Structator: fast index-based search for RNA
sequence-structure patterns

Fernando Meyér Stefan Kurtz, Rolf Backofer,
Sebastian Wil*3, and Michael Beckstetté

!Center for Bioinformatics, University of Hamburg, Bundeasse 43, 20146 Hamburg, Germany
2Chair for Bioinformatics, University of Freiburg, Georgshler-Allee 106, 79110 Freiburg, Germany

3Computer Science and Atrtificial Intelligence Lab, Massaeitis Institute of Technology, Cambridge, MA 02139, USA

Email: FM - meyer@zbh.uni-hamburg.de; SK - kurtz@zbh heninburg.de; RB - backofen@informatik.uni-freiburg.de;
SW*- swill@csail.mit.edu; MB- beckstette@zbh.uni-hamburg.de;

*Joint corresponding author

Abstract

Background: The secondary structure of RNA molecules is intimatelytegldo their function and often more
conserved than the sequence. Hence, the important taskaathéeg databases for RNAs requires to match
sequence-structure patterns. Unfortunately, currens foo this task have, in the best case, a running time that
is only linear in the size of sequence databases. Furthetrastablished index data structures for fast sequence
matching, like suffix trees or arrays, cannot benefit from ¢benplementarity constraints introduced by the
secondary structure of RNAs.

Results: We present a novel method and readily applicable softwardirite efficient matching of RNA
sequence-structure patterns in sequence databases. poacpis based on affix arrays, a recently introduced
index data structure, preprocessed from the target dagabiix arrays support bidirectional pattern search,
which is required for efficiently handling the structurahstraints of the pattern. Structural patterns like stem-
loops can be matched inside out, such that the loop regioratshad first and then the pairing bases on the
boundaries are matched consecutively. This allows to é{mge pairing information for search space reduction
and leads to an expected running time that is sublinear isii@eof the sequence database. The incorporation of
a new chaining approach in the search of RNA sequence-staupatterns enables the description of molecules
folding into complex secondary structures with multipld@red patterns. The chaining approach removes spu-
rious matches from the set of intermediate results, in @agr of patterns with little specificity. In benchmark
experiments on thBRfam database, our method runs up to two orders of magnitude thste previous methods.

Conclusions: The presented method’s sublinear expected running timesiakvell suited for RNA sequence-
structure pattern matching in large sequence database&.niiecules containing several stem-loop substruc-
tures can be described by multiple sequence-structurerpatand their matches are efficiently handled by a
novel chaining method. Beyond our algorithmic contribnpwe provide withStructatora complete and ro-
bust open-source software solution for index-based se#rBINA sequence-structure patterns. TSteuctator
software is available at http://www.zbh.uni-hamburgSieictator.

Background

The discovery of new roles of non-coding RNAs (ncRNAs) hadethem of central research interest in
molecular biology [1, 2]. Like proteins, ncCRNA sequencest tiave evolved from a common ancestor
can be grouped into families. For instance, ®fam database [3, 4] release 10.0 compile$46



such families. Members of a family share, to different degresequence and structure similarity. In
many cases, however, the members of a family share only fguwesee features, but share by far
more specific structural and functional properties. Premirexamples of such cases are tRNAs and
microRNA precursors.

In this paper, we consider the problem of searching nudealatabases for occurrences of RNA
family members. As sequence similarity is often remote evithin well-established RNA families,
we cannot rely on pure sequence alignment and related teamifor this task. Indeed, it has been
shown that sequence alignments of structured RNAs fail mivis®® sequence identities below about
60% [5]. Therefore, we briefly review nucleotide databaseademethods that make use of sequence
and structure information. There are general sequengetgte alignment tools, which determine struc-
tural similarities and derive consensus structure pat®nRNAs that are too diverse to be alignable
at sequence level. We identify two classes of such tools. fifseclass, withRNAforrester[6] and
MARNA[7] being the main representatives, require a known or ptedisecondary structure for both
sequences as input. However, they suffer from the low quafisecondary structure prediction, espe-
cially if the boundary of the RNA elements are not exactlywno The second class of methods are
derivatives of the Sankoff algorithm [8], which providesengral solution to the problem of simultane-
ously computing an alignment and the common secondarytsteuof the two aligned sequences. Due
to its high complexity @ (n°) time andO (n*) memory) several variants of this approach have been
introduced such a®ldalign[9,10], dynalign[11] andLocaRNA12]. Still, these tools have a time com-
plexity that is generally too high for a rapid database deartius, more specialized tools for searching
RNA families in nucleotide databases have been introdubteals like RNAMotif[13], RNAMOT[14],
RNABOH15], RNAMST[16], PatScar{17], andPatSearcl18] are based on motif descriptors defining
primary and secondary structure properties of the famitidse searched for. They provide a language
for defining descriptors and a method to search with thesargelnucleotide databases. For these
tools, the motif descriptor for a family has to be extractgtemally from other information (such as
a multiple sequence-structure alignment) about the spdRNA family. There are also tools that au-
tomatically derive descriptors from structure-annotagedquences or a multiple sequence alignment of
related RNA sequences suchiafernal[19,20], RSEARCH21], andPHMMTS[22]. They use variants
of stochastic context-free grammars as descriptors, \aR&RPIN[23] uses sequential and structural
profiles. Despite being fast compared to other methodsrigésebased tools available today have a
running time that is, in the best case, linear in the size ®fdinget sequence database. This makes their
application challenging when it comes to large sequencabdaes. A solution with sublinear running
time would require index data structures. However, widedgdiindex structures like suffix trees [24]
or arrays [25] or the FM-index [26] perform badly on typicdlR sequence-structure patterns, because
they cannot take advantage of the RNA structure information

Here, we present a fast descriptor-based method and seffaaRNA sequence-structure pattern
matching. The method consists of initially building an atiirxay [27], i.e. an index data structure of the
target database. Affix arrays cope well with structuralgraticonstraints by allowing for an efficient
matching order of the bases constituting the pattern. firaity symmetric patterns like stem-loops can
be matched inside out, such that first the loop region is neateimd, in subsequent extensions, pairing
positions on the boundaries are matched consecutivelyauBecthe matched substring is extended
to the left and to the right, this pattern matching schemeniswia as bidirectional search. Unlike
traditional left-to-right search where the two substricgsstituting the stem region of the pattern are
matched sequentially, in bidirectional search, base cemehtarity constraints are checked as early as
possible. This leads to a significant reduction of the seapate that has to be explored and in turn
to a reduced running time. We note that bidirectional seBocRNA sequence-structure patterns was
also presented by Mauri et al. in [28]. However, their metheds affix trees [29] instead of the more



memory efficient affix arrays. Affix trees require with approately 45 bytes per input symbol more
than twice the memory of affix array$§ bytes per input symbol), making their application infebsib
on a large scale. Moreover, their method traverses the affixih a breadth-first manner, leading to
a space requirement that grows exponentially with incrgaseading depth. We instead employ a
depth-first search algorithm whose space requirement ysgoportional to the length of the searched
substring.

The affix array directly supports the search for sequentetsire patterns that describe sequence-
structure motifs with non-branching structure, for exaengtem-loops. In contrast, e.g. the search for
stems closing a multi-loop is not directly supported. Néweess, even for RNA containing multi-
loops, the affix array can still speed up the search. Our géapproach for finding RNA families with
branching structure is to describe each stem-loop suligteuby a sequence-structure pattern. Each
of these patterns is matched independently using the affay.aifhen, with a new efficient chaining
algorithm, we compute chains of matches such that the athairatches reflect the order of occurrence
of the respective patterns in the molecule. Note that coxgileictures containing one or more multi-
loops can be expected to contain sufficiently many non-iiagcpatterns, such that the proposed
chaining strategy identifies true matches with high spetific

For a better understanding of the concepts underlying otinadewe begin with formalizing RNA
structural motifs. We then describe the concepts and idkafiw arrays and show how to use them
in an algorithm for fast bidirectional search for sequesttacture patterns. After presenting a de-
tailed complexity analysis of the algorithm, we proceedhvétdetailed description and analysis of a
novel method for computing chains of sequence-structuttenmamatches. Finally, we benchmark and
validate our method in several experiments.

Methods

Preliminaries

A sequence of lengthn = |S| over an alphabet! is a juxtaposition of. elements ¢haracter$ from
the set4. S[i], 0 < i < n denotes theharacter ofS at positioni. Lets denote the empty sequence,
the only sequence of length By A™ we denote the set of sequences of length 0 over. A. The set
of all possible sequences ovdrincluding the empty sequeneds denoted by4*.

For a sequencé& = S[0]S[1]...S[n — 1] and0 < ¢ < j < n, S[i..j] denotes thesubstring
S[i]S[i +1]... S[j] of S. We denote theeverse sequena® S with S~ = S[n — 1]S[n —2]... S[0].
ForS = wv, uw andv € A*, u is aprefixof S, andv is asuffixof S. The k—th suffix of S starts at
positionk, while thek—th prefix of S ends at. Note that the)-th suffix of S is S itself and thatS[0] is
the 0-th prefix of S. Thek-threverse prefixof S is thek—th suffix of S~1. For0 < k < n, Sj denotes
the k—th suffix of S, andSk‘1 = (S71);, denotes thé—th reverse prefix of.

Let A denote theRNA alphabet A, C, G, U}. Its characters code for the nucleotides adenine (A),
cytosine (C), guanine (G), and uracil (U). In the following ¥ix a sequencé over the RNA alphabet
A. For stating the space requirements of our index structuvesassume thdtS| < 232, such that
sequence positions and lengths can be storddiytes.

RNA structural motifs

RNA molecules can form complex secondary structures comgi®f different structural elements
like stem-loops with or without bulges or internal loops. eSeigure1 for an overview of some
secondary structure elements. Such elements are ofterrtampdor the function of the molecule
and are structurally conserved throughout evolution. Téwsdary structure is formed by Watson-



Stem Loop1 - Stem Loop2 'Stem Loop§

Figure 1: Secondary structure elements of an RNA molecpiesented by a base-pair graph (left) and
as arc-annotated sequence (right). The depicted struoctmtains three stem-loop substructures. Ob-
serve that all arcs representing base pairingsiarecrossingand stem-loop substructures can contain
interior loops and bulges. Hence this molecule fornrmpa-crossingsecondary structure that does not
contain higher order structural elements like pseudoknBecondary structure drawings were gener-
ated with theARNAprogram [30].

Crick pairing of complementary bases and also by the slighdaker wobble pairs. We say that two
bases(c,d) € A x A arecomplementaryand can form &ase pairif and only if (¢,d) € C =
{(A4,U),(U,A),(C,G),(G,C),(G,U),(U,G)}. Anon-crossing RNA structur® of lengthm is a set
of base pairs(i, j), 0 < i < j < m, stating that the base at positiopairs with the base at position
J, such that for all(i, 5), (V',j') e Rii < < j <jorid <i<j<jori<j<i<y
ori < j' <1 < j. For the algorithms and methods presented in this paper \yeconsider this
class of structures. For an example of such an RNA secondamgtige see Figuré. An important
structural motif occurring in many RNA molecules is tstem-loopstructure. We callR a stem-loop
RNA structure if and only if for all(, j), (i, ') € R: i< <j <jori <i<j<j. Note that
due to our definition a stem-loop can contain bulges andiattiyops (see Figure). We equivalently
call such a structuraon-branching In Figurel, such stem-loop structures occur as substructures.

A structure string His a sequence over the alphalet(,)} with an equal number of characters
and). There is a bijection between the set of (non-crossing) RiddcturesR and the set of structure
strings H, both of lengthm, such that for each base pair j) € R, H[i] = (and H[j] = ), and
H{[r] = . for positionsr, 0 < r < m, that do not occur in any base pairBfi.e.r # ¢ A r # j for all
(1,7) € R. Due to this equivalence we identify both representations.

