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Abstract

The possibility of controlling the Calvin cycle has paramount implications for increasing
the production of biomass. Multistationarity, as a dynamical feature of systems, is the first
obvious candidate whose control could find biotechnological applications. Here we set out to
resolve the debate on the multistationarity of the Calvin cycle. Unlike the existing simulation-
based studies, our approach is based on a sound mathematicalframework, chemical reaction
network theory and algebraic geometry, which results in provable results for the investigated
model of the Calvin cycle in which we embed a hierarchy of realistic kinetic laws. Our
theoretical findings demonstrate that there is a possibility for multistationarity resulting from
two sources, homogeneous and inhomogeneous instabilities, which partially settle the debate
on multistability of the Calvin cycle. In addition, our tractable analytical treatment of the
bifurcation parameters can be employed in the design of validation experiments.

1 Introduction

The development of techniques for increasing plant biomassholds the promise of engineering
plants which can be used for production of biofuels in a sustainable carbon-neutral fashion. Plant
biomass is the outcome of complex biochemical reactions reflecting the necessity for balancing
conflicting demands for resources to maintain cell vitalityand function with those to support
growth. Plant growth depends on the uptake and assimilationof inorganic nutrients and the photo-
synthetic assimilation of carbon dioxide (CO2) via the Calvin cycle (Stitt and Krapp, 1999). This
CO2-assimilating pathway takes place in the chloroplast of photosynthetic plant cells yielding car-
bon skeletons necessary for maintenance of the entire plantmetabolism. Therefore, understanding
the mechanisms of the Calvin cycle can propel the design of techniques for manipulation of its
efficiency.

The study of cell metabolism has traditionally focused on determining the factors that in-
fluence metabolic rates, at levels of both metabolic pathways and the whole organism (Heinrich
and Schuster, 1996). Although there has been a significant progress in the structural analysis of
metabolic pathways in order to understand and predict the distribution of cellular fluxes (Pals-
son, 2000; Schuster et al., 2000; Grimbs et al., 2007), addressing the problem of efficient biomass



production requires elucidation of the dynamical properties of plant metabolic models. The ques-
tion arises as to whether there exists a qualitative dynamical feature of plant-specific metabolic
pathways which results in possibilities for increasing theproduction of biomass.

Multistationarity is a qualitative feature of systems, characterized by the existence of multiple
positive steady states, with great potential for application in biotechnology. Biological entities
(i.e., genes, proteins), biochemical pathways, and cells operate in one of multiple exclusive states
at any given time. For instance, a gene can either be expressed or not expressed, glycolysis and
gluconeogenesis represent mutually exclusive metabolic states, and a stem cell may be at an un-
differentiated state or committed to differentiating to a particular lineage (Chatterjee et al., 2008).
As pointed out in Prigogine and Nicolis (1967), there are at least two sources for multistationarity:
(1) instabilities with respect to space-independent (homogeneous) perturbations, whereby the sys-
tem goes from one to another homogeneous steady state, whichmay or may not be stable, and (2)
instabilities with respect to space-dependent (inhomogeneous) perturbations, when the diffusion
plays a crucial role by increasing the manifold of possible perturbations. From a biotechnolog-
ical perspective, altering the control of multistationarity in biological systems offers means for
manipulating the outcome of a particular biochemical process.

Given a stimulus, the control of a biological switch, characterized with twostablesteady states,
is established via perturbation of the stimulus’ concentration: When it changes over a threshold
value, the entire system undergoes a transition from one to the other stable state, without resid-
ing in an in-between state due to the instability of the latter. The stimulus which exhibits such
a property is referred to asbifurcation parameter. Bifurcation parameters can be endogenous
or exogenous to the system. Typical endogenous bifurcationparameters include the kinetic pa-
rameters associated with a particular biochemical reaction, while exogenous parameters include
conservation relations of some chemical element. We note that the response of individual bio-
chemical reactions to changes in the bifurcation parameteris continuous and graded; however, the
combination of these graded responses gives rise to a bistable (switching) behavior.

For experimental validation of bistability, one relies on the threshold property for the applied
stimulus: The threshold concentrations of the stimulus forthe two possible transitions between
the steady states (from the first to the second steady state and vice versa) are different. Therefore,
two response curves can be generated by adding/subtractingsmall increments of the stimulus,
resulting in ahysteresis diagram. However, such experimental approaches on a population level
could have contradicting results; namely, the compounded effect of the individual bistable cellular
responses may appear graded for the population itself. The contrast between population and single
cell levels has been illustrated experimentally in a numberof systems, includingXenopus levis
oocytes (Bagowski et al., 2001, 2003). We point out that the experimental set up for monitoring
the photosynthetic response in plants may be further hindered by the heterogeneous population
of cells in a leaf or a rosette, since not all cells demonstrate photosynthetic capacity. However,
experimental approaches relying on isolated chloroplastsmay prove useful in the study of the
existence of multistationarity in photosynthetic processes.

The theoretical analysis of multistationarity in biological systems is performed on a kinetic
model comprising a set of biochemical reactions. The general numerical approach relies on con-
ducting stability analysis of a given model through the following steps: (1) a steady state is cal-
culated, (2) perturbation of the system is imposed to establish the stability of the steady state, (3)
perturbation of the stimulus’ concentration is imposed to check the transition to a new (stable)
steady state. The existing studies focus on multistationarity (and multistability) in gene-regulatory
and signaling networks (Kaneko and Yomo, 1994; Nakajima andKaneko, 2008; Koseska et al.,
2010; Tyson et al., 2003).

Unlike gene-regulatory and signaling networks, metabolicpathways with capacity for multi-
stationarity can be characterized intuitively as transiting between states which result in different



composition and quantity of biomass. Development of detailed kinetic models of metabolic path-
ways, however, requires information about the rate equations, enzyme-specific kinetic parameters,
and substrate/product regulatory mechanism. Nevertheless, recently established mathematical ap-
proaches render it possible to infer sound statements aboutmultistationarity of metabolic networks
even when kinetic parameters are not known.

With respect to the multistationarity of a set of biochemical reactions, two questions are cru-
cial: (1) Do the biochemical reactions have the capacity formultistationarity irrespective of the
kinetic parameters? and (2) Given a (partial) set of kineticparameters, which element of the bio-
chemical reactions can be considered a bifurcation parameter? To answer the first question, one
needs to establish a relation between multistationarity and the underlying structure of the bio-
chemical reactions. Knowing whether a network can operate in more than one steady state only
partially addresses the multistationarity analysis, since one still has to determine the regions of the
parameter space in which multistationarity occurs. The answer to the second question pinpoints
precisely these regions.

