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Abstract

The possibility of controlling the Calvin cycle has parambimplications for increasing
the production of biomass. Multistationarity, as a dynahfeature of systems, is the first
obvious candidate whose control could find biotechnoldgipglications. Here we set out to
resolve the debate on the multistationarity of the CalvicleyUnlike the existing simulation-
based studies, our approach is based on a sound matherfraticalvork, chemical reaction
network theory and algebraic geometry, which results irvaiote results for the investigated
model of the Calvin cycle in which we embed a hierarchy of istial kinetic laws. Our
theoretical findings demonstrate that there is a possitdit multistationarity resulting from
two sources, homogeneous and inhomogeneous instabilitiésh partially settle the debate
on multistability of the Calvin cycle. In addition, our titable analytical treatment of the
bifurcation parameters can be employed in the design odatdin experiments.

1 Introduction

The development of techniques for increasing plant bionmadds the promise of engineering
plants which can be used for production of biofuels in a snaktde carbon-neutral fashion. Plant
biomass is the outcome of complex biochemical reactionsatitfig the necessity for balancing
conflicting demands for resources to maintain cell vitalityd function with those to support
growth. Plant growth depends on the uptake and assimilafiororganic nutrients and the photo-
synthetic assimilation of carbon dioxidé'Q,) via the Calvin cycle (Stitt and Krapp, 1999). This
C'Os-assimilating pathway takes place in the chloroplast ot@ymthetic plant cells yielding car-
bon skeletons necessary for maintenance of the entire pletabolism. Therefore, understanding
the mechanisms of the Calvin cycle can propel the designabinigues for manipulation of its
efficiency.

The study of cell metabolism has traditionally focused otedwining the factors that in-
fluence metabolic rates, at levels of both metabolic patkvead the whole organism (Heinrich
and Schuster, 1996). Although there has been a significagress in the structural analysis of
metabolic pathways in order to understand and predict tsieilalition of cellular fluxes (Pals-
son, 2000; Schuster et al., 2000; Grimbs et al., 2007), adirg the problem of efficient biomass



production requires elucidation of the dynamical projesrof plant metabolic models. The ques-
tion arises as to whether there exists a qualitative dyralnféature of plant-specific metabolic
pathways which results in possibilities for increasing pheduction of biomass.

Multistationarity is a qualitative feature of systems, icttderized by the existence of multiple
positive steady states, with great potential for applasain biotechnology. Biological entities
(i.e,, genes, proteins), biochemical pathways, and cells apéraine of multiple exclusive states
at any given time. For instance, a gene can either be express®t expressed, glycolysis and
gluconeogenesis represent mutually exclusive metabigliess and a stem cell may be at an un-
differentiated state or committed to differentiating toaatular lineage (Chatterjee et al., 2008).
As pointed out in Prigogine and Nicolis (1967), there ar@ast two sources for multistationarity:
(1) instabilities with respect to space-independéniniogeneoyperturbations, whereby the sys-
tem goes from one to another homogeneous steady state, mhaichr may not be stable, and (2)
instabilities with respect to space-dependenhdgmogeneoysperturbations, when the diffusion
plays a crucial role by increasing the manifold of possil#etyrbations. From a biotechnolog-
ical perspective, altering the control of multistatiobyaiin biological systems offers means for
manipulating the outcome of a particular biochemical pssce

Given a stimulus, the control of a biological switch, chéesized with twostablesteady states,
is established via perturbation of the stimulus’ conceiana When it changes over a threshold
value, the entire system undergoes a transition from onkemther stable state, without resid-
ing in an in-between state due to the instability of the tatfEhe stimulus which exhibits such
a property is referred to asifurcation parameter Bifurcation parameters can be endogenous
or exogenous to the system. Typical endogenous bifurcgidmameters include the kinetic pa-
rameters associated with a particular biochemical reactidnile exogenous parameters include
conservation relations of some chemical element. We natettie response of individual bio-
chemical reactions to changes in the bifurcation paraniet@ntinuous and graded; however, the
combination of these graded responses gives rise to a leiggattching) behavior.

For experimental validation of bistability, one relies tie threshold property for the applied
stimulus: The threshold concentrations of the stimulusttiertwo possible transitions between
the steady states (from the first to the second steady stdteé@nversa) are different. Therefore,
two response curves can be generated by adding/subtragtialj increments of the stimulus,
resulting in ahysteresis diagramHowever, such experimental approaches on a populatiah lev
could have contradicting results; namely, the compoundfedtef the individual bistable cellular
responses may appear graded for the population itself. dititeast between population and single
cell levels has been illustrated experimentally in a nunmddesystems, including<enopus levis
oocytes (Bagowski et al., 2001, 2003). We point out that ttpegmental set up for monitoring
the photosynthetic response in plants may be further hiadby the heterogeneous population
of cells in a leaf or a rosette, since not all cells demonstpdtotosynthetic capacity. However,
experimental approaches relying on isolated chloroplastg prove useful in the study of the
existence of multistationarity in photosynthetic proesss

The theoretical analysis of multistationarity in biologlicystems is performed on a kinetic
model comprising a set of biochemical reactions. The gémeraerical approach relies on con-
ducting stability analysis of a given model through thedaling steps: (1) a steady state is cal-
culated, (2) perturbation of the system is imposed to estalie stability of the steady state, (3)
perturbation of the stimulus’ concentration is imposed heak the transition to a new (stable)
steady state. The existing studies focus on multistatityn@gnd multistability) in gene-regulatory
and signaling networks (Kaneko and Yomo, 1994; Nakajimaleaeko, 2008; Koseska et al.,
2010; Tyson et al., 2003).

Unlike gene-regulatory and signaling networks, metabéithways with capacity for multi-
stationarity can be characterized intuitively as trangitbetween states which result in different



composition and quantity of biomass. Development of dedakiinetic models of metabolic path-
ways, however, requires information about the rate equstienzyme-specific kinetic parameters,
and substrate/product regulatory mechanism. Neverthelesently established mathematical ap-
proaches render it possible to infer sound statements amdtistationarity of metabolic networks
even when kinetic parameters are not known.