Let® = {R,Y,M,K,W, S, B, D, H,V,N} be a set of characters. The IUPAC nucleotide base
code introduces the charactersdirto code nucleotide ambiguity and assigns a specific chareletss
e(x) C Atoeachr € & W .A. In particular, forr € A : p(z) = {z} andp(N) = A. A sequence
patternis a sequenc® € (AU ®)*. Letm denote its lengthP|. An occurrenceof P in a sequence
S is a positioni, 0 < i < n, such thatP[k] = S[i + k] with S[i + k] € p(Pk]) forall 0 < k& < m.
An RNA sequence-structure pattern (RS&P¥ (P, R) of lengthm is a pair of asequence pattern
P and astructure stringR, both of lengthm. A matchor occurrenceof Q of lengthm in an RNA
sequences is an occurrence of P in S, such that for all base pai($, ) € R: S[i + (] andS[i + 7]
are complementary. Furthermore, defih® as a mapping of a characterc ® U A to the set of its
complementary characters iy i.e.CS(c) = {d € A| Je € ¢(c) : d ande are complementasy

In this paper, structures described by RSSPs are non-hingnch



Bidirectional
search

Unidirectional
search

Figure 2: Unidirectional (left) and bidirectional (righggarches for the RNA sequence-structure pattern
(RSSP) = (P, R) with P =NNNUGCUNNNandR=(((....))),which represents a stem-loop
structure of lengthn = 10. The numbers indicate the order in which the pattern charaetre matched
against the target sequence. In the unidirectional setireltharacters are matched in a single direction,
beginning (ending) with a character @#f(P[0]) (¢(P[m — 1])). In the bidirectional search, the loop
region of the pattern can be matched first. Then, pairingsdaseematched consecutively by switching
the search direction, represented by the red arrows.

The affix array data structure

In [27] the theoretical concept of an index data structuléedaffix array is described. This index
structure supports efficient unidirectional as well asreitional searches and is more space efficient
than the affix tree [29, 31]. The teromidirectional searchrefers to the search for occurrences of a
sequence pattern where the pattern characters are compistieskquence characters in a left-to-right
(right-to-left) order, i.e. the already compared (matdhaefix (suffix), of the pattern is extended to
the right (left). Notably, a change of the direction is nosgible.

When searching for occurrences of sequence-structurerpathowever, unidirectional search can-
not exploit the complementarity condition on base pairettiepa positions. To utilize this condition
as effectively as possible, both positions of a base paid nede accessed immediately after each
other. This is enabled bpidirectional search which refers to methods where the direction of the
match extension can be changed freely. Figuiltustrates the order of the character comparisons of a
sequence-structure pattern in the unidirectional anddwmtional searches.

Until now, affix arrays have received little attention in inifmrmatics. Presumably, this has been
due to the lack of an open and robust implementation. As aecuence, their potential for efficient
database search with RSSPs has hardly been recognizedeaddt#ils of this data structure are not
widely known in the field. Therefore, we briefly recall the ioadeas of the affix array, which consti-
tutes the central component of dbiructatorapproach.

For notational convenience, we defi§€ = S and SR = S—1. We useSX for statements that
apply toSF andSR. The subscripiX is used for other notions depending 8handSR in an analogous
way. Furthermore, we introduce the notatibn= R andR = F. We reserve a charactér ¢ A,
calledterminator symbglfor marking the end of a sequencgis lexicographically larger than all the
characters irA.

The affix array data structure of a sequesds composed of six tables, namelyfg andsufg, lcpg
andlcpr, andaflke andaflkg. They are calleduffix longest common prefbandaffix link arraysof
SF and SR, respectively. Tableufg is also known aseverse prefix arraysuf x is an array of integers
in the range) to n specifying the lexicographic order of the+ 1 suffixes of the strings*$. That is,
Satl0l Sautx (1] Sauf [ 1S the sequence of suffixes 6f*§ in ascending lexicographic order. Each
of the tablesufg andsufg requiresdn bytes and can be constructeddh(n) time and space [32]. In
practice non-linear time [33, 34] construction algorithare often used as they are faster and require
less space.



lcpx is a table in the range to n such thatcpx [0] = 0, andlcpx[i] is the length of the longest
common prefix betwees ., ,; andSg . for 1 < i < n. Each of the tablescpr andlcpr
requiresn bytes and store entries with value up2sh, whereas occasional larger entries are stored in
an exception table usirgjbytes per entry [35]. More space efficient representatidnisedcp table are
possible (see [36]). The constructionlopgs andlcpg can be accomplished i@ (n) time and space
givensufg andsufg [37]. In contrast to [27] where affix arrays were describemhgis terminology
derived from tree-like data structures, we explain the dgotg concepts of this data structure in terms
of intervals in the suffix arraguf x. Two important concepts of affix arrays are suffix-intervamsl
Icp-intervals. An intervali..j] representing the set of suffixéggfxm, ...,Ss)gfx[j], 0<i<j<n,of
width j —i+ 1, is asuffix-intervalin suf x with depth (prefix lengthj € {0, ..., n}, or ¢-suffix-interva)
denoted — [i..5], if and only if the following three conditions hold:

1. lepx[i] < 4
2. lepx[j+1] < ¢;and
3. lepx[k] > tforallk e {i+1,...,5}.

We call a suffix-interval — [i..j] in suf x Icp-intervalin suf x with Icp-value? € {0,...,n}, or
¢-interval, if and only ifi < j andlcpx[k] = ¢ for atleastoné: € {i + 1,...,j}.

For a suffix-interval¢ — [i..j] in suf x, we denote the common prefix of lengthof its suffixes
Sttt Saypy) BY 0x (€ = [ij]) = S¥[sufx[i]..sufx[i] + ¢ —1]. In case of an Icp-interval
¢ —T[i..j]insufx, dx (¢ — [i..7]) is the longest common prefix of all suffixes in this interval.

In summary, a suffix-intervaed — [i..j] in suf x describes simultaneously:

e A location in the index structursuf x by interval borders andj and deptlY. For an example,
see the yellow marked region in Figusewvhich corresponds to the suffix-interval— [4..6] in
SUfF.

e A (lexicographically ordered) sequence of suffixé*gﬂfx ULREEE Ss)lffx )" For an exam-
ple, consider the lexicographically ordered sequeSéng = CUGCA...,SSFMF[@
CUGCUGCUGCA of suffixes in the suffix-intervdl— [4..6] in sufg in Figure3.

e A substring ofS¥ of length¢, namelysx (¢ — [i..5]). That s, for the suffix-interval — [4..6] in
sufg in Figure3, 6g(4 — [4..6]) = CUGC.

e The occurrences of this substring $1°, namely at positionsuf x[i], ..., suf x[j]. To give an
example, consider Figuizand observe that substring CUGC occurs at positéafis[4] = 10,
sufg[5] = 7, andsufg[6] = 4 in ST = AUAGCUGCUGCUGCA.

For unidirectional left-to-right search of some patternSint is sufficient to process Icp-intervals
only in sufg. For bidirectional pattern search using affix arrays, dbedrin detail in the next section,
we employ information from tableufr as well asufg. Therefore, we need to associate information
of one table to the other. This is done by linking intervals tablesaflkg andaflkg. We observe that
there exists a mapping between Icp-intervalsufy andsufg. This is stated by the following proven
lemma [27].

Lemma 1 For every Icp-intervaly = ¢ — [i..j] in table suf y there is exactly one Icp-interval~! =
¢ —[i'..5'] in table suf called reverse Icp-interval of, such that!’ > ¢ and the? — 1-th prefix of
dx(q 1) equals(dx (q))~'. The number of suffixes (prefixes) represented dyd¢—* are the same,
ie,j—i=7 —1.



We note that the equivalenge= (¢—')~! is not necessarily true. This is stated by the next lemma.

Lemma 2 If the Icp-intervalg—! with depth?’ in suf is the reverse of the Icp-intervalwith depth?
insufx and? = ¢, thenq = (¢~ ')~!. Otherwise, i’ > ¢, thenq # (¢~ 1)~ 1.

The mapping between intervals $t andSR is encoded in tablesflkg andaflkg as follows. Tables
aflkg andaflkg store, for each Icp-interval isufg andsufr respectively, a pointer to the reverse interval
in the reverse tablesif andsuf. The position in the tables where the pointers are storegtésiohined
by the functionhomex, defined as

homex ([i..j]) = { ; gtlr?gr)\(,v[.i ez lepx[j + 1], o

where? — [i..j] is an Icp-interval insuf x. Hence, the home position is one of two boundary positions.
Strothmann [27] shows thabmey ([i..j]) # homex ([¢’..5']) for different Icp-intervalst — [i..j] and
o —T[i'.5).

Table aflkx of string SX$ with total lengthn + 1 can now be defined as a table in the rafge
to n such thataflk x [homex (¢)] = 4, whereq is an Icp-interval insuf x andi’ is the left border of
the reverse intervaj—! = [i’..j] in sufw. We refer to the entries in tabldlk x asaffix links Tables
aflkg andaflkgr occupy4n bytes each. They can be computed by traversing the Icpralsemn suf x
while simultaneously looking for the corresponding reeelsp-intervals insuf-. Locating reverse
Icp-intervals can be accelerated by skp-tables. Thesegahitroduced in Beckstetet al. [38] and
hereinafter referred to akpg andskpg, can be constructed in linear time [39] and allow one to dguick
skip intervals insuf x (for details, see [38]). The construction of tablék andaflkg takesO (n?)
time. Although the use of skp-tables requires additichal 4n bytes of memary, they considerably
reduce the construction times of tableffkg and aflkg in practice. We note that Strothmann [27]
describes a linear time construction algorithm for tablélg- andaflkg, which employs suffix link and
child-tables [35] and an additional table. Altogether thigbles require together at least additional
bytes of space. Moreover, even without applying the skiethhsed acceleration, Strothmann states
that the quadratic time construction algorithm is fast iagtice.

An example of the affix array for sequen§es AUAGCUGCUGCUGCA highlighted with some of
its Icp-intervals connected to the respective reversevat®ia theaflk x table is shown in Figur8.

Because affix links in tableflk x are only defined for Icp-intervals but not suffix-intervaigeneral,
which we require in bidirectional search, we introduce theoept ofaffix-intervals Affix-intervals are
similar to affix nodes as defined in [27]. An affix-intervalsinf x is a triplev = (k, ¢, X), wherek is
an integer designatezbntextof v andq is a suffix-interval insuf x .

An affix-intervalv = (k,q, X) in sufx, withq = ¢ —[i..j], £ > 0, —m < k < ¢, describes a
substringux (v) of S of length? — k, defined as thé-th suffix of 6x (q), i.e. wx (v) = SX[suf x [i] +
k..suf x[i] + ¢ — 1]. At the same time identifies all occurrences afx (v) in SX, namely the positions
sufx[i] + k,...,sufx[j] + k. Forv = (k,q, X), we therefore also use the notatiah = wg(v) if
X =Fand? = wg(v)"'if X = R. As an example, consider the affix-intervak= (1,4 — [4..6], F)
in sufg of the affix array shown in Figur& In this casek = 1, ¢ = 4 — [4..6], andX = F. v identifies
all occurrences of substring’ = UGC in SF at positionssufg[4] + 1 = 11, sufg[5] + 1 = 8, and
sufg[6] + 1 = 5. Observe thal/ = UGC is the first suffix 0B (q) = CUGC due to context = 1.

Searching RNA databases for RSSPs with affix arrays
Pattern matching using affix arrays means the sequentieépsing of characters in the pattern guiding
the traversal of the data structure. This can be performeeitiver a traditional left-to-right order

7



i | sufei] [ Icpeli] | aflke[i] | Sk (SRiwin) ™! aflkr[i] | Icprli] | sufr[i] | i
0 2 0 0 | AGCUGCUGCUGCA AUAGCUGCUGCUGCA 0 0 0] o
1 0 1 AUAGCUGCUGCUGCA AUA 1 12| 1
2 14 1 A A 1 14| 2
3 13 0 3| CA e T AUAGC 7 0 10| 3
4 10 1 4 | CUGCA /ﬁct;GCUGC 8 2 704
5 7 4 5 | CUGCUGCA AUAGCUGCUGC 9 5 4| 5
6 4 7 CUGCUGCUGC, AUAGCUGCUGCUGC 8 106
7 12 0 3 | GCA AUAG 7 0 M| 7
8 9 2 4 | GCUGCA AUAGCUG 8 1 8| 8
9 6 5 5 | GCUGCUGCA AUAGCUGCUG 9 4 5| 9
10 3 8 GCUGCUGCUGCA AUAGCUGCUGCUG 7 2110
11 1 0 11 | UAGCUGCUGCUGCA AU 11 0 13 | 11
12 1 1 UGCA AUAGCU 8 1 9|12
13 8 3 5 | UGCUGCA AUAGCUGCU 9 3 6|13
14 5 6 UGCUGCUGCA AUAGCUGCUGCU 6 3|14
15 15 0 0 15| 15

Figure 3: Affix array forS = AUAGCUGCUGCUGCA. Some Icp-intervals are marked by regtas
and the affix links from an Icp-interval to its reverse intrare represented by arcs. The solid arc
points in two directions, from the the Icp-interval= 5 — [8..10] in sufg (on the left-hand side) to its
reverse intervag—! = 5 — [4..6] in sufg (on the right-hand side) and vice versa. Thatis; (¢~!)~!
(see Lemma 2). The dotted arc points in only one directiammfthe Icp-intervaly = 4 — [4..6] in sufg

to its reverse intervaj~! = 5 — [4..6] in sufgr. In this case, the reverse @f ! is (¢~ 1)~ = 5—[8..10],
andg # (¢~") 7"

resulting in a unidirectional search or in a bidirectionaywwhere character comparison is started
at any position of the pattern extending the already matclubdtring of the pattern to the left or to

the right. We will see that bidirectional search using al&ting series of left and right extensions is
very well suited for fast database search with RNA sequstteture patterns (RSSPs) containing
both paired and unpaired bases. In the following we will akpthe two different traversal strategies
underlying unidirectional and bidirectional search usiffix arrays.