Due to the potential for biotechnological applications of multistationarity, the question as to
whether the Calvin cycle could operate in multiple steady states is of paramount importance.
Despite the large number of models for the Calvin cycle, the analysis of the existence and exper-
imental validation of multiple steady states in this pathway is still fragmentary, usually resulting
in contradictory conclusions. Pettersson and Ryde-Pettersson (1988) found two steady states for
their model of the Calvin cycle. However, they showed that one of these steady states is unstable
and therefore considered to be of no biological relevance, while the remaining stable steady state
was in accordance with previous experiments (Flügge et al., 1980; Heldt et al., 1977). Poolman
et al. (2000) also demonstrated that their extension of the model of Pettersson and Ryde-Pettersson
(1988) exhibits two steady states. Moreover, Poolman et al.(2001) attempted to experimentally
verify this result; however, the two observed steady stateswere found in leafs of different age and
therefore have different capacities of utilizing the produced carbohydrates (Olçer et al., 2001). It
is still unclear to which extent these results hold within one single chloroplast or leaf. A system-
atic approach was taken by Zhu et al. (2008), using a sophisticated algorithm to find all roots of
a system of polynomials. The application of this approach toa simple model of the Calvin cycle
revealed 40 steady states, of which 39 were biological infeasible due to extremely small or even
negative metabolite concentrations. Although this analysis was limited to a given set of kinetic
parameters, Zhu et al. (2008) concluded that the Calvin cycle can operate in only one steady state.

Here we systematically analyze the capacity for multiple steady states in a model of the Calvin
cycle endowed with a hierarchy of kinetic laws based on two mathematical approaches: Chemical
Reaction Network Theory (CRNT), together with its extension based on elementary flux modes,
and algebraic geometry. The hierarchy of kinetic laws imposed on the set of biochemical reactions
describing the Calvin cycle offers the means for determining the necessary and sufficient condi-
tions for the existence of two steady states in this particular model. Moreover, we determine the
set of bifurcation parameters which could be helpful in experiment design for validation of our
theoretical findings. In addition, we explore the possibility for the existence of symmetry breaking
instabilities in a slightly modified model of the Calvin cycle. Our results partially settle the debate
about the existence of multistability in a model of the Calvin cycle and contribute an alternative
interpretation of the existing experimental data.

The paper is organized as follows: In Section 2 we briefly review the mathematical apparatus
needed for studying the relation between the structure of the Calvin cycle and its capacity for
multistationarity. The hierarchy of kinetic laws embeddedin the Calvin cycle is described in
Section 3. The general approach is outlined in Section 4 and then applied in Section 5. We present
our findings for the existence of multiple steady states in a model of the Calvin cycle for four types
of kinetics: mass action, Michaelis-Menten via mass action, irreversible Michaelis-Menten, and



rate reactions enzyme

const. biochemical simplified name

k1 RuBP + CO2 → 2PGA RuBP → 2PGA RuBisCO
k2 PGA + ATP → ADP + DPGA PGA → DPGA PGA kinase
k3 DPGA + NADPH → GAP + P + NADP DPGA → GAP GAP dehydrogenase
k4 5GAP → 3Ru5P 5GAP → 3Ru5P
k5 Ru5P + ATP → RuBP + ADP Ru5P → RuBP R5P kinase
k6 PGA → Sink PGA → 0 sink capacity
k7 GAP → Sink GAP → 0 sink capacity

Table 1: Biochemical reactions in a simple model of the Calvin cycle.First column gives the rate
constants for the seven irreversible reactions. The biochemical reactions and their simplifications,
due to model assumptions, appear in the second and third column of the table, respectively. The
names of the enzymes catalyzing these reactions are given inthe last column.

mass action with diffusion kinetics, in Sections 5.1 - 5.4, respectively. Finally, in Section 6, we
conclude with the implications or our findings and the necessity of a carefully tailored experiment
for validation.

2 The structure of a model for the Calvin cycle

The Calvin cycle consists of three phases in which there is energy supply in form ofATP and
redox elements (NADP/NADPH): (1) carboxylation, during which the enzyme RuBisCO adds
CO2 to ribulose-1,5-bisphosphate (RuBP ) to get two molecules of phosphoglycerate (PGA), (2)
reduction, converting the obtainedPGA into 1,3-diphosphoglycerate (DPGA) and glyceraldehyde-
3-phosphate (GAP ), and (3)regeneration, which recoversRuBP after several intermediate steps
from ribulose-5-phosphate (Ru5P ) (Berg et al., 2002). The enzymatic reactions comprising the
simple model of the Calvin cycle are given by Zhu et al. (2008)and appear in the second column
of Table 1. We modified the reaction of the regeneration phasefrom the model of Zhu et al. (2008),
so that its stoichiometric coefficients are integers. We assume that there is a constant supply of
ATP , NADPH, orthophosphate (P ), andCO2. Therefore, by assuming constancy ofATP to
ADP andNADPH to NADP ratios, the equations can be rewritten as in the third columnof
Table 1, pictorially shown in Figure 1.

The reaction network, G, for a given set of biochemical reactions is composed of three sets:
(1) S is a set ofspeciesgiven by the chemical compounds occurring in the biochemical reactions,
(2) C includes allcomplexes, given by the left and right side of each reaction, and (3)R consists
of reactions, indicating the transformation of the complexes. Therefore, G can be described by
the 3-tuple(S,C,R). For the Calvin cycle model, under the simplifying assumptions, the reaction
network,H, is fully described by

S(H) = {RuBP,PGA,DPGA,GAP,Ru5P},
C(H) = {RuBP, 2PGA,Ru5P,PGA,DPGA,GAP, 5GAP, 0, 3Ru5P},

where0 is the special zero complex (denoting the sink), and the setR(H) is given by the third
column of Table 1. The number of species, complexes, and reactions will be denoted bym, n, and
r, respectively. For this reaction network,m = 5, n = 9, andr = 7.