With respect to the multistationarity of a set of biocherhieactions, two questions are cru-
cial: (1) Do the biochemical reactions have the capacitynfiaitistationarity irrespective of the
kinetic parameters? and (2) Given a (partial) set of kingéiameters, which element of the bio-
chemical reactions can be considered a bifurcation pasaféiio answer the first question, one
needs to establish a relation between multistationarity tae underlying structure of the bio-
chemical reactions. Knowing whether a network can operataedre than one steady state only
partially addresses the multistationarity analysis, esiige still has to determine the regions of the
parameter space in which multistationarity occurs. Thevengo the second question pinpoints
precisely these regions.

Due to the potential for biotechnological applications afltistationarity, the question as to
whether the Calvin cycle could operate in multiple steadtest is of paramount importance.
Despite the large number of models for the Calvin cycle, tayesis of the existence and exper-
imental validation of multiple steady states in this patvgstill fragmentary, usually resulting
in contradictory conclusions. Pettersson and Ryde-Rstiar(1988) found two steady states for
their model of the Calvin cycle. However, they showed tha ohthese steady states is unstable
and therefore considered to be of no biological relevantéevthe remaining stable steady state
was in accordance with previous experiments (Flligge £1880; Heldt et al., 1977). Poolman
et al. (2000) also demonstrated that their extension of theairof Pettersson and Ryde-Pettersson
(1988) exhibits two steady states. Moreover, Poolman €2@01) attempted to experimentally
verify this result; however, the two observed steady statse found in leafs of different age and
therefore have different capacities of utilizing the proeld carbohydrates (Olger et al., 2001). It
is still unclear to which extent these results hold withire@mngle chloroplast or leaf. A system-
atic approach was taken by Zhu et al. (2008), using a sophistl algorithm to find all roots of
a system of polynomials. The application of this approach simple model of the Calvin cycle
revealed 40 steady states, of which 39 were biological siida due to extremely small or even
negative metabolite concentrations. Although this ansiy&s limited to a given set of kinetic
parameters, Zhu et al. (2008) concluded that the Calvireayah operate in only one steady state.

Here we systematically analyze the capacity for multipdagy states in a model of the Calvin
cycle endowed with a hierarchy of kinetic laws based on twitheraatical approaches: Chemical
Reaction Network Theory (CRNT), together with its extendimsed on elementary flux modes,
and algebraic geometry. The hierarchy of kinetic laws ingplasn the set of biochemical reactions
describing the Calvin cycle offers the means for deterngirtire necessary and sufficient condi-
tions for the existence of two steady states in this padicaiodel. Moreover, we determine the
set of bifurcation parameters which could be helpful in expent design for validation of our
theoretical findings. In addition, we explore the possipilor the existence of symmetry breaking
instabilities in a slightly modified model of the Calvin cgclOur results partially settle the debate
about the existence of multistability in @ model of the Calgycle and contribute an alternative
interpretation of the existing experimental data.

The paper is organized as follows: In Section 2 we brieflyaevihe mathematical apparatus
needed for studying the relation between the structure efQalvin cycle and its capacity for
multistationarity. The hierarchy of kinetic laws embeddedhe Calvin cycle is described in
Section 3. The general approach is outlined in Section 4teemadpplied in Section 5. We present
our findings for the existence of multiple steady states irodehof the Calvin cycle for four types
of kinetics: mass action, Michaelis-Menten via mass actioaversible Michaelis-Menten, and



rate reactions enzyme

const.  biochemical simplified name
k1 RuBP + COy — 2PGA RuBP — 2PGA  RuBisCO
ko PGA+ ATP — ADP + DPGA PGA — DPGA PG A kinase
ks DPGA+ NADPH — GAP+ P+ NADP DPGA — GAP  GAP dehydrogenase
ka 5GAP — 3Rub5P 5GAP — 3Ru5P
ks Ru5P + ATP — RuBP + ADP RubP — RuBP  R5P kinase
ke PGA — Sink PGA —0 sink capacity
k7 GAP — Sink GAP — 0 sink capacity

Table 1. Biochemical reactions in a simple model of the Calvin cyéligst column gives the rate
constants for the seven irreversible reactions. The bioat® reactions and their simplifications,
due to model assumptions, appear in the second and thirchoadfi the table, respectively. The
names of the enzymes catalyzing these reactions are githa last column.

mass action with diffusion kinetics, in Sections 5.1 - 5egpectively. Finally, in Section 6, we
conclude with the implications or our findings and the neitgss a carefully tailored experiment
for validation.

2 Thestructureof a model for the Calvin cycle

The Calvin cycle consists of three phases in which there esggnsupply in form ofAT P and
redox elementsN ADP/N ADPH): (1) carboxylation during which the enzyme RuBisCO adds
C'O4 to ribulose-1,5-bisphosphat&{( B P) to get two molecules of phosphoglycerateX A), (2)
reduction converting the obtaineBG A into 1,3-diphosphoglyceratéXPG A) and glyceraldehyde-
3-phosphate( A P), and (3)regenerationwhich recovershu B P after several intermediate steps
from ribulose-5-phosphater@:5P) (Berg et al., 2002). The enzymatic reactions comprisirgy th
simple model of the Calvin cycle are given by Zhu et al. (208&) appear in the second column
of Table 1. We modified the reaction of the regeneration pfrasethe model of Zhu et al. (2008),
so that its stoichiometric coefficients are integers. Weimssthat there is a constant supply of
ATP, NADPH, orthophosphateH), andCO,. Therefore, by assuming constancyAif’ P to
ADP and NADPH to NADP ratios, the equations can be rewritten as in the third colomn
Table 1, pictorially shown in Figure 1.

Thereaction networkG, for a given set of biochemical reactions is composed ofetiseds:
(1) S is a set ofspeciegyiven by the chemical compounds occurring in the biochelnézctions,
(2) C'includes allcomplexesgiven by the left and right side of each reaction, andK3)onsists
of reactions indicating the transformation of the complexes. Theféf can be described by
the 3-tuple(S, C, R). For the Calvin cycle model, under the simplifying assuonmi the reaction
network, H, is fully described by

S(H) = {RuBP, PGA, DPGA, GAP, Ru5P},
C(H) = {RuBP,2PGA, Ru5P, PGA, DPGA, GAP,5GAP,0,3Ru5P},

where0 is the special zero complex (denoting the sink), and theR$éf) is given by the third
column of Table 1. The number of species, complexes, andieaaavill be denoted byn, n, and
r, respectively. For this reaction network,= 5,n = 9, andr = 7.