Unidirectional traversal
Let P = P[0]... P[m — 1] € (AU ®)™ be a sequence pattern to be searched in a unidirec-
tional left-to-right way using information from tabkafr only. To search foP, we call the procedure
unidir-searchof Figure4 by unidir-search{]0..|.S|], P, 0). Therefore, in step 0 we start searching for the
characters inp(P[0]) in the suffix-intervalyy = 0 — [0..n] in sufg, which represents all suffixes 6%.
In each stegk, k£ > 0, we locate the: + 1-suffix-intervalsg; of maximal width, such thaP[0..k — 1]d
matchesig(qx). For eachd € (P[k]), this step is performed by a binary search in the suffix-iratier
g1 =0—[i.jlforq.=(+1)—=[i..5],i < <j <j, 5 — maximal, andS[sufg[i'] + k] = d.
After m steps, if allg; could be locateddr (¢,,), g = m — [r..s], matches the patterR and the
occurrencesufg[r|,sufg[r + 1],...,sufg[s] of 0r(g,,) are reported as occurrences ®fin S. Note
that in this approach the matched substringSag extended only to the right and at each stethe
occurrences of the already matched prefix are representacgijix-interval.



Algorithm 1: unidir-search(suffix-interval ¢ = [i..j], pattern P, position k)
if £ = |P| then

report match at positions sufg[d], ..., sufp[j]

return

else

foreach ¢ such that d € p(P[k]) and 0g((k + 1) — [i..5]) = de(k — [i..j])d do
| unidir-search(q', P,k + 1)

end

[o S B L N

end

Figure 4: Unidirectional search algorithm for searching fosequence patter® € (A U ®)*.
Given the suffix arrayufe of S, the procedure enumerates all occurrenceg’ah S when called
by unidir-searc{[0..|S|], P, 0). Inline 5, the suffix-interval/ is located by binary search @@ (log n).

Bidirectional traversal

For the bidirectional search, we start at some positioR ia (A U )" and then compare the pattern
P character by character to the text, where we can freely bvbigtween extending to the left or to the
right. Note that as in the case of unidirectional search,igntus nucleotides in the pattern can be
handled by enumerating all characteiia the corresponding character clags:). We can focus on the
situation in the search, where

e aranger..r’ (0 < r <1’ < m) of the patternP is already compared,

e the occurrences of a substring= . A™ of S matchingP|r..r’] are represented by an affix-interval
v=(k,{— [i..j], X) insuf x, and

e we want to extend either to the left or to the right by a sequence charactet (that matches
the respective pattern characfepr — 1] or P[r’ + 1]). This will result in a new, extended affix-
intervalv,.

Switch of the search direction. Like its suffix-interval, an affix-interval directly supgsrextension of
the represented substring in only one direction, namelschéwy to the left forX = F and to the right
for X = R. However, there are “corresponding” affix-intervals reggrgting the same substring 6f
but allowing extension to the opposite direction.

If the new search direction differs from the supported deditection ofv, this switch of the search
direction requires determining the corresponding affix-intemvain suf; unlessi = j or v has non-
empty context: # 0. There are these two exceptions, since firstsf j, independently of the value of
k, wx(v) is already a unique substring 8. Second, for a non-empty context# 0, all occurrences
of substringux (v) in S¥ are followed (ifk > 0) or preceded (it < 0) by the same substring € A*.

Letk = 0 andi < j. The affix-intervalv’ = (K',¢' — [i'..j'], X) in suf¢ is called thereverse
affix-interval of v = (k,¢ — [i..j], X) if and only if j/ — i’ = j — i, ¢ > ¢, andwx(v)~! =
wx(v"). The interval boundarieg and j’ of v" are determined via a lookup in tabdélk y. We set
i’ = aflkx [homex ([i..5])] andj’ = i+ (j—i). Observe that is not necessarily the length of the longest
common prefix of all suffixes ifv..j]. For this reason we defirtg, = min{lecpx[k] | i < k < j} > ¢
and compute the context of ask’ = ¢, — . Further, we set’ = /|c,. Hence the reverse affix-interval
v = (K, ¢ —[i'..j'], X) is well defined and’ is the required corresponding intervalof
Right/left c-extension of an affix-interval In our situation, v = u represents the occurrences of a sub-
stringu of S matchingP[r..r'].

Theright (left) extension of by a characterc € A, also called:-extension ob, is an operation
that computes the affix-interval, representing all occurrences of a substringcu). It fails, if there

9



is no such substring. We elaborate the cases for right égtensThe cases for left extension are
symmetric and therefore omitted. For rightxtension ofv = (k,¢ — [i..j], X), we determine the
intervalv, = (ky, 0y — [iz..J2], X)) With v = We. The first two cases do not require switching the
search direction.

e CaseX = Fandi = j. uis a unique substring’ of S. If S[sufg[i] + ¢] = ¢, thenv, =
(k,(£+1) —[i..5],F).

e CaseX = F andi < j. We determine the minimal, > ¢ and maximalj,, < j in sufg such that
S[sufgliz] + €] = ¢ andS[sufg[j.] + ¢] = ¢ by binary search in the suffix-interval- [i..j]. If i,
andj, exist, we sev, = (k, ({ + 1) — [iy..jz], F).

The following cases require switching the search direction

e CaseX = R, i = j. We evaluateSR[sufr[i] + k — 1]. If SR[sufr[i] + k — 1] = ¢, set
ve = (k — 1,0 — [i..j],R).

e CaseX = R, i < j, andk = 0. We first determine the reverse affix-intervél = (k’, ¢’ —
[i'..5'], F) of v via a switch of the search direction as described above. Weenompute the
minimal i, > ¢’ and maximalj, < j’ via binary search, such th&fsufg[i,] + ¢/| = ¢ and
Slsufgljz] + ¢'] = e. If i, andyj, exist, we seb, = (K, (¢' + 1) — [iz..jz], F).

e CaseX =R, i < j, andk > 0. We evaluate thék — 1)—th character ofr (¢ — [i..j]). That s,
if 6r(¢ — [i..7])[k — 1] = ¢, then we consume the contéxby settingu, = (k — 1,7 — [i..j],R).

The operation fails if,, cannot be determined.

RSSP matching using affix arrays

Searching a sequencewith an RNA sequence-structure pattern (RS&P) (P, R) means to find
the occurrences aP in S under the complementarity constraints imposed by thetstr@istringR (cf.
our definition of RSSP-occurrence). We introduce a seagbrithm that checks for complementarity
constraints as early as possible in bidirectional searchawimally reduce the search time due to this
restriction.

For further considerations, we will assume a special ‘caraform for RSSPs, which we define in
the following. Independently of a sequenggeach RSSP describes a set of pattern instances, i.e. the set
of potential subsequences matching the pattern. Oftere tre several patterns that describe the same
set of instances. For example, the patt@dNUACACGNR (((....))) ) describes the same set of
instances aSUNUACACGNR ( (. .. ... ) ) ) since the additional base pai,7) in (((....)))
does not make the pattern more specific. We will define a pattebe structure minimal if there is
no, in this sense, equivalent pattern containing a trueesudfthe base pairs. An RSSP= (P, R) is
structure minimalf and only if for all base pair$i, j) € R it holds that

@(Pi]) NCS(P[5]) x o(P[j]) NCS(P[i])
# o(d) x p(e), foralld,e € (AU ).

Furthermore, a general pattern is calleconsistentf it does not have any instance. Formally, a pattern
is consistentf and only if for each base paii, j) it holds thaty(P[i]) N CS(P[j]) # 0 andp(P[4]) N
CS(P[i]) # 0. An example of an inconsistent RSSPAs= (P, R) with P = UAUACACGAN and

10



R=((...... ) ) . Qis not consistent because there is a base(pa®) € R but the base®[1] = A
and P[8] = A are not complementary. An example of a structure minimal eonsistent RSSP is
(UNUACACGNR ((. .. ... ) ) ). Note that a pattern can be transformed into an equivalanttste
minimal pattern and checked for consistencydrim) time. For complexity considerations, we can
therefore safely assume that patterns are consistent ratlse minimal.

In this case, one can restrict the search space by compduwntyvb positions of each base pair
immediately after each other. Due to this, the enumeratiaharacters matching the pattern symbols
at each base pair can be restricted to the smaller numbemgflementary ones. In the search for a
sequence-structure pattern this can reduce the numbeuwfegated combinations of matching charac-
ters exponentially. Thus, for structure minimal pattef/®sR), the non-branching structuiie suggests
a search strategy, i.e. an order of left and right extensiwhih requires switching the search direction
at every base pair but makes optimal use of the complemgntamstraints due to the base pairs.

Following this idea, Mauri and Pavesi [28] presented anrilym for matching RNA stem-loop
structures using affix trees. This algorithm explores trerdde space in a breadth-first manner, so
memory use grows exponentially with increasing depth.ekstof an affix tree, we employ the more
space efficient affix array data structure and use a depthsBarch algorithm which only requires
space for the search proportional to the length of the sualgssearched. The depth-first search for
all occurrences of a stem-loop RS&P= (P, R) is performed by calling procedutt@dir-search of
Algorithm 2 (see Figures). Note that we explicitly support bulges and internal loapghe stem-
loop pattern, i.e. we do not require perfect stacking of taselpairs but allow general non-branching
structures.

In our algorithm, we switch the search direction only oncelmese pair when matching the stem
region of the pattern, thus halving the number of lookupsh@ndffix link tables compared to a naive
algorithm without this optimization. This was also obsehry Strothmann [27] whose algorithm did
not support RSSPs containing bulges and internal loops.

To matchQ we call procedurdidir-searchinitially as bidir-search((0,0 — [0..n],F),ro — 1,79),
where (0,0 — [0..n],F) is an affix-interval and- is any position in the loop region of the RSSP or
any position of a completely unpaired pattern. Then, thecquiare traverses the affix-intervals by
performing right and left extensions, while at the same talecking base complementarity of paired
positions. This verification takes constant time by usingnaty table of size.A| x |.4| containing all
valid base pairings. Matching positions are reported whentne boundaries of the RSSP are reached.

In principle, we are free to choose any loop positigr{or any position ifR is empty) for starting
our bidirectional search algorithm. However, in order tduee the combinatorial explosion of the
search space due to ambiguous IUPAC characters, it is pldéeto match non-ambiguous pattern
characters first. To keep the selection simple, wergdbd the position of the first characterin the
possible range such thap(c)| is minimal. That is, we start the search with the most spe(iéiast
ambiguous) character.

A detailed example of bidirectional RSSP search along vighunderlying affix array traversal is
provided in Additional file 1, Section S1. We remark that gaarebidir-searchcan be extended to
support variable-length RSSPs. Such an extended versioidiosearchis provided in Additional file
1, Section S3.

Analysis
We analyze the complexity for searching in a sequeho lengthn for an RSSRQ of lengthm < n,
where the index structures férare already computed.

The bidirectional search algorithm requires tabl&s andsufr, lcpe andlcpgr, andaflkg andaflkg.

11



Algorithm 2: bidir-search(affix-interval v = (k, ¢ — [i..j], X), pos r, pos 7’)

R W N

e w9 o

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

if » < 0 and 7" > m then
report match at positions sufx[i] + k, ...,suf x[j] + &
return

else if r >0 and 7' <m and R[r]=‘(" and R['] =*)’ then
if X = R then

end

end

else if ' <m and R[] =

foreach v such that d €
| bidir-search(v', r, v’ + 1)

end

else if r >0 and R[r] =*‘’ then

foreach v’ such that d € ¢(P[r]) and 7’ = d7 do
| bidir-search(v', r — 1, 1’)

end

// perform left extension first
foreach v’ such that d € p(P[r]) and ¥’ = d7 do

foreach v" such that e € ¢(P[r']) and (d,e) complementary and 7" = 7'e do
| bidir-search(v", r — 1, v’ + 1)
end

end

// perform right extension first
foreach v’ such that e € o(P[r']) and 7' = Te do

foreach v” such that d € p(P[r]) and (d,¢) complementary and " = dv' do
| bidir-search(v", r — 1, r' + 1)
end

end

‘2 and (X =Forr <0or R[r] # ‘) then
@(P[r']) and ' = ¥d do
1

Figure 5: Bidirectional recursive RSSP matching using &R afray. Proceduridir-searchfinds all
matches of a given RSSP, R), beginning the pattern extensions from any position in diog Iregion

or any position in a completely unpaired pattern. In each parametern denotes the affix-interval
representing matches of the pattern substiig+ 1..7" — 1], 0 < r < 7’ < m satisfying the structural
constraints imposed bi[r + 1..r" — 1]. The procedure takes care to change the search directign onl

as often as necessary, in particular it changes the directity once per base pair.