Each species is associated with a continuous variable representing the species’ concentration.
We will use xs, s ∈ S, to denote these variables which take only non-negative values due to
physiological constraints. For the Calvin cycle network,H, the variables are thenxRuBP , xPGA,
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Figure 1: Model of the Calvin cycle. The model includes seven biochemical reactions, shown in
Table 1, on which different types of kinetic laws are imposed, as described in Section 3.

xDPGA, xGAP , andxRu5P . Let a complexc ∈ C be denoted byyc. The complexyc can be
associated a vector over the set of speciesS, whose entries are given by the stoichiometric co-
efficients with which the speciess ∈ S participate inyc. For instance, the complex2PGA in
C(H) is described by the vectory2PGA = (0, 2, 0, 0, 0), and the vector representation for the zero
complex0 is the null vector0 over the five species inS(H). A reaction converting a complexc
into complexc′ will be denoted byyc → yc′ , and is associated a vectoryc′ − yc. To illustrate, the
reactionyRuBP → y2PGA is represented by the vector(−1, 2, 0, 0, 0).

The vector representations of complexes can be gathered into a complex matrixY , with di-
mensions(m × n), while the reaction vectors yield the stoichiometric matrix N , with dimensions
(m × r). In addition, each reaction can be represented by a vector where the substrate complex
takes a value of -1 and the product complex has a value of 1. Such a representation of reactions
gives rise to a matrixIa of dimensions(n × r). Upon closer observation, one may establish the
trivial relation,N = Y Ia. For the network of the Calvin cycle model, the matricesN andIa are
given by:

N(H) =

2

6

6

6

6

4

−1 0 0 0 1 0 0
2 −1 0 0 0 −1 0
0 1 −1 0 0 0 0
0 0 1 −5 0 0 −1
0 0 0 3 −1 0 0

3

7

7

7

7

5

, (1)

and
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Figure 2: Reaction network for the model in Figure 1 with mass action kinetics. There
are three linkage classes, given by the connected components {Ru5P,RuBP, 2PGA},
{PGA,DPGA,GAP, 0}, and{5GAP, 3RuBP}.

Ia(H) =
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6

4

−1 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 −1 0 0 0 −1 0
0 1 −1 0 0 0 0
0 0 1 0 0 0 −1
0 0 0 −1 0 0 0
0 0 0 0 0 1 1
0 0 0 1 0 0 0
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7
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. (2)

We will denote the rank of the stoichiometric matrixN by q. For a stoichiometric matrix
with m rows, there then existm − q conservation relationships. Each conservation relationship
gives rise to a stoichiometric compatibility class that have important consequences for the study of
steady states; namely, the multistationarity correspondsto the existence of more than one steady
state inonestoichiometric compatibility class.

Note that the matrixIa can be associated a directed graph representation, in whichthe nodes
are the complexes of the reaction network and the directed edges are given by the entries ofIa,
considered as an incidence matrix. The resulting graph may have one or more connected compo-
nents, which are termedlinkage classes. The number of linkage classes is denoted byl. For the
model in Figure 1, under the assumption of mass action kinetics, the reaction network has three
linkage classes,l = 3, depicted in Figure 2. Each linkage class can further be decomposed into
strong linkage classes. A strong linkage class is the maximal strongly connected subgraph of the
directed graph associated to a reaction network (in a strongly connected subgraph, there is a di-
rected path from a nodeu to v and vice versa). If no edge from a complex inside a strong linkage
class to a complex outside exists, we have aterminal strong linkage class.

Next, we define the deficiency of a reaction network, based on which one can draw conclusions
about the existence of bistability. Thedeficiencyof a reaction networkG, δ(G) is defined as
δ(G) = m − l − q, and can, therefore, be calculated directly from the structure of the reaction
network. Note that the deficiency of a linkage class is calculated in the same way as for the entire



reaction network. The following two theorems establish theneeded relation between the dynamics
and structure of a reaction network (Feinberg, 1995a):

Theorem 2.1. (Deficiency Zero Theorem) If the deficiency of a reaction network is zero, then,
assuming mass-action kinetics for all reactions, no set of positive parameter values fork exists
that leads to multiple steady states.

Theorem 2.2. (Deficiency One Theorem) Given a reaction network, if the following conditions
are satisfied:

(1) The deficiency of each linkage class is less or equal to one,

(2) The deficiencies of all linkage classes sum up to the deficiency of the entire network, and

(3) Each linkage class contains precisely one terminal strong linkage class,

then no positive parameter values fork exist that allow multistationarity.

Note that Theorem 2.2 extends the result of Theorem 2.1 and applies to a larger ensemble of
networks. These theorems can be used to establish if a given networkdoes nothave the capacity for
multiple steady states. If the network is of deficiency one, the Deficiency One Algorithm (D1A)
can be used to determine the two steady states for the analyzed network. The Deficiency One
Algorithm has been implemented in thechemical reaction network toolbox(Feinberg and Ellison,
2000). However, the current version is restricted to reaction networks of at most 20 complexes due
to computational limitations, which is already too small for most biochemical networks. Recently,
the MATLAB package ERNEST was introduced by Soranzo and Altafini (2009) to overcome this
restriction for a subset of reaction networks.

Conradi et al. (2007) have addressed the problem of resolving multistationarity of large net-
works by analyzing special subnetworks. In particular, they investigated subnetworks defined by
elementary flux modes calledstoichiometric generators. An elementary flux mode of a reaction
network is a minimal set of reactions which can operate at steady state (Schuster et al., 2000).
An elementary flux modeE is a stoichiometric generator ifIcE 6= 0. Conradi et al. (2007) have
shown that stoichiometric generators are of deficiency one,so they are amenable for an analysis
based on the D1A. If the subnetwork implied by a stoichiometric generator is capable of support-
ing two steady states, then these steady states might be extended to the initial network. The authors
provide additional conditions under which the bistabilityof the subnetwork can be extended on
the entire network. However, if no multistability is found for any of the subnetworks, the multista-
tionarity of the entire network remains unresolved. Altogether, this approach allows for analyzing
reaction networks of previously intractable sizes by decomposing them into smaller subnetworks.
It is worth pointing out that the calculation of all elementary flux modes can be computational
demanding (Klamt and Stelling, 2002; Acuña et al., 2008).

3 Hierarchy of kinetic laws

To establish the relationship between the structure of a reaction networkG and the system of
differential equations capturing the dynamics, one needs to consider the type of the employed
kinetics. The kinetics for a reaction networkG = (S,C,R) involves a function that describes
the rate at which the chemical species interact as substrates and are transformed into products.
Here, we briefly review the types of kinetics which are considered in the rest of the analysis: mass
action (MA), Michaelis-Menten represented in terms of massaction (MM-MA), and the classical
irreversible Michaelis-Menten (MM).



