This is expected to
better reflect the nature of key cellular regulators.
As GGEA exploits the consistency for the computation of its
score, we additionally carried out a more independent benchmark
to investigate how well statistically significant expression changes
of single genes can be explained by other set members. As a
measure of explainability, we used the number of additional genes,
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which were needed to connect significant members of a set to a
regulatory network. We found this evaluation of particular interest,
as it tries to approximate the process of the human interpretation.
For all set enrichment methods, only a small amount of genes
could be explained by other set members in a significant result
and we observed frequently that several additional genes were
needed. Implied is that set enrichment indeed indicates that there
is something striking happening in a certain result set, however,
conclusions whether observed expression changes are coherent
and in context with the surrounding regulators cannot be drawn.
This is resolved by GGEA. It systematically reports more easily
explainable sets than all other methods, and the fraction of
explainable sets with a single additional gene is increased by over
30% in comparison with the best set enrichment method.
Furthermore, we applied GGEA in two pilot case studies of
human neuronal tumors using regulatory interactions of signaling
pathways, though incorporated protein-protein regulations cannot
be measured at the transcriptional level. Nonetheless, we again
hypothesize that genes, annotated to be associated in a pathway,
should show higher correlation patterns than arbitrary genes, which
are not. On the other hand, we argue that signal cascades normally
target altered gene regulation.
On the glioma dataset, GGEA discovered throughout specific and
disease related pathways. Induced by increasing specificity, the
fraction of false positives decreases. Unspecific and inconsistent
pathways are replaced by more appropriate pathways. An example is
the detection of the Neurotrophin signaling pathway that modulates
neuronal apoptosis (a very specific finding), while general apoptosis
is downgraded.
The Neurotrophin signaling pathway also has a major influence on
the development of neuroblastoma, another neuronal tumor type.
The experimentally verified connection was detected by GGEA with
high significance, while GSEA failed to detect it. The discovery
of such false negatives of the set enrichment analysis is due to
improved sensitivity already observed in the consistency study.
However, it is surprising that only GGEA is sensitive enough
to detect the Neurotrophin signaling pathway, the Chemokine
signaling pathway and the Fc epsilon RI signaling pathway -
all of which have been shown to be of crucial importance in
neuroblastoma formation - while standard GSEA does not detect
them. Best ranked pathways of GSEA are: Cell cycle, Ribosom
and Olfactory transduction. The connection to the disease is
incomprehensible and explanations are almost arbitrary.

5 CONCLUSION
We showed in three independent and differently designed studies
that GGEA consistently aligns regulation and expression and yields
result sets where statistically significant expression changes can be
explained by regulators within the set. Moreover, GGEA eases the
biological interpretation of reported gene sets, as they are more
coherent than sets reported by set enrichment methods. This means
many more of their relevant genes are connected or can be connected
by a minimum number of additional factors. In summary, our new
method Gene Graph Enrichment Analysis (GGEA) is an intuitive
enrichment method, which uses gene regulatory information to
improve consistency and coherence of detected enriched gene
sets and, thus, substantially reduces the fraction of false positive
and false negative classifications of relevant gene sets. GGEA

significantly improves the detection of gene sets where measured
positively or negatively correlated expression patterns coincide with
directed inducing or repressing relationships between the respective
pairs of genes. Hence, gene set regulators, such as transcription
factors, can explain a significant portion of the observed expression
changes. As GGEA is as fast and easy to apply to experimental data
as state-of-the-art set enrichment analysis methods, it provides an
alternative for interpreting gene expression measurements and for
deriving first insights into the relevant processes. The advantages of
GGEA will increase in the future with the availabilty of better GRNs
and better models for regulatory relations in these GRNs.
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