12



Under our assumption that< 232, each of the four tablesif x andaflkxy consumesdn bytes, and the
two tabledcp x are each stored in bytes (X € {F,R}). This amounts to a space consumption &t
bytes for the index structures. The algorithm performs atdégst search, where the depth is limited
by m, and therefore require3(m) space. The total space complexity is therefOre).

We assume tha@ = (P, R) is structure minimal. Such a patte@h without ambiguity, i.e.P €
A™, does not contain base pairs and the searcRfdoes not profit from bidirectional search. Although
such a pattern is processed by Algorithm 2, it can be handiedldorithm 1 using only a suffix array
and saving some overhead.

Algorithm 1 accomplishes the search for a non-ambiguougre® on the suffix arraygufg using
binary search for locating intervals @ (mlogn + z) time, wherez is the number of occurrences of
P in S. We remark that this time bound can be lowered at the pricéghieh memory consumption to
O (m + logn + z) [25] or evenO (m + z) [35,40] time by using additional precomputed information.

Notably, if there is ambiguity but no base pairdh bidirectional search can still be beneficial in
practice. This is the case when searching for a pattern ichwaistring of unambiguous characters is
surrounded on both sides by ambiguous IUPAC characterapbedhe comparison can start at the most
specific part of the pattern. The time complexities for skl ambiguous patterns with Algorithm 1
can be estimated &3 (n log n) in the worst case of searching for the sequence paRteonsisting only
of Ns. Furthermore, note that our Algorithm 2 behaves eyditt Algorithm 1 on patterns without
base pairs if we invoke the search procedure with —1 andr’ = 0.

For a pattern@ = (P, R) of lengthm, letp > 0 be the number of base pairs ix In the worst
caseP consists only of Ns. Moreover, all possible strings of léngt satisfying the complementarity
constraints specified iR occur in the textS. Recall that, since we allow (G, U) pairs, there g6
possible complementary base pairs. Thus, therg. 4f&—27|C|P such strings and Algorithm 2 spans
a virtual tree withE,,,, = |A|™2P|C|P paths from the root to a leaf. At each leaf, it reports the
occurrences of the respective matched substring.

On each path from the root to the leaf the algorithm performs- 2p c-extensions and at most
one switch of the search direction for matching the- 2p unpaired characters. Then, it perfor@s
c-extensions angswitches of the direction for matching the base paired jposit Therefore, we count
the total number of c-extensions as

m—2p A 2p _
STAF ARy 2y
i=1 j=1
AP ) ket - (el
- P | M
armt AT

whichisinO (E,, ).

The cost of eacl-extension consists of the cost of locating the suffix-waéof the new affix-
interval, which is performed by binary search@h(logn), and the cost for potentially computing the
reverse affix-interval when switching the search direction

Instead of performing the binary search over the suffix ®btme can use the child-tables intro-
duced by Abouelhodat al. in [35] to determine the child intervals and switch the skatitection in
constant time. The child-tables, however, add at |2adbytes to the index and require additional in-
volved index construction. As the child-tables improve wwrst case behavior but, on the other hand,
require more space, we analyze the complexity with and withioese tables (i.e. with tablesf x,
lcpx, andaflkx only).

First, we analyze the time required for performing a singléch of the search direction. Therefore
we assume that the current affix-intervabis= (k, ¢ — [i..j], X'). Consider the following two cases.

13



(1) Casei = jork # 0. If i = j, U represents a unique substring$for, if k £ 0, all occurrences
of substringﬁ in S are followed (ift > 0) or preceded (it < 0) by the same substring of length
|k| (known as context). Switching the search direction doesewtire locating the reverse interval
of v, because the algorithm can perform thextension in the new search direction by consuming
context. Therefore, this case requires constant time.

(2) Casei < j andk = 0. The algorithm needs to locate the reverse affix-intenvak (k' ¢/ —
['..5'], X) of v. Interval boundaries’ = aflkx [homex ([i..j])] andj’ = i’ + (j — i) of v are
computed in constant time.

By definition, computing the reverse affix-interval ofrequires knowing/icp. Then, ¢’ = {,
andk’ = ¢/ — ¢. Without child-tables, we determing,, by computing the length of the longest
common prefix betweefX andsX Tk It suffices to performdc, — ¢ + 1 = k' 4 1 character

suf x [] suf x
comparisons only, since both suffixés, . andSX i share a common prefix of at least length

Suf x [4] suf x [4]

¢. With the help of child-tabled,, is determined in constant time [35].

Due to the following lemma, the computation of all reverd&éhtervals on one path of our virtual
tree is inO (n) if child-tables are not used.

Lemma 3 Using tablessuf x, lcpx, andaflkx, the computation of all contexts on a path in the recur-
sion of Algorithm 2 is ir0 (n).

Proof. Letw,vo,v;...,vc be the sequence of reverse intervals processed when ntatghand
let k; denote the context af, for 1 < ¢ < C.

To show>" % k; < n, letv = (k, £ — [i..5], X), withk = 0,7 < j,andX = F (X = R), be the
current affix-interval. We assume without loss of geneyatiat we perform a left (righty-extension
of v and thus locate the reverse interval = (k;, ¢; — [i;..5:], X). Then the following statements
hold: k&, > 0, ¢, = £ + ks, andj; — iy = j — i (see Lemma 1). Observe that = 0 implies
wx(v) = 054 — [ig..j¢]) andk; > 0 implies that substring<(¢; — [i;..j]) has a non-empty prefix
of lengthk;, namelyS¥ [suf[i;]..suf<[i:] + k+ — 1]. Note thatv, is only located ifk = 0, otherwise
the contextk has to be consumed. Hence there is no reverse intepval (k, {5 — [is..js], X ), with
1 <s<C,s #t andks > 0, such that thek, — 1)-th prefix of 6 (¢s — [is..js|) overlaps with
SX[suflir]..sufli¢] + k; — 1] for the same positions i~ . From this,zg1 k: < n follows. Since
a single contexk; can be determined by performing exadtiy+ 1 character comparisons, this implies
O (n) time to compute all these contexts. With this, we concludé¢ah switches of the search direction
performed while finding one substringin S that matche® take up toO (n) time. g

Therefore, when searching f@ without child-tables, the total time for switching seardhed-
tions is coarsely estimated by multiplying the complexity 6ne path with the number of paths as
O (Ep, pn). The use of child-tables removes the linear factor.

For the worst case that all strings matching the patternadigtoccur as substrings if, the se-
guenceS must have a certain minimal length. In the case ef 0, the possible matches are the words
in A™ and a sequence that contains all these matches is dalleary de Bruijn sequence of order
m [41] without wrap-around, i.e. de Bruijnsequence with its firsts — 1 characters concatenated to
its end. Such a sequence was shown to have a lengih ef | A|™ + m — 1. As a consequence, the
worst case requires > ny.

We summarize the worst-case time complexities for Algamithas follows. 1.) From determining
new suffix-intervals, we get a contribution 6f(E,, , log n). Forn > ny, this is inO (nlogn). Child-
tables reduce this time further @ (n). 2.) Switching directions without child-tables is @ (E,, ,n)

14



worst-case time, which is reduced@( £, ,) when using child-tables. For > ng, E,, ,, is in O (n).
Finally, Algorithm 2 runs inO (E,, ,,(n + logn)), which is reduced t@ (E,, ;) using child-tables (i.e.
O (n) for n > ny).

One should note that the worst-case time complexity of éadional search for sequence-structure
pattern is only in the order of online search algorithms. unimplementation, we use a minimal set of
tables in order to keep the implementation simple and saaeesp

However, it can be clearly seen from this analysis that thestxmase is based on extremely pes-
simistic assumptions that are almost contrary to the erpeapplication. 1.) Itis assumed that a pattern
consists of wildcards N only. In the expected applicatiomwéver, patterns will often specify bases
in the loop region, which is of particular benefit for our afigfam. 2.) Sequences, like thde Bruijn
sequence, that contain all possible matches of an averagg gattern will be rare in practice. E.qg. it
could be assumed that a sequence that contains all possibbhes of a pattery with p base pairs
(and P =N...N) is at least as long as thel|-ary de Bruijn sequence of ordet:, since one expects
no significant bias for the specific complementarity du®&tover all substrings of lengtln. However,
Epmp = |A|™P|CP = 4m~2P6P = 4™ /(16/6)P is even for smalp much smaller thany = 4™ +m—1.
For example, four base pairs (i.p.= 4) reduce the time bound by a factor @6,/6)* ~ 50 and eight
base pairs reduce time by a factor of about 2500.

RNA secondary structure descriptors based on multiple ordeed RSSPs

Obviously RNAs with complex, branching structures canretiéscribed completely by a single RSSP.
Describing an RNA by only a single unbranched fragment isroiitappropriate, since searching a large
sequence database or a complete genome for structuralperv@a RNAs (RNA homology search)
with a single RSSP will likely generate many spurious magchelowever, larger RNAs can often
adequately be described by a sequence of RSSPs. This holtl24@ out of 1,446 RNA families in
Rfam 10.0 which have a structure containing several stem-loopsid multi-loop. Only199 out of
1,446 (13.76%) RNA families inRfam 10.0 containing multi-loops cannot be modeled completeily t
way. Still, the consensus structures of th&ge families contain on average06 stem-loops (standard
deviation2.08, median3) which can be modeled as RSSPs. In consequence, we can Usecs e
of RSSPs that consist of at least one pattern per stem-lewpp@tentially also unstructured patterns)
for the description of those families. This allows to actelsaidentify members even of those families
containing multi-loops.

We address search for complex structured RNA families viighrtew concept of RNA secondary
structure descriptors (SSD for short). SSDs use the infoomaf multiple ordered RSSPs derived
from the decomposition of an RNAs secondary structure omfthe consensus secondary structure
of a multiple sequence-structure alignment of related RMAgG stem-loop-like structural elements.
Such consensus secondary structures for multiple RNAs eaoimputed with a variety of programs
following one of the three strategies introduced in [42]. niddy: (A) alignment of the sequences
followed by joint folding [43—46], (B) Sankoff style [8] sioitaneous alignment and folding [10,12,47,
48], and (C) individual folding of the sequences followeddiggnment of their structures [7, 49, 50].
In the following we make the concept of SSDs more precise.A.et Ay, As, ..., A; be a sequence
of non-overlapping alignment blocks. These alignmentkdcare excised from a multiple sequence(-
structure) alignment and represent regions of the moletalefold into stem-loop-like structures or
remain unfolded. The indexing fromto L reflects their order of occurrence in the alignment. Hence
A represents a sequential decomposition of the molecule@ns@ry structure (i’ — 3’ direction)
into regions, each of which can be described by an RSSP. §aeeki(A) for an example.

An SSDR of lengthL is a sequence df RSSPSR = 94, Qo, ..., Qr, whereQ; denotes the RSSP

15



) P1 P2 P3 P4 P5 P6 P7

NNNNNNUNGCNNNNCN  NNNNNGGUAANNNNN NNNNNUNUANNNNNN NNNNNNNNNNUNAACNNUNNNNNNNN ~ NNNNNNAAGUNNNNN NNNNCARAGAANNNN NNNNNNNUUUACCNNNNNNN
OO0 0)) ) (e M) NN 1)) (OG0 (e N M
I
I
I
I
I
I
|
I
I
I
|
I A, "o, LA Bk A, oA, oA LA, v
B) ..np1 Q) D)
%\'\% yre, Sdpy S P Pt P ‘.\
P 8 egf:f"# i T
szfﬁ .% 5 jﬁ ; P, : P
HP3 8¢ a7 P'=P P
o neudd Y3 HPE >
\ = G P, =31 P
£ Byl = :
a“?’:“uﬁi‘éﬁ‘ GE y - Ef‘sHPS P, 3
oW, P, m—
/B P, }
A P/ 7 T (P1.ps)
o {3 i ”
” p p+m-1 positions

Figure 6: (A) Non-overlapping alignment blocks of stemgocegions excised from a multiple
sequence-structure alignment and derived sequencdesgugatterns. Sincg < r;, < I; < 7
and sequence regionS[l;...r;] fold into stem-loop structures fot < ¢ < j < 7, A =
Ay, Ag, A, Ay, As, Ag, A7 is an ordered sequence of non-overlapping alignment bleakable to
construct an RNA secondary structure descrifRor= Q1, Qs, Q3, Q4, 95, Qg, Q7. The sequence-
structure pattern®;,: € [1,7] of R given on top of their underlying alignment blocks describe t
seven marked stem-loops shown in the RNA secondary steuf@)rof the Citrus tristeza virus replica-
tion signal Rfam: RF00193). (C) Matches of RSSBxs, i € [1, 7], on sequencé, sorted in ascending
order of their start position. (D) Graph-based represemtatf the matches of;,: € [1, 7]. An optimal
chain of collinear non-overlapping matches is determineddmputing an optimal path in the directed
acyclic graph. Observe that not all edges in the graph arersimthis example and that the optimal
chain (indicated here by their red marked members) is hasseeily the longest possible chain.