In mass action kinetics, the rate of a reaction is proportional to the concentration of the reactant
multiplied by a kinetic constant. In general, a substrates, with concentrationxs, which participates
with ys molecules in the substrate complex of a reaction, contributesxys

s to the rate of the reaction.
Therefore, the mass action kinetics of the reactionyc → yc′ can be written as:

vyc→y
c′

(k, x) = kyc→y
c′

Y

s∈S∩supp(yc)

xys
s , (3)

wheresupp(yc) = {s | yc(s) 6= 0}.
Since Michaelis-Menten kinetics of a reactionA → B catalyzed by enzymeE can be derived

from three mass action reactionsA + E → AE, AE → A + E, andAE → B, here we use
Michaelis-Menten kinetics represented in terms of mass action. Applying this kinetic requires that
each irreversible reaction is substituted by three reactions with mass action kinetics.

In irreversible MM kinetics with more than one substrate, the rate of a reactionA+B → C+D
can be written as:

v(k, x) = Vm
xAxB

(A + KmA)(B + KmB)
, (4)

whereKmA andKmB are the MM constants for the substratesA andB, andVm is the maximum
rate of the reaction.

The model of the reaction networkG together with a specified kineticsv(k, x) is succinctly
written as:

dx

dt
= N · v(k, x). (5)

Note that the right-hand side of Eq. (5) defines a set of rational functions expressed as ratios of
two polynomials. Assuming diffusion of one system element,Eq. (5) can also be rewritten for the
reaction diffusion system in one dimension in a form involving partial derivatives for any of the
three kinetic laws discussed above.

4 General approach

In this section, we describe our general method for determining the existence of multistationarity
in a model specified by Eq. (5). Given a reaction networkG together with parameter-dependent
reaction ratesv(k, x) first we check if Theorems 2.1 and 2.2 from CRNT (Horn and Jackson,
1972; Feinberg, 1995a,b) are applicable on the entire network. If this is not the case, we employ
subnetwork analysis described in Section 2. To determine the bifurcation parameters, we rely on
finding a rational parameterizationfor the system of polynomials given in Eq. (5), whereby a
small subset of variables can be identified in terms of which all others can be calculated at steady
state (Thomson and Gunawardena, 2009). For further readingon the concept of Gröbner basis,
the interested reader is directed to Cox et al. (1991). The steps of our analysis are summarized in
Algorithm 1.

Our approach is partly based on algebraic geometry, described in Gatermann and Wolfrum
(2005). Similar approaches have recently been introduced for the analysis of multistationarity in
protein phosphorylation and apoptosis (Martinez-Forero et al., 2010; Thomson and Gunawardena,
2009). Although the steps outlined in Algorithm 1 can be usedto determine the existence of
multistationarity together with the bifurcation regions,additional steps must be taken to establish
the stability of the determined steady states.



Algorithm 1: Steps in multistationarity analysis

Data: G reaction network,
N stoichiometric matrix,
v(k, x) reaction rates
Result: Answer to multistationarity,
Set of bifurcation parameters
begin

Determine deficiency,δ, of G
if v(k, x) is MA or MM-MAthen

if (δ = 0) ∧ (Theorem 2.1 holds)then
No multistationarity for any choice ofk

else if δ > 1 then
if Theorem 2.2 holdsthen

No multistationarity for any choice ofk

else if D1A is applicablethen
Multistationarity fork as outcome of D1A

else
Determine stoichimetric generators
Apply the approach of Conradi et al. (2007)

else
ReduceN to its reduced echelon formNre

Identify stoichiometric compatibility classesM
Construct a system of polynomials,V , from Nre · v(k, x) andM
Calculate the Gröbner bases ofV (e.g.using lexicographic order)
Determine bifurcation parameters by solvingp = 0, p ∈ V

5 Results

Here we describe the results of applying Algorithm 1 to the model of the Calvin cycle in which
the hierarchy of kinetics, described in Section 3, is embedded.

5.1 Mass action kinetics

The model in Figure 1 with mass action kinetics results in a reaction network depicted in Figure 2.
It is of deficiency one and composed of three linkage classes,each of deficiency zero; therefore,
neither Theorem 2.1 nor Theorem 2.2 is applicable. However,by applying D1A, we conclude that
no multiple positive steady states are possible, no matter what values of the mass-action kinetic
parameterski, 1 ≤ i ≤ 7, are chosen.

Moreover, we point out that even the existence of a single steady state is not ensured and
depends on some of the kinetic parameters. This conclusion can be obtained by analyzing the
following system of differential equations associated with the reaction network:



dxRuBP

dt
= k5 · xRu5P − k1 · xRuBP

dxPGA

dt
= 2 · k1 · xRuBP − k2 · xPGA − k6 · xPGA

dxDPGA

dt
= k2 · xPGA − k3 · xDPGA (6)

dxGAP

dt
= k3 · xDPGA − 5 · k4 · x5

GAP − k7 · xGAP

dxRu5P

dt
= −k5 · xRu5P + 3 · k4 · x5

GAP

To obtain the steady state solutions, the left-hand sides ofEqs. (6) are set to zero. Expressing
every variable in terms ofxRuBP leads toxRu5P = k1

k5
·xRuBP andxPGA = 2·k1

k2+k6
·xRuBP . Subse-

quent substitutions yieldxDPGA = k2
k3
·xPGA = 2·k1·3

k3·(k2+k6)
·xRuBP andxGAP = 5

√

k1·

3·k4
· xRuBP .

Finally, one may obtain:

0 = k3 · xDPGA − k7 · xGAP − 5 · k4 · x5
GAP

=
2 · k1 · k2

(k2 + k6)
− k7 ·

5

r

k1

3 · k4
· xRuBP −

5

3
· k1 · xRuBP

=

 

2 · k1 · k2

(k2 + k6)
− k7 · 5

s

k1

3 · k4 · x4
RuBP

−
5

3
· k1

!

· xRuBP (7)

Note that Eq. (7) has five distinct solutions, of which only one is a positive real number, given
by:

xRuBP = 4

√

√

√

√

k1 · k5
7

3 · k4

(

2·k1·k2
k2+k6

− 5
3 · k1

)5

for 2·k1·k2
k2+k6

− 5
3 · k1 > 0 or equivalentlyk2 > 5 · k6. This imposes a lower bound fork2 in terms of

k6. More precisely, ifk2 is below this bound, not even a single steady state exists, nomatter what
values are obtained for all remaining parametersk. The change of steady state concentration for
varyingk2, while keeping all otherk’s fixed to one, is shown in Figure 3.