Each species is associated with a continuous variableseqtiag the species’ concentration.
We will usez,, s € S, to denote these variables which take only non-negativeegatiue to
physiological constraints. For the Calvin cycle netwdik,the variables are thetr,zp, zpca,



RubP > RuBP

GAP - DPGA

Figure 1. Model of the Calvin cycle. The model includes seven bioclvahieactions, shown in
Table 1, on which different types of kinetic laws are impgsezidescribed in Section 3.

TDPGA, Taap, andxgr,sp. Let a complexc € C be denoted by.. The complexy. can be
associated a vector over the set of spedesvhose entries are given by the stoichiometric co-
efficients with which the species € S patrticipate iny.. For instance, the compleXPG A in
C(H) is described by the vectarpca = (0,2,0,0,0), and the vector representation for the zero
complex0 is the null vector0 over the five species if(H). A reaction converting a complex
into complexc’ will be denoted by. — ./, and is associated a vectgr — .. To illustrate, the
reactionyr,pp — y2pca IS represented by the vectpr1,2,0,0,0).

The vector representations of complexes can be gathered iocbmplex matrixy”, with di-
mensiongm x n), while the reaction vectors yield the stoichiometric maf¥i, with dimensions
(m x r). In addition, each reaction can be represented by a vectereathe substrate complex
takes a value of -1 and the product complex has a value of 1h Suepresentation of reactions
gives rise to a matrix,, of dimensiongn x r). Upon closer observation, one may establish the
trivial relation, N = Y'I,. For the network of the Calvin cycle model, the matricésand I, are
given by:

-1 0 0 0 1 0 0
2 -1 0 0 0 -1 0
NH)=|{0 1 -1 0 0 0 0], (1)
o 0 1 -5 0 0 -1
0 0 0 3 -1 0 0

and



RubP RuBP 2 PGA

PGA

DPGA

GAP
0
5 GAP —— 3 RubP

Figure 2. Reaction network for the model in Figure 1 with mass actioneics. There
are three linkage classes, given by the connected comporg®t5P, RuBP,2PGA},
{PGA,DPGA,GAP,0}, and{5GAP,3RuBP}.

-1 0 0 0 1 0 0
1 0 0 0O 0 0 O
0 0 0 0 -1 0 0
0 -1 0 0 0 -1 0
IH)=|0 1 -1 0 0 0 0 )
0o 0o 1 0 0 0 -1
0 0 0 -1 0 0 0
o0 0o 0 0 0 1 1
o 0o o0 1 0 0 0]

We will denote the rank of the stoichiometric mati by ¢. For a stoichiometric matrix
with m rows, there then existi — ¢ conservation relationships. Each conservation relatipns
gives rise to a stoichiometric compatibility class thatdaaportant consequences for the study of
steady states; namely, the multistationarity correspéadse existence of more than one steady
state inonestoichiometric compatibility class.

Note that the matri¥, can be associated a directed graph representation, in wieafodes
are the complexes of the reaction network and the directgdsedre given by the entries &f,
considered as an incidence matrix. The resulting graph raag bne or more connected compo-
nents, which are termdihkage classesThe number of linkage classes is denoted.bifor the
model in Figure 1, under the assumption of mass action kisetine reaction network has three
linkage classed, = 3, depicted in Figure 2. Each linkage class can further berdposed into
strong linkage classedA strong linkage class is the maximal strongly connectdaygaph of the
directed graph associated to a reaction network (in a diyaunnected subgraph, there is a di-
rected path from a nodeto v and vice versa). If no edge from a complex inside a strongatijek
class to a complex outside exists, we haterainal strong linkage class

Next, we define the deficiency of a reaction network, basediooiwone can draw conclusions
about the existence of bistability. Tleficiencyof a reaction networlG, §(G) is defined as
0(G) = m — 1 — ¢, and can, therefore, be calculated directly from the stinecof the reaction
network. Note that the deficiency of a linkage class is caledl in the same way as for the entire



reaction network. The following two theorems establishrtbeded relation between the dynamics
and structure of a reaction network (Feinberg, 1995a):

Theorem 2.1. (Deficiency Zero Theorem) If the deficiency of a reaction rwnMs zero, then,
assuming mass-action kinetics for all reactions, no setwesitipe parameter values fdr exists
that leads to multiple steady states.

Theorem 2.2. (Deficiency One Theorem) Given a reaction network, if théofeing conditions
are satisfied:

(1) The deficiency of each linkage class is less or equal to one
(2) The deficiencies of all linkage classes sum up to the @efogi of the entire network, and
(3) Each linkage class contains precisely one terminahgtlimkage class,

then no positive parameter values foexist that allow multistationarity.

Note that Theorem 2.2 extends the result of Theorem 2.1 gplieapio a larger ensemble of
networks. These theorems can be used to establish if a gatermrkdoes nohave the capacity for
multiple steady states. If the network is of deficiency ohe, Deficiency One Algorithm (D1A)
can be used to determine the two steady states for the adatetevork. The Deficiency One
Algorithm has been implemented in tbbeemical reaction network toolbdkeinberg and Ellison,
2000). However, the current version is restricted to reaatietworks of at most 20 complexes due
to computational limitations, which is already too smatlfi@ost biochemical networks. Recently,
the MATLAB package ERNEST was introduced by Soranzo andfidité2009) to overcome this
restriction for a subset of reaction networks.

Conradi et al. (2007) have addressed the problem of regphinltistationarity of large net-
works by analyzing special subnetworks. In particularytilestigated subnetworks defined by
elementary flux modes callexdtoichiometric generatorsAn elementary flux mode of a reaction
network is a minimal set of reactions which can operate atdstestate (Schuster et al., 2000).
An elementary flux modé’ is a stoichiometric generator if. E # 0. Conradi et al. (2007) have
shown that stoichiometric generators are of deficiency sadghey are amenable for an analysis
based on the D1A. If the subnetwork implied by a stoichiofoegenerator is capable of support-
ing two steady states, then these steady states might belegtéo the initial network. The authors
provide additional conditions under which the bistabilitfythe subnetwork can be extended on
the entire network. However, if no multistability is founarfany of the subnetworks, the multista-
tionarity of the entire network remains unresolved. Altinge, this approach allows for analyzing
reaction networks of previously intractable sizes by dgoasing them into smaller subnetworks.
It is worth pointing out that the calculation of all elemanptélux modes can be computational
demanding (Klamt and Stelling, 2002; Acufia et al., 2008).