16



describing4;, i € [1, L]. The orderk of the RSSPs ifR is imposed by the order of the corresponding
alignment blocks. BY; andr; we denote the start and end positions4gfin the multiple alignment,
respectively. In practiceR can be obtained from multiple sequence-structure aligtsnehrelated
RNA sequences (i.e., of an RNA family) as they are availabkaitabases likRfam [3,4]. A match to
‘R is a non-overlapping sequence of matches for some or aledR®BSPs irR in their specified order.
We will now make this more precise.
Consider an RNA SSIR with total order<. Let MS be the set of all matches for all RSSP fr@n
in sequences of lengthn. A match is represented by a pa@, p) such thatQ matches at positiop in
S. With eachQ in R we associate a positive weightQ) which can be defined by the user. This weight
allows to quantify the expressiveness@tnd/or its significance. For example,Q) can be the length
of 9 or it might be derived from the number of non-ambiguous rafalies inQ or the probability of
obtaining a match fo@ just by chance assuming a certain (mono-)nucleotide baakgk distribution.
We say that matche22, p) and(Q’, p’) arecollinear, written as(Q,p) < (Q',p’) If @ <« Q" and
p+|Q|—1<p'. AchainC for an SSDR is a sequence of matches

C=1((9Q),,p1),(Qjz:12)s- -+ (L » D))

all from MS, such that{ Q;,, p;) < (Qj,,,.pit1) foralli, 1 <i <k —1.

There are two modes to score chains, depending on the ndtinesearch problem. If the multiple
sequence-structure alignment our SSD is derived from amddlarched sequences have comparable
length, we want the chain to cover as much as possible of theesee and we define tiggobal chain

scorefor chainC as follows:
k

gese(€) =) a(Qy)). 2
=1
Then, the global chaining problem is to find a ch&iwith maximum global chain score.
If we are searching in a whole genome or chromosome for avellashort structural RNA, we are
interested in local chains covering only parts of the genomzhromosome. Then we have to penalize
gaps using a penalty functignand thus théocal chain scords defined by

k—1
lese (C) =) (a(Qj,)—
i=1
g ((ijpi)a (sz‘+1api+1))) + a(ij) (3)

where

9 (945 pi), (a1 Dig1))
= |(pi+1 - pi) - (ljiJrl - Tji){ . (4)

To solve the local chaining problem we use our own implentemtaf a fast local chaining algorithm
described in [51] with modified gap costs. While the algartbf [51] penalizes gaps by the sum of
their lengths, our solution is based on the difference betweir observed lengths (in the chain of
matches) and their expected lengths (as given by the neuliidnment of the family), confer Equation
4. This algorithm runs i (q log ¢) time wherey is the size ofMS.

To solve the global chaining problem we have developed a rifigieat chaining algorithm de-
scribed next.

17



An improved method for global RSSP match chaining

So far our description was based on a single sequence. Howeeeesults described below are based
on a large set of sequencss, . .., Sy as it occurs when searching a large sequence databasen l.e. i
case of databases likefam k& can be in the range of millions. To handle these, we conctdeha
single sequences with separator symbols and construcffitharaay for the concatenation. For a given
SSDR = Q1,Qs,...,9, all RSSPsY;, 1 < i < L, are matched one after the other using fast
bidirectional search on the affix array. This results in maetsMS(Q;) for RSSPQ;. L is typically

in the range of tens while the number of RSSP matches for &plart sequence; is in the order of
hundreds to thousandsSf; is an mRNA or complete genome sequence. For each nfgtahfollowing
information is recorded:

e The ordinal numbef of the RSSRY; involved in f. This is denoted byf.rssp.

The length of the RSSP involved jh This is denoted by .length.

The number; of the sequenc$; f occurs in. This is denoted b seqnum.

The starting position of in S;. This is denoted by .pos.

The weighto(Qy.rssp) Of f. The weight off is denoted byf.weight.

In an initial sorting step the uniomMS of all match setsMS(9Q;), 1 < ¢ < L, is sorted in
ascending order of.segnum. Matches with identical sequence numbers are sorted imdiscgorder
of the ordinal number of the RSSP, i.e., fyssp. Suppose thab* is the size ofMS. As there are
at mostb* sequences with at least one RSSP match, the sorting acgdadihe sequence numbers
can be done i (k* 4 b*) time andO (k*) space using the counting sort algorithm [52]. Hérejs
the number of sequences with at least one RSSP matck* Asb*, the sorting require® (b*) time
and space. We obtain disjoint subsgtsS(S;), 1 < j < k, whereMS(S;) is the set of all matches
in MS matching a substring of;. As MS is ordered by the ordinal number of the RSSP and the
counting sort algorithm is stable, the s@tS(.S;) are also sorted by the ordinal number of the RSSPs.
Let MS(S;, Q;) denote the matcheg € MS(S;) such thatf.rssp = i. In a second sorting step,
eachMS(S;, Q;) is sorted according to the starting position of the matcAsshis is a typical integer
sorting problem, it require® (b, ; log b; ;) time, whereb; ; is the size ofMS(S;, Q;). Altogether, the
two initial sorting steps can be performed(’th(b* + Zle SoF  bjilog bm—) time.

Forall S1, 52, ..., S, one now solves independent chaining problems fors¢&(S;), 1 < j < k,
of matches sorted according to the ordinal number of the RB8Rhe starting position of the matches
in S;. Letj be fixed, but arbitrary. For each matghe MS(S;), the weightf.weight is positive.
Hence, an optimal chain ends with a mafcsuch that there is no matghsatisfyingf < f’. Similarly,
an optimal chain begins with a matghsuch that there is no matghsatisfying f < f’.

The chaining problem is solved by a dynamic programming rélgo which tabulates for all
matchesf’ € MS(S;) the maximum scorg’.score of all chains ending withy’. In addition, it com-
putes the predecessgt.prec of f’in a chain with maximum score ending wifh. To obtainf’.score,
one has to maximize over all matchgsuch thatf.rssp < f’.rssp andf.pos + f.length —1 < f’.pos.
This is a two dimensional search problem. As the matches(ii(S;) are already sorted according to
the first dimension (i.e., by the ordinal number of the RS®Rg can reduce it to a one dimensional
sorting problem. This has already been observed in [51],lethdo the development of an algorithm
solving the chaining problem i@ (blog b), whereb is the number of matches itMS(S;). However,
the algorithm of [51] was developed for chaining pairwisgusnce matches. The RSSP chaining prob-
lem is a special instance of this problem: the first “sequénoasists of the positions, ..., L, and

18



a match for RSSR); is a match of length one to positian Moreover, matches at positionin the
first sequence can be treated as being of equal length bettmysare matches to the same RSP
In addition to this, our initial sorting step delivers, fdt 4 1 < ¢ < L, the matches inMS(S;, Q;)

in sorted order according to the starting positionSin All these properties allow us to simplify and
improve the algorithm of [51] in the following aspects:

¢ While the algorithm of [51] requires a dictionary data stwe with insert, delete, predecessor,
and successor operations running in logarithmic time (argAVL-tree or a red-black tree [52]),
our approach only needs a linear list, which is much easienptement and requires less space.

¢ While the algorithm of [51] requires an initial sorting stegping O (b* log b*) time, our method
only needsO (b* +Z§:1 Zle bj,ilog bj,i> time for this step. Note that thé;; satisfy

S Y by =D

e While the algorithm of [51] solves the chaining problem tS(S;) in O (blogb) time, our
approach runs i© (b - L) time. If L is considered to be a constant, the running time becomes
linear inb, whereb = |[MS(S;)|.

To explain our algorithm, let, 1 < i < L be arbitrary but fixed and assume that all match sets
MS(S;, Qir), i < i have been processed. In a first loop over the sorted matchetSiS;, Q;) one
determines the score of the matches. In a second loop, omdsitiem into a linear list if necessary.
The linear list contains a subset of the previously proakssel scored matches. This split of the
computation into two loops is different from the algorithifif®1] where the scoring and insertions are
interweaved in one loop, requiring an extra array of leritbontaining references to the matches. The
separation into two loops allows us to get rid of this extrayar

Now consider the first loop over all elementsMS(S;, Q;) in sorted order of the match position
in S;. Let f’ be the current element. At this point, all matckfesuch thatf.rssp < f’.rssp have been
processed already. In particular, the scéreore and the previous match (if any) in an optimal chain
ending with f has been determined. Among the processed matches we omytdaonsider those
matchesf satisfying f.pos + f.length — 1 < f’.pos. If there is such a match, one takes the one with
maximal score, say. Then, the optimal chain ending witff contains the previous matgh and the
score isf’.score = f’.weight + f.score. If there is no such match, then the optimal chain ending with
f only consists off’ and f’.score = f’.weight.

Now consider the second loop over all element3As (.S, Q;) for which the scores and predeces-
sor matches (if any) are already determined. f/die the current element to be inserted. As explained
in the previous case, one has to make sure that, among thespeat matches, one can efficiently de-
termine the matcly with the maximum score such thdtpos + f.length — 1 is smaller than some
value depending orf’. The processed matches are stored in a linear list whichrisdsn ascending
order of the position of the matches #). Let <,,,; denote this order, that i <,,s f” if and only if
f-pos + f.length < f".pos + f”.length for any matcheg and f”. If for two processed matchgsand
f" one hasf.pos < f”.pos and f.score > f".score, then an optimal chain does not inclugé. Each
chain that useg” can also us¢ and increase the chain score. As a consequence, one hae tatak
that f” is not inserted into the linear list or it is deleted if it waserted earlier. In this way, <,.s f”
always impliesf.score < f”.score for two matchesf and f” in the linear list. As the elements to be
scored in the first loop and to be inserted in the second lo®pralered in the same way as the elements
in the linear list, one can perform the scoring and the iin@eifbop (which also may involve deletions)
by merging two lists of lengtty, andi, in O (I; + I2) time wherel; is the number of matches to be
scored and inserted arglis the length of the linear list involved. Lét= |[MS(S;)|. Asl; + 1y < b,

19



one obtains a running time @ (b) for each setMS(S;, Q;). As there arel such sets, the running
timeisO (b- L).

Results

Implementation and computational results

We implemented (1) the algorithms necessary for affix ar@ystruction, (2) the fast bidirectional
search of RSSPs using affix arrays as sketched in Algorithmer2ihafter calle®IDsearch), (3) an on-
line variant operating on the plain sequence (hereinaéibeddONLsearch for validation ofBIDsearch
and reference benchmarking, and (4) the efficient globallacal chaining algorithms. Algorithm
ONLsearchshifts a window of lengthn = | RS'S P| along the sequence of lengtito be searched and
compares the substring inside the window with the RSSP fefirtd right until a mismatch occurs.
Hence, it runs irO (nm) time in the worst and (n) time in the best case. Algorithn&Dsearchand
ONLsearchwere implemented in the prograafisearch Theafconstructprogram makes use of routines
from thelibdivsufsort2library (see http://code.google.com/p/libdivsufsofth computing thesufe and
sufr tables inO (nlogn) time. For the construction of thepg andlcpgr tables we employ our own
implementation of the linear time algorithm of [37]. Tableftkr andaflkg are constructed i (n?)
worst-case time with fast practical construction time duthé use of the skip tableRpg andskpg [38].
The programs were compiled with the GNU C compiler (versidh2} optimization option -O3) and
all measurements were performed on a Quad Core Xeon E5410@MRing at2.33 GHz, with64 GB
main memory (using only one CPU core). To minimize the infageof disk subsystem performance
the reported running times are user times averaged lveuns. Allowed base pairs were canonical
Watson-Crick (A, U), (U, A), (C, G), (G, C), and wobble (G, WYY, G), unless stated otherwise.