To analyze the stability of the determined steady state, onehas to calculate the eigenvalues of
the Jacobian matrix,J , of the system given in Eqs. (6). The Jacobian is given by:

J =

2

6

6

6

6

4

k5 −k1 0 0 0
0 2 · k1 −k2 − k6 0 0
0 0 k2 −k3 0
0 0 0 k3 −25 · k4 · x

4
GAP − k7

−k5 0 0 0 15 · k4 · x4
GAP

3

7

7

7

7

5

. (8)

The roots of the characteristic polynomialχJ(λ) = det(J − λ · I), whereI stands for the
identity matrix, determine the eigenvalues ofJ . The characteristic polynomial can be calculated
by a subsequent minor expansion across the first row of Eq. (8), leading to:

χJ (λ) = (k5 − λ)(k1 + λ)(k2 + k6 + λ)(k3 + λ)(25k4x
4
GAP + k7+ 30k5k1k2k3k4x

4
GAP . (9)

The expansion ofχJ in Eq. (9) in the formχJ(λ) = α0λ
0+α1λ

1+α2λ
2+α3λ

3+α4λ
4+α5λ

5

may be used to show thatα1 to α5 are negative. The remaining coefficientα0 can be expressed
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Figure 3: Steady state concentrations for the reaction network in Figure 2. The parameterk2 is
varied and all other parameters are fixed to 1. Ask2 approaches5 · k6, the concentrations go to
infinity. For even smaller values ofk2, no steady state exists at all. All steady states are unstable,
as indicated by the dotted lines. The concentrationsxRu5P andxRuBP are always the same.

as α0 = k5k1k3

(

k7 (−k2 − k6) + 5k4x
4
GAP (k2 − 5k6)

)

. Substitutingx4
GAP = k7

k4(
6k2

k2+k6
−5)

,

obtained from the steady state relation betweenxRuBP andxGAP , one finally gets

α0 = 4k5k1k3k7(k2 + k6).

Hence,α0 is always positive. From Descartes’ rule of sign it follows thatχJ(λ) has exactly one
positive root and therefore one positive eigenvalue. Consequently, the entire parameter space of
the system, given in Eqs. (6), does not contain any stable steady states, which clearly makes this
network, with mass action kinetics, an extremely poor model.

5.2 Michaelis-Menten via mass action kinetics

If the kinetics of the model in Figure 1 is assumed to be Michaelis-Menten represented by mass
action, as described in Section 3, theIa matrix of the reaction network is depicted as in Figure
4. This reaction network has a deficiency of 2 and is composed of seven linkage classes, each
of deficiency 0. Therefore, neither Theorems 2.1 and 2.2 nor D1A are applicable. Furthermore,
since the network consists of 21 complexes, it already exceeds the computational capabilities of
the CRNT Toolbox (Feinberg and Ellison, 2000).

The subnetwork analysis revealed only two elementary modes:

νEM
1 = {3, 0, 3, 6, 0, 6, 6, 0, 6, 1, 0, 1, 3, 0, 3, 0, 0, 0, 1, 0, 1},

νEM
2 = {3, 0, 3, 5, 0, 5, 5, 0, 5, 1, 0, 1, 3, 0, 3, 1, 0, 1, 0, 0, 0},



which arise from shutting down one of the two transporter reactions.
Both elementary flux modes,νEM

1 and νEM
2 , are capable of supporting two steady states,

which can be calculated by the CRNT Toolbox. Furthermore, bymeans presented by Conradi
et al. (2007), these steady states of the subnetworks induced by the elementary modes can be
extended to the full network. To see this, consider the following system of differential equations
obtained from the reaction network in Figure 4:

dRuBP

dt
= k15 · Ru5PE5 − k1 · RuBP · E1 + k2 · RuBPE1

dE1

dt
= −k1 · RuBP · E1 + k2 · RuBPE1 + k3 · RuBPE1

dRuBPE1

dt
= k1 · RuBP · E1 − k2 · RuBPE1 − k3 · RuBPE1

dPGA

dt
= 2 · k3 · RuBPE1 − k4 · PGA · E2 + k5 · PGAE2 − k16 · PGA · E6 + k17 · PGAE6

dE2

dt
= −k4 · PGA · E2 + k5 · PGAE2 + k6 · PGAE2

dPGAE2

dt
= k4 · PGA · E2 − k5 · PGAE2 − k6 · PGAE2

dDPGA

dt
= k6 · PGAE2 − k7 · DPGA · E3 + k8 · DPGAE3

dE3

dt
= −k7 · DPGA · E3 + k8 · DPGAE3 + k9 · DPGAE3

dDPGAE3

dt
= k7 · DPGA · E3 − k8 · DPGAE3 − k9 · DPGAE3

dGAP

dt
= k9 · DPGAE3 − 5 · k10 · GAP 5

· E4 + 5 · k11 · GAPE4 − k19 · GAP · E7

+k20 · GAPE7

dE4

dt
= −k10 · GAP 5

· E4 + k11 · GAPE4 + k12 · GAPE4

dGAPE4

dt
= k10 · GAP 5

· E4 − k11 · GAPE4 − k12 · GAPE4 (10)

dRu5P

dt
= −k13 · Ru5P · E5 + k14 · Ru5PE5 + 3 · k12 · GAPE4

dE5

dt
= −k13 · Ru5P · E5 + k14 · Ru5PE5 + k15 · Ru5PE5

dRu5PE5

dt
= k13 · Ru5P · E5 − k14 · Ru5PE5 − k15 · Ru5PE5

dE6

dt
= −k16 · PGA · E6 + k17 · PGAE6 + k18 · PGAE6

dPGAE6

dt
= k16 · PGA · E6 − k17 · PGAE6 − k18 · PGAE6

dE7

dt
= −k19 · GAP · E7 + k20 · GAPE7 + k21 · GAPE7

dGAPE7

dt
= k19 · GAP · E7 − k20 · GAPE7 − k21 · GAPE7

Using the parameters shown in Table 2, the system given by Eqs. (10) does have the capability
to obtain multiple positive steady states as can be seen by the two steady states presented in Table 3.
Furthermore, Figure 5 shows the corresponding bifurcationdiagram for some of the metabolites,
using the sum ofxE2 andxPGAE2 as a bifurcation parameter.