3 Hierarchy of kinetic laws

To establish the relationship between the structure of etimanetworkG and the system of
differential equations capturing the dynamics, one needsohsider the type of the employed
kinetics. The kinetics for a reaction netwotk = (S, C, R) involves a function that describes
the rate at which the chemical species interact as sulstaaie are transformed into products.
Here, we briefly review the types of kinetics which are coesgd in the rest of the analysis: mass
action (MA), Michaelis-Menten represented in terms of mad®n (MM-MA), and the classical
irreversible Michaelis-Menten (MM).



In mass action kinetics, the rate of a reaction is propoalitmthe concentration of the reactant
multiplied by a kinetic constant. In general, a substkatgith concentratiorr, which participates
with 7, molecules in the substrate complex of a reaction, contatlf* to the rate of the reaction.
Therefore, the mass action kinetics of the reactior~ y.» can be written as:

Ul/c—'yu/ (k,l’) = kyc—’yc/ H xijsv (3)

s€SNsupp(yc)
wheresupp(y.) = {s | y.(s) # 0}.

Since Michaelis-Menten kinetics of a reactidn— B catalyzed by enzymé& can be derived
from three mass action reactiods+ £ — AFE, AE — A+ E, andAE — B, here we use
Michaelis-Menten kinetics represented in terms of masemmcApplying this kinetic requires that
each irreversible reaction is substituted by three reastwith mass action kinetics.

Inirreversible MM kinetics with more than one substrate, thte of a reactiod+B — C'+D
can be written as:

TATB
A+ Kma)(B+ Knp)’ @
whereK,, 4 andK,, g are the MM constants for the substratésand B, andV,,, is the maximum
rate of the reaction.

The model of the reaction network together with a specified kinetiegk, ) is succinctly
written as:

v(k,z) = Vm(

d
d—f = N vk, z). (5)

Note that the right-hand side of Eq. (5) defines a set of ratimctions expressed as ratios of
two polynomials. Assuming diffusion of one system eleméit, (5) can also be rewritten for the
reaction diffusion system in one dimension in a form invetyipartial derivatives for any of the
three kinetic laws discussed above.

4 General approach

In this section, we describe our general method for deténgithe existence of multistationarity
in a model specified by Eqg. (5). Given a reaction netwGrkogether with parameter-dependent
reaction rates)(k, x) first we check if Theorems 2.1 and 2.2 from CRNT (Horn and Jacks
1972; Feinberg, 1995a,b) are applicable on the entire mktwbthis is not the case, we employ
subnetwork analysis described in Section 2. To determiedifarcation parameters, we rely on
finding arational parameterizatiorfor the system of polynomials given in Eq. (5), whereby a
small subset of variables can be identified in terms of whikcbthers can be calculated at steady
state (Thomson and Gunawardena, 2009). For further readirtge concept of Grobner basis,
the interested reader is directed to Cox et al. (1991). Tdesstf our analysis are summarized in
Algorithm 1.

Our approach is partly based on algebraic geometry, destiib Gatermann and Wolfrum
(2005). Similar approaches have recently been introdugethé analysis of multistationarity in
protein phosphorylation and apoptosis (Martinez-For¢rd.e2010; Thomson and Gunawardena,
2009). Although the steps outlined in Algorithm 1 can be usedetermine the existence of
multistationarity together with the bifurcation regiomslditional steps must be taken to establish
the stability of the determined steady states.



Algorithm 1: Steps in multistationarity analysis

Data: G reaction network,
N stoichiometric matrix,
v(k, z) reaction rates
Result: Answer to multistationarity,
Set of bifurcation parameters
begin
Determine deficiency, of G
if v(k,x)is MA or MM-MAthen
if (0 = 0) A (Theorem 2.1 holdghen
L No multistationarity for any choice df

elseif § > 1 then
if Theorem 2.2 holdthen
L No multistationarity for any choice df

elseif D1A is applicablethen
L Multistationarity fork as outcome of D1A

else
Determine stoichimetric generators
Apply the approach of Conradi et al. (2007)

else

ReduceN to its reduced echelon fordv,..

Identify stoichiometric compatibility classéd

Construct a system of polynomialg, from N,.. - v(k, x) and M
Calculate the Grobner baseslof(e.g. using lexicographic order)
Determine bifurcation parameters by solving= 0,p € V

5 Reaults

Here we describe the results of applying Algorithm 1 to thedel@f the Calvin cycle in which
the hierarchy of kinetics, described in Section 3, is embddd

5.1 Massaction kinetics

The model in Figure 1 with mass action kinetics results iregtien network depicted in Figure 2.
It is of deficiency one and composed of three linkage classes) of deficiency zero; therefore,
neither Theorem 2.1 nor Theorem 2.2 is applicable. Howé&yeapplying D1A, we conclude that
no multiple positive steady states are possible, no mattet walues of the mass-action kinetic
parameterg;, 1 < i < 7, are chosen.

Moreover, we point out that even the existence of a singladstestate is not ensured and
depends on some of the kinetic parameters. This conclusiorbe obtained by analyzing the
following system of differential equations associatedhiite reaction network:



dwRuBP
———— = ks TrRusp — k1 TRuBP

dt
dx
;GA = 2-ki-TruBP — k2 -TPca — k¢ TPCA
d
x]ii}t)GA = k2 zpca —ks-zTpPGa ©
dx
;"‘P = ks -zppGa —5 ki xgap — k7 - zGap
4z rusp

at = —ks Trusp + 3 ks Téap

To obtain the steady state solutions, the left-hand sid&xsf (6) are set to zero. Expressing
every variable in terms afp, zp leads taz psp = %azRqu andzpga = kf'T’“}%-a:Rqu. Subse-

P ; k 2k - [ ks
quent substitutions yieldppga = ﬁ'l‘pgA = Wf,%)-xRqu andzgap = ¢ ﬁ - TRuBP-
Finally, one may obtain:

0 = ks-zppga—kr-xcap —5-ki-xgap
_ Zhike s kD e
T ket ke) V3R TRMBR T 3R ITRNED
2-ki ko 5 k1 5
= — S — .k . w 7
<(k:2+ks) "\3 R ah . 3 1) TRuBP (7)

Note that Eq. (7) has five distinct solutions, of which onlyas a positive real number, given
by:

ky - k2

5
. 2:ki-koy 5
3ok (32— 3 k)

LTRuBP = 4

for ifi]fg — % - k1 > 0 or equivalentlyks > 5 - kg. This imposes a lower bound fés in terms of
ks. More precisely, ifk, is below this bound, not even a single steady state existsatter what
values are obtained for all remaining parametfer3 he change of steady state concentration for
varying ks, while keeping all othek’s fixed to one, is shown in Figure 3.