Affix array construction times
In a first experiment we constructed the affix array for germofeselected model organisms of different
sizes and stored it on disk. We measured the total runningstileeded bgfconstructo construct each
table comprising the affix array. See Figaréor the results of this experiment. The total size for each
table is given in Additional file 1, Table S2. Constructioméis were in the range @ minutes for
the C.eleganggenome containing- 100 megabases to5.7 hours for the~ 2 gigabase genome of the
megabaP.vampyrus

We also measured the running timead€onstructto construct the affix array for a set ®f1 92,599
RNA sequences with a total lengthef622 MB compiled from the full alignments of alRfam release
10.0 families. The construction and storage on disk redui® minutes. In the following we refer to
this dataset aRFAM10 for short.

Influence of loop length on search performance

In a second experiment we investigated the influence of tbp length and the number of non-
ambiguous characters in the loop of an RSSP on the runnirgydfBIDsearchand ONLsearch For
this experiment we constructed artificial RSSPs with a fixethdength of7 and a loop length varying
from 3 to 20. For each loop length, we also varied the number of consecatn-ambiguous charac-
tersq from 0 to 4. Forq = 0 this means that the RSSP contains structural constraitys dimat

is, for¢ = 0 and! = 5 the used RSSP matches all substrings that are able to faldristem-loop
structure with loop lengtl and stem lengtly. Such a pattern is written in dot-bracket notation as
(e ... ))))))) . Allowed base pairs were (A, U), (U, A), (C, G), and (G, C). Weanured
the time needed bBlDsearchand ONLsearchto search for these patterns in tREAM10 dataset.

20



Affix array construction times for genomes of different sizes

sufe

lepr
aflke

logo (Running time [s])

o
5

|

Figure 7: Experiment 1: Running times for affix array constian for genomes of different model
organisms. Genome sizes are given for each organism in rasgslin brackets. We measured the
running time in seconds for all tables the affix array cossét(y-axis,log,, scale). Total construction
times were in the range of 25 minutes forC.elegansip to15.7 hours forP.vampyrus

21



Dependency of running time on loop length and #specified characters (q) in loop region

BIDsearch(q=0)
ONLsearch(q=0)
= BIDsearch(g=1)

ONLsearch(g=1)

BIDsearch(q=2)
ONLsearch(gq=2)
m B|Dsearch(g=3)
ONLsearch(q=3)
= BIDsearch(q=4)
ONLsearch(q=4)

150000
|

100000
|

Running time [ms]

50000
|

Loop length |

Figure 8: Experiment 2: Influence of loop length and numbenari-ambiguous characters in loop
region on total running time d8IDsearchandONLsearch We measured the running time in millisec-
onds to search with artificial RSSPs with loops of varyingtér € {3,...,20} on~ 622MB of RNA
sequence data. For each loop lenbtte also varied the numbere {0,...,4} of non-ambiguous nu-
cleotides in the loop. The used RSSPs had a fixed stem lengthFafr more details on this experiment
see corresponding text.

Results are given in Figur@ In this experimenBlDsearchperformed very well and was faster than
ONLsearchor all parameter combinations. We also investigated tHaénce of different stem length
(data not shown here) and found that the impact on the tatalimg time is negligible. We observe that
the advantage dBIDsearchover ONLsearchdecreases with increasing loop lengtfor fixed ¢q. We
explain this behavior with the increasing number of affitleimals that have to be processed for finding
all different substrings of the sequences that match thePRE8wever, even for an RSSP with loop
length! = 20 containing only structural constraintg £ 0), BIDsearchis still faster tharONLsearch
We further notice that the number of non-ambiguous chamdtethe loop region has a strong influ-
ence on the running time &lDsearch That is, by specifying only a few conserved nucleotidedian t
RSSP’s loop region, the running time BfDsearchis reduced dramatically. For an example of this
effect, see the running times BiDsearchin Figure8 for parameterg = 15 andq € {2,3,4}. This
rendersBlDsearchin particular useful for searching with RSSPs with modeladg length or existing
sequence conservation in the loop region. The speedupgdatkasured in this experiment were in the
range from1.001 to 78.1 for ¢ = 0 and from9.28 to 11 x 103 for ¢ = 4. Tablel gives more details on
the speedups @IDsearchover ONLsearchor all investigated combinations gfandi.

Searching large sequence databases
To measure the performance BIiDsearchfor non-artificial real-world RSSPs, we manually compiled
a set 0f397 RSSPs describing2 highly structured RNA families taken from tHRFAM10 database.

22



3 4 5 6 7 8 9 10 11
q=0 78.10 48.64 35.42 23.55 16.35 11.01 7.31 4.89 3.48
qg=1 329.81 180.45 105.67 57.41 33.75 19.20 11.30 7.14 481
q=2 749.94 418.65 227.45 121.80 67.81 36.99 21.44 12.73 8.41
q=3 2,345.17 1,169.53 653.31 353.49 188.34 103.34 56.59 33.08.792
qg=4 | 11,045.75 3,638.14 2,1448 1,132.53 610.63 338.77 184.586.11 64.93

l 12 13 14 15 16 17 18 19 20
q=0 2.67 2.15 1.79 151 1.37 1.20 1.13 1.07 1.00
q= 3.58 3.13 2.28 1.89 1.68 1.46 1.35 1.27 1.12
q= 5.96 4.88 3.64 2.94 2.57 2.19 2.02 1.82 1.63
q=3 14.27 11.88 8.25 6.50 5.53 4.74 4.19 3.76 3.34
q=41 43.09 35.23 25.74 19.52 15.91 13.25 11.75 10.32 9.28

Table 1: Experiment 2: Obtained speedupBdDsearchover ONLsearchfor different loop length
l € {3,...,20} and number of non-ambiguous characters in the loop regier{0, ...,4}. For the
parameter combinatioh= 3, ¢ = 4 also one character of the stem was specified.

BIDsearch ONLsearch RNAMotif RNABOB
46.1(1)  6,203(134.5) 11,745(254.7) 9,061(196.5)

Table 2: Experiment 3 (A): Running times in seconds needatdprograms to search f897 RSSPs
describingd2 RFAM10 families in ~ 622 megabases of RNA sequence data. For each program the
speedup factor dBIDsearchover the particular program is given in brackets.

These were all families with a consensus secondary steictumtaining at least stem-loop substruc-
tures. We measured the running time neededtysearch ONLsearch and the widely used tools
RNAMotif [13] andRNABOHR15] to search for thes&)7 RSSPs in th&@FAM10 dataset. As expected,
all tools delivered identical results. However, while ibkoBlDsearchless tharb0 seconds to search
for the 397 patterns as shown in Tabke RNABOBandRNAMotif needed more thah5 and3.2 hours
respectively to complete the same task. This made for a apdadtor 0f196.5 (254.7) for BIDsearch
overRNABOBRNAMotif). Even if we include the time needed for affix array constamtBIDsearch
is still faster tharRNABOBandRNAMotif.

We also investigated the distribution of speedup factotsinbd byBIDsearchwhen searching
for the 397 RSSPs. We observed tBdDsearchis more tharb0,000 times faster thafRNABOBand
RNAMotif for the majority of the patterns and that the total searctetmequired byBIDsearchis
dominated by only a small number of patterns. These pattsaribe large unconserved loop regions.
See Figure S3 in Additional file 1 for a graphical visualieatpf the distribution of speedup factors.

Scaling behavior of bidirectional pattern search usingxaffirays

In a further experiment we investigated the scaling bemavidIDsearchand ONLsearchfor an in-
creasing size of sequences to be searched. For this, wehedandgth different RSSPs on random
subsets o0RFAM10 of different sizes and measured the running time for botbrétyns. The results
are given in Figurd). Herepatternl is an RSSP containing only structural constraints. It dessra
stem-loop with loop lengtl, stem length 0 and no specified nucleotides in the loop region. The RSSP
pattern2 (pattern3) only differ from patternl by containing one (two consecutively) non-ambiguous
nucleotides in the loop region.

In this experimenBIDsearchclearly showed a sublinear scaling behavior, whei@ad search
scaled only linearly. It toolBIDsearchonly 566.8 (patternl), 133.8 (pattern2), and37.1 (pattern3)
milliseconds to search the whoRRFAM10 dataset. The obtained speedupsBiDsearch over
ONLsearchwere in the range from.63 (1LMB subsétto 104.79 (full RFAM10) for patternl, from

23



500
1

50000

—— patternt | — patternt
— pattern2 */ — pattern2
pattern3 / pattern3 *

400
1

running time [ms]
300
1
running time [ms]
30000
1
*

1

/ *
= *
o -
39 / / /
/* * * 8 * *
o / S
8 ¥ R S /*/
¥ _—* =
x L% * %
o ak-
o 4
°© T T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
search space size [Mb] search space size [Mb]

Figure 9: Scaling behavidBlDsearch(left) and ONLsearch(right). We measured the running time
needed to search with three different patterns on randomsetsiofRFAM10 of different sizes. For
details, see main text.

12.23 (1MB subsétto 223.18 (full RFAM10) for pattern2, and from35.0 (LMB subsétto 618.37 (full
RFAM10) for pattern3. We observe again that the specification of only one or twdemticles in an
RSSP’s loop region considerably reduces the running tinteed8|Dsearchalgorithm.

RNA family classification by global chaining of RSSP matches

To demonstrate the effect of global chaining of RSSP matahesearched with an SSD built for the
Rfam family of OxyS RNAs (Acc.: RF00035). OxyS is a small9-nucleotide long non-coding RNA
which is included in response to oxidative stresgiooli[53]. Members of this family fold into a char-
acteristic secondary structure consisting of three stap-ubstructures, referred toldB1, HP2, and
HP3 in Figure10 (C). From the three stem-loops we derived three descripilsdRSSP1, RSSP2,
and RSSP3, which constitute the SSD describing this family. We notat tim this experiment the
RSSPs were constructed to guarantee high specificity asdtohioninimize the number of false posi-
tives. For the SSD specified 8tructatorsyntax, see Figur&) (A). Searching for this SSD iRFAM10,
Structatordelivers8,619 matches folRSSP1, 1,699 matches folRSSP2, and 142,219 matches for
RSSP3. Instead of reporting these match&s;uctatorcomputes high-scoring global chains for each
sequence containing matches to all three RSSPs. The chainthie sequences they occur in are re-
ported in descending order of the chain score. This proeedrsulted ir61 sequences, all belonging
to the OxyS family which contain$15 members in total. Hence, by considering only high-scoring
chains all the spurious RSSP matches were eliminated. Wedakcribed the same three stem-loops
in a format compatible witlRNAMotif (see Figurdl0 (B)). A search orRFAM10 with this descriptor
returned exactly the sam@ sequences. HoweveStructator operating inBlDsearch(ONLsearch
mode with subsequent global chaining of RSSP matches newdgd.9 (122.5) seconds to identify
all family members, wheres€BRNAMotif needed4.7 seconds. The search times fatructatorinclude
0.05 seconds required for the chaining.

We also employed global chaining to detect members of thetstrally more complex family of
Citrus tristeza virus replication signdRfam Acc.: RF00193). Therefore we built an SSD comprising
8 RSSPs, describing of 10 stem-loops the molecule is predicted to fold into. For moferimation
on the molecule’s secondary structure and the used descrigte Additional file 1, Figure S4. Using
Structator operating inBlDsearch(ONLsearch mode and global chaining of RSSP matches it took

24



( A) >RSSP1|maxrightloopextent=1|maxleftloopextent=1|maxmispair=6|weight=1 (B) parms
CCNU we +=gu;
(RAAAAAa RACE Qo (GoccaoocoacD ol achDANDANNNNI) descx
>RSSP2 |maxrightloopextent=5|weight=1 h5 (len=7)
GNNNNNCUCACNN ss (len=1)
CCCC .o e )))) h5 (len=4)
>RSSP3|maxmispair=2|maxrightloopextent=2|weight=1 ss (len=1)
INNGGANCUNNNNNNNNNNN h5 (len=2)
OO .. ))))))) ss (len=1)
h5 (len=2)
ss (seq="N\{0,1\}NNNNACCCNUN\{0,1\}" minlen=10,6maxlen=12)
(C) @ 0q h3 (seq="NA",len=2)
Gha

ss(len=1)
h3(len=2)
ss(len=2)
h3(len=4)
h3 (len=7)

h5 (len=4)
ss (seq="NNCUCN\{0,5\}" ,minlen=5,maxlen=10)
h3 (len=4)
ss (minlen=27,maxlen=31) #single strand between HP2 and HP3
h5 (len=7, seq="NNGGANC" mispair=2,ends='mm')
ss(seq="UN\{4,6\}" ,minlen=5,maxlen=7)
h3 (len=7)

=@
»©

*®
®®

HP1 e

@

@006 ®
®

000?69@6}@

©

Figure 10: (A) Secondary structure descriptor for the fgrafl OxyS RNAs inStructatorsyntax. The
SSD consists of RSSRRSSP1, RSSP2, andRSSP3 describing the three stem-loop structures (HP1,
HP2, and HP3, see (C)) of this small non-coding RNA. @B)AMotif descriptor for the same structural
elements. (C) Consensus secondary structure of the OxyS faiily as drawn byWARNAJ30].
Sequence information (non-wildcard nucleotides) usedth descriptors are marked with an asterisk.
Observe that both descriptors use predominantly struetudevery little sequence information.

only 1.3 (138.7) seconds to searcRFAM10 with this SSD, wherd.06 seconds were required for
the chaining. The computed global chains with a minimum tlered 5, computed from thé 84,199
single RSSP matches, were ranked according to their glblaéth score. We observe that the sequences
containing the37 highest scoring chains are exactly zflmembers of the family.