5.3 Michaelis-Menten kinetics

When irreversible Michaelis-Menten kinetics is imposed onthe model of the Calvin cycle, only
the approach based on algebraic geometry is applicable, since analysis of multistationarity cannot
be performed with any of the tools described in Section 2. Here we consider two cases: (1) the
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Figure 4: Reaction network for model in Figure 1 with Michaelis-Menten via mass action kinetics.
There are seven linkage classes, given by the connected components of the graph.

original model from Zhu et al. (2008) and (2) the modified model from Table 1. Contrary to the
analysis of Zhu et al. (2008), here we demonstrate that, withthe same set of values for the kinetic
parameters, two steady states are possible. Moreover, we show qualitatively similar results for
the modified model. In addition, we identify the bifurcationparameters and their corresponding
regions. Since the concentration ofATP andNADPH are assumed constant (as are the ratios
ADP/ATP andNADPH/NADP ), there are no conservation relations.

For the first case, although the concentrations of all five Calvin cycle intermediates,RuBP ,
PGA, DPGA, GAP , andRu5P , can serve as bifurcation parameters, only four of them yield
bifurcations in positive ranges for the concentration of the remaining metabolites. Clearly, there
are twenty possible bifurcation diagrams due to the pairwise combinations of the five Calvin cycle
intermediates, as shown by the individual plots inlaid in Figure 6. Twelve of these twenty com-
binations show multistationarity for positive concentration values. This conclusion holds when
one considers the definition of physiologically plausible concentrations given in Zhu et al. (2008),
taking the range(0.0001−5) mM for all metabolites (this range gives the lower and upper bounds
of the solution foundtherein).

However, for physiologically plausible concentrations,xRuBP ∈ [0.6, 6.0], xPGA ∈ [1.4, 12.0],
xDPGA ∈ [0.8, 1.4], xGAP ∈ [0.032, 0.04], and xRu5P ∈ [0.01, 0.2] mM as given in Zhu
et al. (2007), there exists only one case—xRuBP given in terms of the bifurcation parameter
xPGA—where the concentrations of the two depicted metabolites fall in the respective physio-



k1 = 0.99119923 k8 = 1 k15 = 2.4579323
k2 = 1 k9 = 6.6747969 k16 = 1
k3 = 2.0237445 k10 = 15.141035 k17 = 1
k4 = 9.9649223 k11 = 1 k18 = 1
k5 = 1 k12 = 0.26920841 k19 = 1.5770407
k6 = 10.30969 k13 = 1.3666169 k20 = 1
k7 = 6.1626543 k14 = 1 k21 = 1.7182818

Table 2: Parameter assignment for the system given in Eqs. (10) whichallow for multiple pos-
itive steady states. Parameters set to 1 are precisely thoseassociated with reactions that are not
present in the first elementary mode which was used to construct a subnetwork. For simplicity, all
parameters are chosen to have the same value.

logical ranges. Note also that, as seen in the last column of Figure 6, for positive values ofxRu5P ,
there are at least two positive steady states for the remaining four metabolites.

We point out that in sixteen out of the twenty cases, there exists no steady state in the in-
tersection of the physiological ranges for the pair of considered metabolites. In addition, the
combinations for which a single steady state exists for the physiologically plausible range include
the following three:xDPGA as a function of the bifurcation parameterxRuBP , xDPGA in terms
of xPGA, andxRuBP in terms of the bifurcation parameterxDPGA.

Like in the first case, for the modified model all five Calvin cycle intermediates can serve as
bifurcation parameters. Only four of them yield bifurcations in positive ranges for the concentra-
tion of the remaining metabolites. There are again twenty possible bifurcation diagrams due to the
pairwise combinations of the five Calvin cycle intermediates, as shown by the individual plots in-
laid in Figure 7. 9 of these twenty combinations show multistationarity for positive concentration
values. For the physiologically plausible concentrations, there exists again only one case—xRuBP

given in terms of the bifurcation parameterxPGA—where the concentrations of the two depicted
metabolites fall in the respective physiological ranges.

We point out that in again sixteen out of the twenty cases, there exists no steady state in the
intersection of the physiological ranges for the pair of considered metabolites. In addition, the
combinations for which a single steady state exists for the physiologically plausible range include
the following three:xDPGA as a function of the bifurcation parameterxPGA, xRu5P in terms of
xGAP , andxGAP in terms of the bifurcation parameterxRu5P .

To obtain these results, we calculated the Gröbner bases,V , for differently ordered monomials,
as described in Algorithm 1. For the Michaelis-Menten kinetics, each basis is given by a set of
polynomialsp and rational functionsr. These polynomials and rational functions include the last
monomial of the order (i.e., the bifurcation parameter) and the concentration for one Calvin cycle
intermediates. Therefore, each Gröbner basis contains atleast one polynomial in terms of the
bifurcation parameter and another intermediate.

To investigate the multistationarity of the original modelfrom Zhu et al. (2008) for the com-
bination ofxRuBP as function of bifurcation parameterxPGA in the physiologically plausible con-
centration ranges, we use the Gröbner basis for the monomial order(Ru5P,DPGA,RuBP,GAP,PGA).
the polynomial basis element for this dependent combination of intermediates is the seventh ele-
ment, given by

p = −2.2079 · xPGA − 6.33023 · xPGA
2 + 1.66547 · xPGA

3 + 1.0 · xRuBP . (11)

We set the polynomial in Eq. (11) to zero and solve it forxPGA. The three arising solutions
were then evaluated on the interval forPGA concentration. These calculations were performed



variable steady state 1 (mM) steady state 2 (mM)

xRuBP 2.1738771 7.6340526
xE1 3.2184725 1.5737360
xRuBPE1 2.2935102 3.9382467
xPGA 0.7319781 2.2714297
xE2 1.3155187 0.7209939
xPGAE2 0.8484346 1.4429594
xDPGA 0.8031938 2.4924215
xE3 2.0319109 1.1136257
xDPGAE3 1.3104660 2.2287516
xGAP 0.6439413 1.2921397
xE4 4.3510314 0.2296564
xGAPE4 5.7470699 9.8684449
xRu5P 1.8031031 6.3319974
xE5 2.6499371 1.2957393
xRu5PE5 1.8883671 3.2425640
xE6 1.4641405 0.9364545
xPGAE6 0.5358594 1.0635454
xE7 1.5754002 1.2367929
xGAPE7 0.5885531 0.9271604

Table 3: Two different positive steady states obtained from the system in Eqs. (10) using the
parameters shown in Table 2. The first steady state is unstable while the second one is stable.

with Mathematica 7.0. The notebook to reproduce the bifurcation diagrams is available upon
request.