To analyze the stability of the determined steady state haseo calculate the eigenvalues of

the Jacobian matrix/, of the system given in Egs. (6). The Jacobian is given by:

ks —k 0 0 0
0 2k —ko—ks O 0
J=10 0 ko —k3 0 . (8)
0 0 0 ks —25-ky zbap —kr
—ks 0 0 0 15 - ks - 2tap

The roots of the characteristic polynomigy(\) = det(J — A - I), where[ stands for the
identity matrix, determine the eigenvalues.bf The characteristic polynomial can be calculated
by a subsequent minor expansion across the first row of Egle@jing to:

X7(A) = (ks — X\) (k1 + N) (k2 + ke + A) (ks + )\)(25/6’41’%;,4p + k7+ 3Ok5k1k2k3k4x4GAp. 9)

The expansion of ; in Eq. (9) in the formy s (\) = agA\?+ai A +aa A2 +asA3+ag At +as A\
may be used to show that; to a5 are negative. The remaining coefficient can be expressed
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Figure 3: Steady state concentrations for the reaction network inrgig@. The parametes, is
varied and all other parameters are fixed to 1.kAspproache$ - kg, the concentrations go to
infinity. For even smaller values @f,, no steady state exists at all. All steady states are umstabl
as indicated by the dotted lines. The concentrations;p andx g, pp are always the same.

asag = kskiks (]{J7 (—]CQ — ]{36) + 5]434.%%14]3 (]{JQ — 5k6)) SUbStitUtingJJéAP = m,
2 +ke

obtained from the steady state relation betwegpsp andxg 4p, one finally gets
oy — 4k5]€1]€3]€7(l€2 + ]Cﬁ)

Hence,qy is always positive. From Descartes’ rule of sign it follovasity ;(A) has exactly one
positive root and therefore one positive eigenvalue. Caunesetly, the entire parameter space of
the system, given in Egs. (6), does not contain any stabdelgtstates, which clearly makes this
network, with mass action kinetics, an extremely poor model

5.2 Michaedlis-Menten via mass action kinetics

If the kinetics of the model in Figure 1 is assumed to be Mitibddenten represented by mass
action, as described in Section 3, thematrix of the reaction network is depicted as in Figure
4. This reaction network has a deficiency of 2 and is compo$egwven linkage classes, each
of deficiency 0. Therefore, neither Theorems 2.1 and 2.2 rigk Bre applicable. Furthermore,
since the network consists of 21 complexes, it already elsc#ee computational capabilities of
the CRNT Toolbox (Feinberg and Ellison, 2000).

The subnetwork analysis revealed only two elementary modes

vEM - — 30,3,6,0,6,6,0,6,1,0,1,3,0,3,0,0,0,1,0,1},
vEM - — 30,3,5,0,5,5,0,5,1,0,1,3,0,3,1,0,1,0,0,0},



which arise from shutting down one of the two transportectieas.

Both elementary flux modes;“™ andv¥™, are capable of supporting two steady states,
which can be calculated by the CRNT Toolbox. Furthermorem@ans presented by Conradi
et al. (2007), these steady states of the subnetworks iddogdhe elementary modes can be
extended to the full network. To see this, consider the fahg system of differential equations
obtained from the reaction network in Figure 4:

dRsf B~ ki RuSPEs — ki - RuBP- By + ks - RuBPE,
% = —ki-RuBP-FEy+ks  RuBPE, + ks - RuBPE;
% = ki RuBP-Ey —ky+ RuBPE) — ks - RuBPE,
defA = 2.-ks-RuBPE{ — ks - PGA-Es+ ks - PGAE> — kig - PGA - Eg + k17 - PGAFEg
% = —ka-PGA- B>+ ks PGAE; + ks - PGAE,
% — ky-PGA-Es—ks- PGAEy — kg - PG AL,
% = ko PGAE; — k7 - DPGA - E3 + ks - DPGAE;
% = —kr-DPGA - Es+ks- DPGAEs + ko - DPGAE3
%?4]53 = k1 DPGA- B3 — ks - DPGAE;3 — ko - DPGAE;3
% = ko - DPGAFEs—5-kio- GAP® - E4+5- ki1 - GAPE, — ko - GAP - E
+koo - GAPE?
% = —kio-GAP® . Ey+ ki1 - GAPE, + kis - GAPE,
% — k- GAP® . Es— ki - GAPEys — ki - GAPE, 10
dR;fP ks RUSP - Es + ks - RuSPEs 43 - kis - GAPE;
% = —kis- RubP - E5 + k14 - RuSPEs5 + k15 - RubPEs
% = ki3 RudbP - E5 — k14 - RuSPE5 — k15 - RubPEs
% = —kis- PGA-Es + ki7 - PGAEs + k1s - PGAEs
% = kig- PGA - Eg — k17 - PGAEs — ks - PGAEg
% = —kio-GAP - E7+ koo - GAPE7 + k21 - GAPE,
dGAPE;

7 = kio-GAP - E7 — koo - GAPE7; — ka1 - GAPE;

Using the parameters shown in Table 2, the system given hy(E@sdoes have the capability
to obtain multiple positive steady states as can be seereliwthsteady states presented in Table 3.
Furthermore, Figure 5 shows the corresponding bifurcaliagram for some of the metabolites,
using the sum of g, andzpgag, as a bifurcation parameter.