In addition we measured the performancetiuctatorusing global chaining for RNA family clas-
sification with manually compiled SSDs fd2 Rfam families. For the results of this experiment see
Additional file 1, Table S4.

Searching whole genomes using local chains of RSSP matches

As an example of searching a complete genome or whole chmmess for non-coding RNAs, we
searched for the RNA gene Human accelerated region 1F (HABAMoth strands of the human
genome sequence. HARLF is oned®fregions in the human genome that differ significantly from
highly conserved regions of the chimpanzee [54]. The cawestructure of the HAR1F family in
Rfam (Acc.: RF00635) contains three stem-loop regions, dendfetl, HP2, andHP3 in Figure11
(A). From these regions, we built an SSD for the family with§83RSSP1, RSSP2, andRSSP3,
shown in Figurell (B). Since we were searching on complete chromosomes, weaanited to con-
sider RSSP matches that occurred at a similar distance to @her w.r.t. to the distances of the
corresponding descriptors in the SSD. Therefore, unlikbérprevious experiment where we searched
for global chains of RSSP matches, we now computed highirggtivcal chains. Gap costs were com-
puted according to Equation (4) and we used an RSSP weiR6SP;) = 10, for 1 < i < 3.
Affix array construction for all human chromosomes was aqasied in12.6 hours byafconstruct

25



(B) >RSSP1 | startpos=22|weight=10
AGC
OO M) ))
>RSSP2|startpos=46|weight=10
JAGAC

NNNNNNNNNNNNUUURGAGNNNNN

covood—tooo RSSP2
(C) distance=0 . S5 distance=4
RSSP1 \ distance=47 — RSSP3
UCAAAAGAACAUGAAACGGA CAGC JAGACNNNNNNNNNNNNNNNNNNNNNNNNNUAUC JUT CUCAAGUUUCAAAU
........... COOCOC OO DD (- CCC- (- O ) ) e e ) - - - - ) ) )) - -)))))) ..
OURSSPT)=weight=10 | OURSSP2)=weight=10 OURSSP3)=weight=10
(D) startpos=22 startpos=46 startpos=93

AGAAAUUACAGCAAUUUAUCAACU  distance=16 GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC , distance=10, AAAAUUAAAGUAUUUAGAGAUUUU lesc(C1)=8
[ QP M) )) (= (0 (oo (docooss D) ool csococsococsoc ))) ) (Qloccoocooocoocs )))))

AGAAAUUACAGCAAUUUAUCAACU distance=8 GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGU‘U‘UC
TR TR I P ) GO (e [P S DU 1))y CA=T
(3 AGAAAUUACAGCAAUUUAUCAACU distance=50 , ARBRAUUAAAGUAUUUAGAGAUUUY | ¢ (3)—1
(=Gl cnas DIPY 2=coas ) g((P1,p1), (P3,p3))=|47-50l=3 B C(QGo 0000000000000 )))))
distance=2 distance=3

AGAAAUUACAGCAAUUUAUCAACU = GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC AAAAUUAAAGUAUUUAGAGAUUUU|csdc4)

c4 CCLOCCC e M) e ))H(.(((.((..(( ...... PRI 1 I ))) . )H((((( .............. )))))

Figure 11: (A) Consensus secondary structure visualized thie VARNAprogram of the HAR1F
RNA family showing stem-loopsiP1, HP2, andHP3. (B) SSD consisting oRSSP1, RSSP2, and
RSSP3 in Structatorsyntax describing the three stem-loop regions of HAR1FR&jions of HAR1F
described by the RSSPs, including distankes — r;, 1 < i < 3, between neighbored RSSPs and
RSSP weights(RSSP;), 1 < i < 3. (D) Examples of local chaing;, 1 < ¢ < 4 found with the SSD,
showing, in each chain, the distance between RSSP matctigbeinlocal chain scoré&sc (C;). Gap
cost computation according to Equation (4) is shown exemita the two RSSP matches of chaix.

We searched wittstructator for the three RSSPs and foundd,090, 1,578, and 14,491 matches for
RSSP1, RSSP2, andRSSP3, respectively. For these RSSP matches we computed lodakbigying
chains (see Figurél (D)). ChainsC were ranked according to their local chain scare: (C). We
observed that the highest-scoring chain corresponds tootiect location of the gene on chromosome
20. UsingBIDsearch(ONLsearch this task needed.1 (633.4) seconds only, including.02 seconds
for the chaining RNAMotif also found a single match corresponding to the correctitmtaf the gene,
but neede®74.7 seconds. See Figure S5 in Additional file 1 for the uB&AMotif descriptor.

Comparison of implementations of bidirectional patterarsé

In the last experiments we compar8tructators running time using usinglDsearchwith the time
needed by a recently published bidirectional pattern geianplementation for the same task. The im-
plementation of [55], to which we refer &WI, uses a compressed data structure called bidirectional
wavelet index. We remark th&WI can only search with a small set of hard-coded patterns the.
user cannot use it to search with his/her own patterns. Mereanlike Structator which provides a
full command line interface with many configurable optiosed section about the software package),
BWI reports neither matching substrings nor matching posti@vhich is known to be the most time
consuming part when querying compressed index struct@@}. [It only outputs the search time of
individual patterns and the number of matches. Thus, iteserather as a prototype implementation
of the concepts introduced in [55]. Nevertheless, sincési emakes use of bidirectional search, we
comparedBW!I with StructatorusingBW!/'s hard-coded patterns. See TaBlfor the results. Details of
the database and patterns are as previously describedvigshoticed thaBlDsearchwas faster than

26



|hairpin1 hairpin2  hairpind  hloop(5) acloop(5) acloop(10)

BWI 10,484 64 612 26,413 896 420
BIDsearch 8,325 32 330 16,768 511 295
BIDsearchvs. BWI 1.26 2 1.85 1.58 1.75 1.42

Table 3. Search time comparison betweétructatofs BIDsearchand an implementation, here called
BWI, of bidirectional search using the wavelet tree data sirealescribed in [55]. Search times are in
milliseconds. The last row shows the speedupi@isearchover BWI.

BWI for matching all patterns by up to fact@r hence making it preferable when speed is most im-
portant. However, we note thBWI's compressed wavelet index consumes significantly lessanem
thanStructators affix array index, which would makBWI preferable in cases where space consump-
tion is critical. See Table S3 in Additional file 1 for the memoequired byBWT/'s index for different
genomes.

We also measured the speedupStfuctator running in BIDsearchmode overONLsearchand
compared the results with previously reported measuresyjiéi]. Because the implementation used
there is not available (personal communication with théat we calculated relative speedups based
on the reported absolute running times. Details on thisraxgat are given in Additional file 1, Section
S2.

Structator software package
Structatoris an open-source software package for fast database sgdhcRNA structural patterns
implementing the algorithms and ideas presented in thigkwbconsists of the command line programs
afconstructandafsearch

afconstructimplements all algorithms necessary for affix array comsion, namely a lightweight
suffix sorting algorithm for construction of the suffix arsayfe andsufg, the algorithm for construc-
tion of tableslcpg andlcpr [37], and the algorithm for computation of the affix link tabhflkg and
aflkg. The program constructs all or if necessary only some ofdahé&es of the affix array for a target
database provided in FASTA format and stores them on diskréfare the program can also be used
to compute only the tables needed for a traditional enhasg#k array [35]. afconstructcan handle
RNA as well as DNA sequences. Moreover, it supports the fisamstion of input sequences according
to user-defined (reduced) alphabets and allows the indestremtion for transformed sequences. Such
personalized alphabets are easily specified in a text file.

afsearchs the program for performing structural pattern matchifigat is, it searches (ribo)nucleic
acid sequence databases for entries that can adopt a [@r§eaondary structure. For an overview of
the supported RNA sequence-structure patterns (RSSRd}igarel2. The simplest RSSP describes
a single-stranded region, where ambiguous (not well-awesg nucleotides can be specified with 1U-
PAC characters. All ambiguous IUPAC characters are hadgaan afsearch e.g. N standing for
nucleotides A, C, G, and U (and T) and R standing for A and Gidéssfixed-length RSSPs with or
without ambiguous characters (Figurz(A) until (D)), also RSSPs describing loop or stem regions of
variable size (Figuré2 (E) until (H)) are supported. More precisely, one can spegith parameters
maxleftioopextent (mllexgnd maxrightloopextent (mrlexa variable number of allowed extensions to
the left (nucleotides marked in yellow in Figut@ (E)) and/or to the right (nucleotides marked in blue
in Figure12 (F)) for the specified loop pattern. Variable stem sizes eaaddressed with parameter
maxstemlength (ms{yee regions marked in pink in Figute (G)). Also supported is the combination
of variable loop and stem size (see Figizg(H)) and a maximal number of allowed mispairings in the
stem region. All these different RSSPs can be specified byghein a text file which use, as shown in

27



>single stranded region >simple HP with wildcards N >HP with bulge >HP with interior loop
NACNUGUNNC NNNNNNACUNNNNNNNN NNNNNNNNNNNNACUNNNNNNNN NNNNNNNNNNNNNACUNNNNNNNNNNNN

.......... CCCCCeeeeee))))) COCe (00 e))) ) ) OG0 e )))) e e )

>HP with variable loop|mllex=3 >HP with var. loop|mllex=3|mrlex=2 >HP with var. stem|msl=8 >HP with var. loop and stem|mllex=3|mrlex=2|msl=8
NNNNNACNNNNNNNNNN NNNNNACNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNACNNNNNNNNNN
[ I ))))) COCCCannnn ))))) CCCennn ))) [ N N R 1))

Figure 12: Supported structural patterns and correspgngiattern definitions irStructator syntax.
Non-ambiguous nucleotides are marked in red. Positiontazong ambiguous nucleotides, denoted
here with character N, are marked in green and can contaimacigotide fromA4. Maximal allowed
left and right extensions of the loop region of a pattern axified by parametemnaxleftloopextent
(mllex)andmaxrightloopextent (mrlexgre marked in yellow and blue, respectively. Allowed pdssib
extensions of a pattern’s stem region as specified by paeammetxstemlength (msBre marked in
purple. As an example for the semantics of the parammtrconsider pattern (G): it matches all
substrings of the searched sequence that are able to fold istem-loop structure with loop length
and stem length betwe&wands. For further details see corresponding text.

28



Figure12, an expressive but easy to understand pattern syntax. Hitiondl details on the supported
patterns see the corresponding section irtractatoruser manualafsearchalso permits user-defined
base pairing rules. That is, the user can define an arbittdryes fromA x A as valid pairings. This
ensures a maximum of flexibility. For example, the standambaical Watson-Crick pairings as well
as non-standard pairings such as G-U can be specified.

The search is performed efficiently on a pre-computed affiayarafsearchimplements the bidi-
rectional index-based search algorithBisearchand the online algorithnr®NLsearchoperating on
the plain sequence, both extended to support patterns asthble loop size and/or stem length. Fur-
ther, it implements the methods for fast global and locairihg of RSSP matches. The search with
RSSPs can be performed on the forward and, in case of nuddesgjuences, also on the reverse strand.
Searching on the reverse strand is implemented by reveria ®SSP and transformation according
to Watson-Crick base pairing. Hence it is sufficient to btiild affix array for one strand only.