Following this approach, the results presented in Figure 6 and 7 serve as a rigorous proof
of the capacity for multistationarity in this model of the Calvin cycle. Moreover, these findings
demonstrate the reason why previous studies failed to determine the regions of bifurcation by
“trial-and-error” approaches. While solving systems of polynomials, as in Zhu et al. (2008), may
yield partial results, any finding which employs Gröbner bases is exhaustive due to the represen-
tational power of this mathematical construct.

model ranges multiple single no
variants steady states

Zhu et al. (2008)
positive 12 5 3
physiologically plausible 1 3 16

Table 1
positive 9 9 2
physiologically plausible 1 3 16

Table 4: Number of multiple, single and no steady state(s) as depicted in Figures 6 and 7. The
respective entries are obtained by evaluating two different domains—positive concentrations and
physiologically plausible concentrations of the intermediates.
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Figure 5: Bifurcation diagram for system 10 using the parameters fromTable 2. Stable steady
states are depicted by a solid line, unstable steady states by a dashed line. The stars and crosses
mark the concentrations at steady state 1 and 2, respectively (see Table 3). The sum of concentra-
tions ofE2 andPGAE2 is chosen as a bifurcation parameter.

5.4 Mass action with diffusion

In this section, we present a fundamentally different view of multistationarity compared to that of
Sections 5.1 - 5.3. We determine the existence of symmetry breaking instabilities in the investi-
gated metabolic network,i.e., instabilities due to diffusion. Characteristic examplesof such insta-
bilities for biochemical reactions include: a substrate and product-inhibited enzyme reaction and
the product-activated enzyme reaction catalyzed by phosphofructokinase in the glycolytic cycle
(Prigogine et al., 1969). The basic theoretical question isin fact, whether the steady-state con-
centrations may, with increasing values of chemical constraints (given affinities or free-energies
of the over-all reactions), still be obtained by a gradual modification of the law of mass action.
Symmetry breaking instabilities have been investigated for chemical (Bar-Eli, 1985; Dolnik and
Marek, 1988; Crowley and Epstein, 1989), gene-regulatory(Koseska et al., 2007), and metabolic
networks (Tsaneva-Atanasova et al., 2006).

Unlike the case of homogeneous perturbations, when the system moves from one to another
homogeneous steady state, for inhomogeneous perturbations the system goes from a homogeneous
to an inhomogeneous steady state (IHSS). The instabilitiesare a result of the symmetry breaking
of the steady state in the system through a pitchfork bifurcation. Thus, the unstable homogeneous
steady state splits into two additional branches, which then gain stability via Hopf bifurcations.
If the complete bifurcation structure of the system cannot be obtained due to computational or
experimental restrictions, the existence of the inhomogeneous steady state could be easily misin-
terpreted as two separate steady states. Here, we define conditions under which the Calvin cycle
can be characterized with the occurrence of an IHSS.

Since ATP, as the principle energy compound, diffuses between cellular compartments (Basshama



Figure 6: Bifurcation parameters for the original Calvin cycle modelfrom Zhu et al. (2008) with
irreversible Michaelis-Menten kinetics. Since CRNT toolscannot be applied in this case, the
curves are obtained by solving the system of Gröbner bases.In each of the subfigures, the steady
state concentrations of two metabolites are plotted against each other using the parameters from
(Zhu et al., 2008). Multistationarity is confirmed by detecting three steady states (yellow, red, and
blue line). For instance, for positive values ofxRu5P , there are at least two positive steady states
for the remaining four metabolites. The stability of these steady states cannot be determined by
our approach alone.

et al., 1968), we extend the model presented in Figure 1 by thefollowing reaction:

ADP
k8
→ ATP. (12)

Furthermore, the two kinases are not simplified and now read as in the second column of Table 1.
By assuming a Fick type of diffusion law, the equations describing the balance between reac-

tion rates and diffusion can be written as follows:

∂xRuBP

∂t
= −k1 · xRuBP + k5 · xRu5P · xATP

∂xPGA

∂t
= 2 · k1 · xRuBP − k2 · xPGA · xATP − k6 · xPGA

∂xDPGA

∂t
= −k3 · xDPGA + k2 · xPGA · xATP (13)

∂xGAP

∂t
= k3 · xDPGA − k7 · xGAP − 5 · k4 · x

5
GAP

∂xRu5P

∂t
= 3 · k4 · x5

GAP − k5 · xRu5P · xATP

∂xATP

∂t
= −k2 · xPGA · xATP − k5 · xRu5P · xATP + k8(c − xATP ) + DATP · (

∂2xATP

∂R2
)

In the system given by Eqs. (13),DATP is the diffusion coefficient ofATP , assumed to be
constant, such thatADP = c − ATP , wherec is the constant amount of adenosine nucleotides.



Figure 7: Bifurcation parameters for the modified Calvin cycle model as described in Table 1 with
irreversible Michaelis-Menten kinetics. In each of the subfigures, the steady state concentrations
of two metabolites are plotted against each other, like in Figure (6), using the parameters from
(Zhu et al., 2008). Multistationarity is confirmed by detecting three steady states (yellow, red, and
blue line). For instance, for positive values ofxPGA, there are at least two positive steady states
for the remaining four metabolites.

Here,R indicates the diffusion coordinate. For this system of polynomials, we find the following
parameterization at steady state:

xPGA =
k8(5 · k1xRuBP + 3 · k7 ·

5

q

k1xRuBP

3·k4
)

k2(3 · c · k8 − 8 · k1 · xRuBP − 3 · k7 · 5

q

k1xRuBP

3·k4
)

xDPGA =
5 · k1 · xRuBP · 5

√
3 · k4 + 3 · k7 · 5

√
k1xRuBP

3 · k3 · 5
√

3 · k4

xGAP = 5

r

k1 · xRuBP

3 · k4
(14)

xRu5P =
3 · k1 · k8 · RuBP

k5(3 · c · k8 − 8 · k1 · xRuBP − 3 · k7 · 5

q

k1·xRuBP

3·k4
)

xATP = c −
8 · k1xRuBP

3 · k8
−

k7

k8
·

5

r

k1 · xRuBP

3 · k4
,

and a quintic equation forxRuBP of the formAz5 +Bz +C = 0, wherez = 5
√

xRuBP . One may
show that this equation has only one positive solution forxRuBP , which facilitates the computation
of the time-independent homogeneous solution given in Table 5.