5.3 Michadis-Menten kinetics

When irreversible Michaelis-Menten kinetics is imposedtlom model of the Calvin cycle, only
the approach based on algebraic geometry is applicabtss aimalysis of multistationarity cannot
be performed with any of the tools described in Section 2.eHes consider two cases: (1) the
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Figure4. Reaction network for model in Figure 1 with Michaelis-Memtga mass action kinetics.
There are seven linkage classes, given by the connectedooemis of the graph.

original model from Zhu et al. (2008) and (2) the modified niddem Table 1. Contrary to the
analysis of Zhu et al. (2008), here we demonstrate that, twélsame set of values for the kinetic
parameters, two steady states are possible. Moreover, ove ghalitatively similar results for
the modified model. In addition, we identify the bifurcatiparameters and their corresponding
regions. Since the concentration 47'P and NADPH are assumed constant (as are the ratios
ADP/ATP andNADPH/N ADP), there are no conservation relations.

For the first case, although the concentrations of all fivesi@alycle intermediatesRuB P,
PGA, DPGA, GAP, and Ru5P, can serve as bifurcation parameters, only four of thendyiel
bifurcations in positive ranges for the concentration & temaining metabolites. Clearly, there
are twenty possible bifurcation diagrams due to the pagw@@nbinations of the five Calvin cycle
intermediates, as shown by the individual plots inlaid igufe 6. Twelve of these twenty com-
binations show multistationarity for positive concentratvalues. This conclusion holds when
one considers the definition of physiologically plausilb@centrations given in Zhu et al. (2008),
taking the rang€0.0001 — 5) mM for all metabolites (this range gives the lower and uppemals
of the solution foundherein).

However, for physiologically plausible concentrationg,,zp € [0.6,6.0], zpga € [1.4,12.0],
xppca € [0.8,1.4], xzgap € [0.032,0.04], andzr,sp € [0.01,0.2] mM as given in Zhu
et al. (2007), there exists only one caserzpp given in terms of the bifurcation parameter
xpaa—Wwhere the concentrations of the two depicted metabolaésrf the respective physio-



kp = 0.99119923 kg = 1 kis = 2.4579323
ko = 1 ko = 6.6747969 kg = 1
ks = 2.0237445 kg = 15.141035 ki; = 1
k‘4 = 9.9649223 /{11 = 1 k18 = 1
ks = 1 ki = 0.26920841 k19 = 1.5770407
k‘@ = 10.30969 /{13 = 1.3666169 /{20 = 1
ky = 6.1626543 ki4 = 1 koy = 1.7182818

Table 2: Parameter assignment for the system given in Eqgs. (10) wdiiotv for multiple pos-
itive steady states. Parameters set to 1 are precisely #sseeiated with reactions that are not
present in the first elementary mode which was used to canstrsubnetwork. For simplicity, all
parameters are chosen to have the same value.

logical ranges. Note also that, as seen in the last columigofé&6, for positive values afz,5p,
there are at least two positive steady states for the rentafour metabolites.

We point out that in sixteen out of the twenty cases, therstexio steady state in the in-
tersection of the physiological ranges for the pair of cdeed metabolites. In addition, the
combinations for which a single steady state exists for thesiplogically plausible range include
the following three:zppaa as a function of the bifurcation parametes,zp, tppaa in terms
of zpaa, andzx g, pp in terms of the bifurcation parametep pa 4.

Like in the first case, for the modified model all five Calvin ley;termediates can serve as
bifurcation parameters. Only four of them yield bifurcatsoin positive ranges for the concentra-
tion of the remaining metabolites. There are again twensggiite bifurcation diagrams due to the
pairwise combinations of the five Calvin cycle intermedsates shown by the individual plots in-
laid in Figure 7. 9 of these twenty combinations show mutisharity for positive concentration
values. For the physiologically plausible concentratjdhere exists again only one casexrzpp
given in terms of the bifurcation parametes~4+—where the concentrations of the two depicted
metabolites fall in the respective physiological ranges.

We point out that in again sixteen out of the twenty casesgtkgists no steady state in the
intersection of the physiological ranges for the pair ofsidared metabolites. In addition, the
combinations for which a single steady state exists for thesiplogically plausible range include
the following three:xppaa as a function of the bifurcation parametesg 4, xrysp in terms of
raAp, andzgap in terms of the bifurcation parametef,sp.

To obtain these results, we calculated the Grobner b&sder differently ordered monomials,
as described in Algorithm 1. For the Michaelis-Menten kitgteach basis is given by a set of
polynomialsp and rational functions. These polynomials and rational functions include the last
monomial of the orderi ., the bifurcation parameter) and the concentration for calgiQ cycle
intermediates. Therefore, each Grobner basis contaiteast one polynomial in terms of the
bifurcation parameter and another intermediate.

To investigate the multistationarity of the original mofl®m Zhu et al. (2008) for the com-
bination ofx g, gp as function of bifurcation parametepq 4 in the physiologically plausible con-
centration ranges, we use the Grdbner basis for the mohordiexr (Ru5P, DPGA, RuBP, GAP, PGA).
the polynomial basis element for this dependent combinaifdntermediates is the seventh ele-
ment, given by

p=—2.2079 xpga — 6.33023 - 2pga> + 1.66547 - 2pea’ + 1.0 TrupP. (11)

We set the polynomial in Eq. (11) to zero and solve itfgi; 4. The three arising solutions
were then evaluated on the interval BG A concentration. These calculations were performed



variable

steady state 1 (mM) steady state 2 (mM)

TRuBP 2.1738771 7.6340526
T, 3.2184725 1.5737360
T RUBPE; 2.2935102 3.9382467
TpGA 0.7319781 2.2714297
v, 1.3155187 0.7209939
TPGAE, 0.8484346 1.4429594
TDPGA 0.8031938 2.4924215
v, 2.0319109 1.1136257
T DPGAE, 1.3104660 2.2287516
TGAP 0.6439413 1.2921397
T5, 4.3510314 0.2296564
TCAPE, 5.7470699 9.8684449
T Rusp 1.8031031 6.3319974
T, 2.6499371 1.2957393
T RSP E- 1.8883671 3.2425640
T, 1.4641405 0.9364545
TPGAE, 0.5358594 1.0635454
v, 1.5754002 1.2367929
TGAPE 0.5885531 0.9271604

Table 3: Two different positive steady states obtained from theesgsin Egs. (10) using the
parameters shown in Table 2. The first steady state is upstdble the second one is stable.

with Mathematica 7.0. The notebook to reproduce the bitisnadiagrams is available upon
request.