We now consider the linear stability of this steady uniform solution with respect to space and
time-dependent perturbations. Therefore, it is sufficientto consider perturbations of the form:

x = xeq + X exp [ω · t + i(r/λ)], (15)

wherex corresponds to the concentration of any variable in the system given by Eqs. (13), andxeq

denotes the steady state concentrations, provided we consider affinities small with respect tokT .



variable steady state (mM)

xRuBP 0.01982
xPGA 0.03313
xDPGA 0.03236
xGAP 0.38252
xRu5P 0.02235
xATP 0.41904

Table 5: Steady state solution derived from Eqs. (13).

Let X be the perturbation amplitude which is assumed to satisfy|X/xeq| ≪ 1, andω andλ are
the perturbation frequency and wavelength correspondingly. If an instability occurs, the perturbed
system will, at some moment, be in a state of marginal stability, corresponding toω = 0. Hence,
the secular (characteristic) equations for the system in Eqs. (13), obtained by the perturbation of
each concentration according to Eq. (15) and linearized with respect toX in the marginal state,
provides the following relation:

k6 =
(k8 + DATP

λ2 ) · (k7 − 5 · k4 · x
4
GAPeq

)

3 · (30 · k4 · x4
GAPeq

+ k7)
, (16)

for the rate constants, diffusion coefficient, and the wavelengthλ.
Note that the relation described in Eq. (16) holds only in themarginal state, and separates

a rootω < 0 from a rootω > 0. Thus, for a given set of parameters, the critical value of the
wavelengthλ at which the instability begins can be estimated from:

λ2
c =

(k7 − 5 · k4 · x4
GAPeq

) · DATP

3 · k6 · (30 · k4 · x4
GAPeq

+ k7) − k8 · k7 + 5 · k4 · k8 · x4
GAPeq

. (17)

From Eq. (17), one can conclude that the critical wavelength, λc, depends on both the kinetic
parameters and the diffusion coefficient. As a result, the ratio between the diffusion coefficient
and the reaction rates determines the wavelengths at which the instability occurs in the system.

6 Discussion

The results obtained from applying our general method to a model of the Calvin cycle, endowed
with a hierarchy of kinetics, are summarized in Table 6. The presented findings are corollaries
of well-established theorems relating the underlying structure of the network with its dynamical
features. For the model with mass action kinetics, we not only established that a single steady state
exists, but also determined the conditions for its stability. Interestingly, weakening the mass-action
assumption by explicitly modeling enzyme mechanisms leadsto multiple positive steady states.
This is a result of applying the subnetwork analysis in conjunction with CRNT. By employing
methods from algebraic geometry, we also demonstrated the existence of multistationarity in the
model with Michaelis-Menten kinetics and identified the bifurcation parameters together with the
physiologically plausible regions of the parameter space which supports more than one steady
state. As indicated in Section 4, our approach warrants application of other methods to resolve the
stability of the determined steady states. Therefore, our findings only partially settle the issue of
multistability of the Calvin cycle, since we only consider one model and derive the conditions for
its ability to support multistationarity.

Besides the simplicity of the considered model and the coarse modeling of the Michaelis-
Menten kinetics, one further concern arises from the parameter values and the steady state con-



kinetics instability multistationarity support

MA homogeneous NO CRNT and algebraic geometry
MM-MA homogeneous YES CRNT and stoichiometric generators

MM homogeneous YES algebraic geometry
MAd inhomogeneous YES algebraic geometry

Table 6: Summary of results regarding multistationarity for a modelof the Calvin cycle with a
hierarchy of kinetic laws. The first column gives the hierarchy of kinetics, from simplest to more
involved: mass action (MA), Michaelis-Menten via mass action (MM-MA), Michaelis-Menten
(MM), and mass action with diffusion (MAd). The considered type of instabilities and the exis-
tence of multistationarity are given in the second and thirdcolumn, respectively. The methods used
to establish the potential for multistationarity and the bifurcation parameters/regions are listed in
the last column. Provable results are obtained for all kinetics considered in the hierarchy.

centrations of the metabolites. Since CRNT only aims at answering whether or not multiple posi-
tive steady states can occur, the resulting values for the parameters and metabolite concentrations
may lie outside of any physiologically meaningful range. Nevertheless, there is some freedom
in choosing those parameters,e.g., for reactions not included in the subnetwork induced by an
elementary flux mode. This can be further exploited to test whether multistationarity also occurs
for physiologically feasible parameter values and metabolite concentrations.

We note that an isolated reaction network of the form ofA + E ⇆ AE −→ B, which is
exactly the set of reactions that were included to emulate Michaelis-Menten kinetics, does not
support multiple steady states on its own (Craciun et al., 2006). Therefore, the fact that multiple
steady states exist for the model with Michaelis-Menten viamass action kinetics and not with
mass action kinetics implies that multistationarity does not arise from local structural properties
but rather from the overall structure of the entire network.

Our approach allows for a tractable analytical analysis of models with Michaelis-Menten ki-
netics. In this way, we were able to identify the physiologically plausible regions of the parameter
space in which bifurcation could occur. The obtained results with respect to the bifurcation pa-
rameters, shown in Figure 6, can help the design of validation experiments for multistationarity
in plant cells. For instance, a validation experiment with isolated chloroplasts and concentration
changes of the bifurcation parameterPGA, for which there exists a chloroplast transporter, can
now be readily undertaken.

For the reaction diffusion model, we established theoretical results determining the ratio be-
tween the diffusion coefficient of ATP and the reaction rateswhich, in turn, determines the wave-
lengths at which inhomogeneous instability could occur. Eliciting biological conclusions from
these results would be premature, as we only consider diffusion systems in one dimension. The
problem of developing a model to account for more realistic types of diffusion, not only of ATP
but also other Calvin cycle intermediates, remains to be addressed with methods similar to those
presented here.

Rigorous analysis of multistationarity on metabolic networks allows for altering the final out-
come of metabolic processes. Therefore, multistationarity presents a dynamic feature amenable to
biotechnological application, specifically increased biomass production.

Finally, although we studied a model of the Calvin cycle in which a hierarchy of kinetics is
embedded, our approach is not limited to metabolic networks. In principle, the pressing question
of multistationarity can be analyzed with such an approach for any biological network modeled
with mass action or Michaelis-Menten kinetics.
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