Following this approach, the results presented in Figured A serve as a rigorous proof
of the capacity for multistationarity in this model of thel@a cycle. Moreover, these findings
demonstrate the reason why previous studies failed to rdeterthe regions of bifurcation by
“trial-and-error” approaches. While solving systems ofypomials, as in Zhu et al. (2008), may
yield partial results, any finding which employs Grobnesdmis exhaustive due to the represen-
tational power of this mathematical construct.

g ranges multiple  single no
variants Steady states
positive 12 S 3
Zhu et al. (2008) physiologically plausible 1 3 16
positive 9 o ;
Table 1 physiologically plausible 1 3 16

Table 4. Number of multiple, single and no steady state(s) as depiatéigures 6 and 7. The
respective entries are obtained by evaluating two diffedemains—positive concentrations and
physiologically plausible concentrations of the intermageks.
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Figure 5: Bifurcation diagram for system 10 using the parameters flaile 2. Stable steady
states are depicted by a solid line, unstable steady statesdashed line. The stars and crosses
mark the concentrations at steady state 1 and 2, respgotbest Table 3). The sum of concentra-
tions of £, and PG AE, is chosen as a bifurcation parameter.

5.4 Massaction with diffusion

In this section, we present a fundamentally different viéwnaltistationarity compared to that of
Sections 5.1 - 5.3. We determine the existence of symme&gkiorg instabilities in the investi-
gated metabolic networkg., instabilities due to diffusion. Characteristic exampésuch insta-
bilities for biochemical reactions include: a substratd product-inhibited enzyme reaction and
the product-activated enzyme reaction catalyzed by plufgjtiokinase in the glycolytic cycle
(Prigogine et al., 1969). The basic theoretical question f&ct, whether the steady-state con-
centrations may, with increasing values of chemical cairds (given affinities or free-energies
of the over-all reactions), still be obtained by a gradualification of the law of mass action.
Symmetry breaking instabilities have been investigatectiiemical (Bar-Eli, 1985; Dolnik and
Marek, 1988; Crowley and Epstein, 1989), gene-regulakmyéska et al., 2007), and metabolic
networks (Tsaneva-Atanasova et al., 2006).

Unlike the case of homogeneous perturbations, when theraystoves from one to another
homogeneous steady state, for inhomogeneous perturbdtiesystem goes from a homogeneous
to an inhomogeneous steady state (IHSS). The instabidities result of the symmetry breaking
of the steady state in the system through a pitchfork bitiona Thus, the unstable homogeneous
steady state splits into two additional branches, whiclm tjgn stability via Hopf bifurcations.

If the complete bifurcation structure of the system canr@bbtained due to computational or
experimental restrictions, the existence of the inhomegas steady state could be easily misin-
terpreted as two separate steady states. Here, we defindi@usdnder which the Calvin cycle
can be characterized with the occurrence of an IHSS.

Since ATP, as the principle energy compound, diffuses batweellular compartments (Basshama
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Figure 6: Bifurcation parameters for the original Calvin cycle moftem Zhu et al. (2008) with
irreversible Michaelis-Menten kinetics. Since CRNT too&nnot be applied in this case, the
curves are obtained by solving the system of Grobner basesch of the subfigures, the steady
state concentrations of two metabolites are plotted age#ssh other using the parameters from
(Zhu et al., 2008). Multistationarity is confirmed by detegtthree steady states (yellow, red, and
blue line). For instance, for positive valuesxt,sp, there are at least two positive steady states
for the remaining four metabolites. The stability of thetsady states cannot be determined by
our approach alone.

et al., 1968), we extend the model presented in Figure 1 biotlusving reaction:

ADP ™ ATP. (12)

Furthermore, the two kinases are not simplified and now reanl the second column of Table 1.
By assuming a Fick type of diffusion law, the equations désuy the balance between reac-
tion rates and diffusion can be written as follows:

ax}ngP = —ki-ZRuBP + k5 - TRu5P - TATP

axthA = 2-ki-TRuBP — k2 -TPGA - TaTP — K6 - TPGA

axDa:GA = —ks-zppca+ k2 -xpca-zaTP (13)
axgtAP = ks-axppca —kr-xcap —5 ki xgap

8x§:5p = 3-ki-xgap — ks TRusp - TaTP

awgtTP = —ky-xpoa-xarp — ks - Trusp - varp + ks(c — xarp) + Darp - (82;:;5313)

In the system given by Eqgs. (13D 47p is the diffusion coefficient oA7T P, assumed to be
constant, such that DP = ¢ — AT P, wherec is the constant amount of adenosine nucleotides.
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Figure7: Bifurcation parameters for the modified Calvin cycle modetiascribed in Table 1 with
irreversible Michaelis-Menten kinetics. In each of thefsylres, the steady state concentrations
of two metabolites are plotted against each other, like gufé (6), using the parameters from
(Zhu et al., 2008). Multistationarity is confirmed by detegtthree steady states (yellow, red, and
blue line). For instance, for positive valuesaof. 4, there are at least two positive steady states
for the remaining four metabolites.

Here, R indicates the diffusion coordinate. For this system of polyials, we find the following
parameterization at steady state:

ks(5 - kizrupp + 3 - k- i/%)
rpGA = .
k2(3'c'k‘8—8'k‘1'xRqu—g.k-7. W)

5-ki-TruBp - V3 ka+3 -kt VkiTrupp
3 ks- U3 s

roap = 4/ k1 runp stZ“BP (14)
- ky

3-ki-ks- RuBP

LTRu5P — -
k5(3'c'k8—8'/€1'J?Rqu—3~k7~W)
" _ C_M_ﬁ,.\s/m
ATP 3 i o

and a quintic equation farg, gp of the formAz® + Bz + C = 0, wherez = /T rupp. ONE May
show that this equation has only one positive solutiorxfgrs p, which facilitates the computation
of the time-independent homogeneous solution given inefabl

We now consider the linear stability of this steady uniformtuion with respect to space and
time-dependent perturbations. Therefore, it is sufficiertonsider perturbations of the form:

TDPGA =

T =Teqg+ Xexplw-t+i(r/N)], (15)
wherex corresponds to the concentration of any variable in theesysiiven by Egs. (13), and,
denotes the steady state concentrations, provided wedenredfinities small with respect tar".



variable steady state (mM)

TRuBP 0.01982
TpaA 0.03313
TDPGA 0.03236
TGAP 0.38252
T Ru5P 0.02235
TATP 0.41904

Table5: Steady state solution derived from Egs. (13).

Let X be the perturbation amplitude which is assumed to saltisfz.,| < 1, andw and\ are
the perturbation frequency and wavelength correspongitighn instability occurs, the perturbed
system will, at some moment, be in a state of marginal stgbdorresponding ta> = 0. Hence,
the secular (characteristic) equations for the system & EB), obtained by the perturbation of
each concentration according to Eqg. (15) and linearized weispect taX in the marginal state,
provides the following relation:

(ks + 2482) - (k1 — 5 ka - & ap,,)
3 (30 ka-aup,, + k1) ’
for the rate constants, diffusion coefficient, and the wawglth\.
Note that the relation described in Eq. (16) holds only intierginal state, and separates
arootw < 0 from a rootw > 0. Thus, for a given set of parameters, the critical value ef th
wavelength) at which the instability begins can be estimated from:

6 —

(16)

22— (k7 =5 ka- xéAPeq) “Darp (17)
e 3~]€6~(30'k4'l’éAP€q +k7)—k8~k7+5~k4~k8~xéAP€q'

From Eq. (17), one can conclude that the critical wavelengthdepends on both the kinetic
parameters and the diffusion coefficient. As a result, thie f@etween the diffusion coefficient
and the reaction rates determines the wavelengths at whedinstability occurs in the system.

6 Discussion

The results obtained from applying our general method to dainaf the Calvin cycle, endowed
with a hierarchy of kinetics, are summarized in Table 6. Thesented findings are corollaries
of well-established theorems relating the underlyingcitme of the network with its dynamical
features. For the model with mass action kinetics, we not esfablished that a single steady state
exists, but also determined the conditions for its stabilitterestingly, weakening the mass-action
assumption by explicitly modeling enzyme mechanisms leéadnultiple positive steady states.
This is a result of applying the subnetwork analysis in cogfion with CRNT. By employing
methods from algebraic geometry, we also demonstratedxibgerece of multistationarity in the
model with Michaelis-Menten kinetics and identified theubifation parameters together with the
physiologically plausible regions of the parameter spab&hkvsupports more than one steady
state. As indicated in Section 4, our approach warrantdcgtjan of other methods to resolve the
stability of the determined steady states. Therefore, odlirfgs only partially settle the issue of
multistability of the Calvin cycle, since we only considereomodel and derive the conditions for
its ability to support multistationarity.

Besides the simplicity of the considered model and the eoarsdeling of the Michaelis-
Menten kinetics, one further concern arises from the pat@mvalues and the steady state con-



Kinetics instability multistationarity support

MA homogeneous NO CRNT and algebraic geometry
MM-MA homogeneous YES CRNT and stoichiometric generators

MM homogeneous YES algebraic geometry

MAd inhomogeneous YES algebraic geometry

Table 6: Summary of results regarding multistationarity for a moalethe Calvin cycle with a
hierarchy of kinetic laws. The first column gives the hiergrof kinetics, from simplest to more
involved: mass action (MA), Michaelis-Menten via mass @ctt{MM-MA), Michaelis-Menten
(MM), and mass action with diffusion (MAd). The considerggé of instabilities and the exis-
tence of multistationarity are given in the second and tbaidmn, respectively. The methods used
to establish the potential for multistationarity and thieitgation parameters/regions are listed in
the last column. Provable results are obtained for all késetonsidered in the hierarchy.

centrations of the metabolites. Since CRNT only aims at ansg whether or not multiple posi-
tive steady states can occur, the resulting values for trenpeters and metabolite concentrations
may lie outside of any physiologically meaningful range. véi¢heless, there is some freedom
in choosing those parametersg, for reactions not included in the subnetwork induced by an
elementary flux mode. This can be further exploited to testtivr multistationarity also occurs
for physiologically feasible parameter values and mettbobncentrations.

We note that an isolated reaction network of the formdof- £ <= AE — B, which is
exactly the set of reactions that were included to emulateh&Blis-Menten kinetics, does not
support multiple steady states on its own (Craciun et aD620Therefore, the fact that multiple
steady states exist for the model with Michaelis-Mentenmagss action kinetics and not with
mass action kinetics implies that multistationarity does arise from local structural properties
but rather from the overall structure of the entire network.

Our approach allows for a tractable analytical analysis oflels with Michaelis-Menten ki-
netics. In this way, we were able to identify the physioladjic plausible regions of the parameter
space in which bifurcation could occur. The obtained reswith respect to the bifurcation pa-
rameters, shown in Figure 6, can help the design of validagikperiments for multistationarity
in plant cells. For instance, a validation experiment wablated chloroplasts and concentration
changes of the bifurcation parameteé A, for which there exists a chloroplast transporter, can
now be readily undertaken.

For the reaction diffusion model, we established theasktiesults determining the ratio be-
tween the diffusion coefficient of ATP and the reaction rat&sch, in turn, determines the wave-
lengths at which inhomogeneous instability could occuricitihg biological conclusions from
these results would be premature, as we only consider diffusystems in one dimension. The
problem of developing a model to account for more realistpes of diffusion, not only of ATP
but also other Calvin cycle intermediates, remains to beesdeéd with methods similar to those
presented here.

Rigorous analysis of multistationarity on metabolic netkgoallows for altering the final out-
come of metabolic processes. Therefore, multistationarisents a dynamic feature amenable to
biotechnological application, specifically increasedntéss production.

Finally, although we studied a model of the Calvin cycle inichtha hierarchy of kinetics is
embedded, our approach is not limited to metabolic netwdrkgrinciple, the pressing question
of multistationarity can be analyzed with such an approachahy biological network modeled
with mass action or Michaelis-Menten kinetics.
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