RSSP matches can be reported directlyafgearchor can be used as input for the computation
of high-scoring global or local chains of matches. Computegins resemble the order of the RSSPs
given in the pattern file and are reported in descending aosti¢heir chain score. This allows the
description of complex secondary structures with our nemcept of secondary structure descriptors
(SSDs). This is done by simply specifying a series of RSSHEwipattern file describing the stem-loop
substructures the RNA molecule is composed of in the orddvedf occurrence in 5’ to 3’ direction. To
incorporate different levels of importance or significan€an RSSP into SSD models and subsequently
in the computation of chain scores, RSSP specific weightdeatefined in the pattern file. This is
particularly useful in the context of RNA family classifiat where the used SSD may be derived
from a multiple sequence-structure alignment or a conserfucture-annotated multiple sequence
alignment. Here, it permits the assignment of higher waightRSSPs describing highly conserved
functionally important structural elements occurring ifamily of RNAs, and lower weights to RSSPs
describing less conserved substructures that occur omlgriain members of the family.

The output format offsearchcontains all available information of a match or chain of chas,
either in a human-readable, or a tab-delimited format. Meee afsearchcan also report matches in
BED format. This allows a direct visualization of the resdit e.g. the UCSC genome browser.

Discussion and conclusion
We have presented a method for fast index-based search ofdeijfence-structure patterns (RSSPs),
implemented in theStructatorsoftware. As part of the software, we give the first publiclaitable
implementation of bidirectional pattern search using tfix array data structure. For the majority
of biologically relevant RSSPs, our implementationBiDsearchshows superior performance over
previous programs. In a benchmark experiment onRFfem databaseBIDsearchwas faster than
RNAMotif and RNABOBby up to two orders of magnitude. Furthermore, in a comparisetween
BIDsearchand the program of [55], which works on compressed index stati@gturesBlDsearchwas
faster by up to 2 times. We observed that for RSSPs with lomgnserved loop regions, the advantage
of BIDsearchover ONLsearchdecreases. For such cas8s,uctatorcan also employDNLsearchon
the plain sequence data. As a further contribution, we ptedefor the first time a detailed complexity
analysis of bidirectional search using affix arrays. Whitkrkctional search does not does not improve
the worst-case time complexity compared to online searchractice it runs much faster than online
search algorithms and the running time scales sublineadttythe lengthn of the searched sequences.
Our implementation of the affix array data structure recuisaly 18n bytes of space. This is a
significant space reduction compared to thelsn bytes needed for the affix tree. With the program
afconstructwe present for the first time a command line tool for the effit@nstruction and persistent

29



storage of affix arrays that can also be used as a stand-alogem for index construction.

With the new concept of RNA secondary structure descript8&Ds) combined with fast global
and local chaining algorithms, all integrated ir@tructator we also introduce a powerful technique
to describe RNAs with complex secondary structures. Thimallows to effectively describe RNA
families containing branching substructures like muwts, by decomposition into sequences of non-
branching substructures that can be described with RSSBsip&ed to programs liIkRNAMotif,
Structators pattern description language for RSSP formulation igoggnbut powerful, in particular in
combination with the SSD concept. Beyond the algorithmicetigbutions, we provide with th&truc-
tator software distribution a robust, well-documented, and ¢agyse software package implementing
the ideas and algorithms presented in this manuscript.

Availability

The Structator software package including documentation is availableimady format for different
operating systems and architectures and as source codetbhhed&NU General Public License Version
3. See http://www.zbh.uni-hamburg.de/Structator foaiiet

Authors’ contributions

F.M. implemented the presented algorithms and wrote patteeananuscript and th8tructatorman-
ual. S.K. developed and implemented the RSSP chainingitiiger and contributed to the manuscript.
S.W. provided supervision and wrote parts of the manuscNpB. initiated the project, provided su-
pervision and guidance, designed/performed the expetsvard wrote large parts of the manuscript.
R.B. contributed to the introduction. All authors read apgraved the final manuscript.

Acknowledgments
This work was supported by the German Research Foundatiant(@/l 3628/1-1). We also thank the
anonymous referees, especially referee 2, for their véduadimments and suggestions.

References
1. Mattick J:RNA regulation: a new geneticsNat Rev Gene2004,5(4):316—-323.

2. Mattick J, Taft R, Faulkner GA global view of genomic information - moving beyond the genand the
master regulator. Trends Genef009.

3. Gardner P, Daub J, Tate J, Moore B, Osuch I, Griffiths-J&)€sinn R, Nawrocki E, Kolbe D, Eddy S,
Bateman ARfam: Wikipedia, clans and the “decimal” release Nucl. Acids Re2010.

4. Gardner P, Daub J, Tate J, Nawrocji E, Kolbe D, Lindgreewikinson A, Finn R, Griffith-Jones S, Eddy
S, Bateman ARfam: updates to the RNA families databaseNucl. Acids Re2008,37:D136-D140.

5. Gardner PP, Wilm A, Washietl & benchmark of multiple sequence alignment programs upon stic-
tural RNAs. Nucl. Acids Re2005,33(8):2433-9.

6. Hochsmann M, Voss B, Giegerich Rure multiple RNA secondary structure alignments: a progressive
profile approach. IEEE/ACM Trans Comput Biol Bioinfor2004,1:53—62.

7. Siebert S, Backofen RIARNA: multiple alignment and consensus structure predicion of RNAs based
on sequence structure comparisondioinformatics2005,21(16):3352—3359.

8. Sankoff D:Simultaneous solution of the RNA folding, alignment and prdéosequence problem SIAM
Journal on Applied Mathematic985,45:810-825.

30



9. Gorodkin J, Heyer LJ, Stormo GBinding the most significant common sequence and structure otifs
in a set of RNA sequencesNucl. Acids Resl997,25(18):3724-32.

10. Havgaard J, Lyngso R, Stormo G, GorodkirPairwise local structural alignment of RNA sequences
with sequence similarity less than 40%Bioinformatics2005,21:1815-1824.

11. Mathews DH, Turner DHDynalign: an algorithm for finding the secondary structure common to two
RNA sequencesJournal of Molecular Biology002,3172):191-203.

12. WIll S, Reiche K, Hofacker IL, Stadler PF, Backofenl&ferring noncoding RNA families and classes by
means of genome-scale structure-based clusteringLoS Comput. BioR007,3(4):e65.

13. Macke T, Ecker D, Gutell R, Gautheret D, Case D, SampatR¥MAMotif — A nhew RNA secondary
structure definition and discovery algorithm. Nucl. Acids Re2001,29(22):4724—-4735.

14. Gautheret D, Major F, Cedergren Rattern searching/alignment with RNA primary and secondaly
structures: an effective descriptor for tRNA. Comput Appl Biosc1990,6(4):325-31.

15. RNABOB: a program to search for RNA secondary structure motifs in sequence databasefhttp://
selab.janelia.org/software.html].

16. Chang T, Huang H, Chuang T, Shien D, HornBNIJAMST: efficient and flexible approach for identifying
RNA structural homologs. Nucl. Acids Re2006,34:W423-W428.

17. Dsouza M, Larsen N, Overbeek Bearching for patterns in genomic data Trends Genet1997,
13(12):497-8.

18. Grillo G, Licciulli F, Liuni S, Shisa E, Pesole ®@atSearch: A program for the detection of patterns and
structural motifs in nucleotide sequencesNucl. Acids Re2003,31(13):3608-12.

19. Nawrocki E, Eddy SQuery-dependent banding (QDB) for faster RNA similarity searches PLoS Com-
put. Biol.2007,3(56).

20. Nawrocki E, Kolbe D, Eddy Snfernal 1.0: inference of RNA alignments BMC Bioinformatics2009,
25:1335-1337.

21. Klein R, Eddy SRSEARCH: finding homologs of single structured RNA sequence BMC Bioinformat-
ics2003,4:44.

22. Sakakibara YPair hidden markov models on tree structures BMC Bioinformatic2003,19:i232—-40.

23. Gautheret D, Lambert Direct RNA motif definition and identification from multiple sequence align-
ments using secondary structure profilesJ Mol Biol 2001,3131003-11.

24. Gusfield D:Algorithms on strings, trees, and sequences : computenseiand computational biology
Cambridge Univ. Press 1997.

25. Manber U, Myers ESuffix arrays: a new method for on-line string searchesSIAM Journal on Computing
1993,22(5):935-948.

26. Ferragina P, Manzini Gndexing compressed textJournal of the ACM2005,52(4):552-581.

27. Strothmann DT he affix array data structure and its applications to RNA se@ndary structure analysis
Theor. Comput. ScR007,3891-2):278—-294.

28. Mauri G, Pavesi GAlgorithms for pattern matching and discovery in RNA secondary structure. Theor.
Comput. Sci2005,33529-51.

29. MaalR MGLinear bidirectional on-line construction of affix trees. Algorithmica2003,37:43-74.

30. Darty K, Denise A, Ponty WARNA: Interactive drawing and editing of the RNA seondary structure..
Bioinformatics2009,25(15):1974-1975.

31. Mauri G, Pavesi GPattern discovery in RNA secondary structures using affix tees In Proceedings of
the 14th Annual Symposium on Combinatorial Pattern Maghiolume 2676Springer 2003:278-294.

31



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,
46.

47.

48.

49.

50.

51.

52.
53.

Karkkainen J, Sanders 8imple linear work suffix array construction. In Proceedings of the 13th Inter-
national Conference on Automata, Languges and ProgramySipgnger 2003.

Puglisi SJ, Smyth W, Turpin AThe performance of linear time suffix sorting algorithms. In DCC
'05: Proceedings of the Data Compression Conferenashington, DC, USA: IEEE Computer Society
2005:358-367.

Manzini G, Ferragina FEngineering a lightweight suffix array construction algorithm. Algorithmica
2004,40:33-50.

Abouelhoda M, Kurtz S, Ohlebusch Replacing suffix trees with enhanced suffix arraysJournal of
Discrete Algorithm£004,2:53—-86.

Fischer JWee LCP. Information Processing Lette2010,110(8-9):317-320.

Kasai T, Lee G, Arimura H, Arikawa S, Park Kinear-time longest-common-prefix computation in
suffix arrays and its applications In Proceedings of the 18th Annual Symposium on Combinatoaidé
Matching2001:181-192.

Beckstette M, Homann R, Giegerich R, KurtZast index based algorithms and software for matching
position specific scoring matricesBMC Bioinformatic2006,7:389.

Beckstette M, Homann R, Giegerich R, KurtzSgnificant speedup of database searches with HMMs
by search space reduction with PSSM family modelsBioinformatics2009,25(24):3251-3258.

Abouelhoda MI, Ohlebusch E, Kurtz ©ptimal exact string matching based on suffix arrays In Pro-
ceedings of the 9th International Symposium on String Rsiog and Information RetrievaVolume 2476
Springer 2002:31-43.

de Bruijn N: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschape4o,
49:758-764.

Gardner P, Giegerich B comprehensive comparison of comparative RNA structure pediction ap-
proaches BMC Bioinformatic2004,5(140).

Hofacker I, Fekete M, Stadler Becondary structure prediction for aligned RNA sequenceslournal of
Molecular Biology2002,3195):1059-66.

Knudsen B, Hein Pfold: RNA secondary structure prediction using stochasit context-free grammars
Nucl. Acids Re2003,31(13):3423-8.

Hofacker IRNA consensus structure prediction with RNAalifold. Methods Mol Biok007,395527-544.

Bremges A, Schirmer S, GiegerichiRne-tuning structural RNA alignments in the twilight zone. BMC
Bioinformatics2010,11(222).

Torarinsson E, Havgaard J, GorodkiMultiple structural alignment and clustering of RNA sequences
Bioinformatics2007,23:926-932.

Harmanci A, Sharma G, Mathews Bfficient pairwise RNA structure prediction using probabilistic
alignment constraints BMC Bioinformatic2007,8(130).

Reeder J, Giegerich RRonsensus shapes: an alternative to the Sankoff algorithnof RNA consensus
structure prediction. Bioinformatics2005,21(17):3516—23.

Wilm A, Higgins D, Notredame R-Coffee: a method for multiple alignment of non-coding RNA Nucl.
Acids Res2008,36(9).

Abouelhoda M, Ohlebusch Ehaining algorithms for multiple genome comparison J. Discrete Algo-
rithms2005,3(2-4):321-341.

Cormen T, Leiserson C, Rivest Rtroduction to algorithmsCambridge, MA: MIT Press 1990.

Altuvia S, Zhang A, Argaman L, Tiwari A, Storz Ghe Escherichia coli OxyS regulatory RNA represses
fhlA translation by blocking ribosome binding. EMBO 1998,15(20):6069—-75.

32



54. Pollard K, Salama S, Lambert N, Lambot M, Coppens S, Redel, Katzman S, King B, Onodera C, Siepel
A, Kern A, Dehay C, Igel H, Ares M, Vanderhaeghen P, HaussleAD RNA gene expressed during
cortical development evolved rapidly in humans Nature2006,4437108):167-172.

55. Schnattinger T, Ohlebusch E, GogEgdirectional search in a string with wavelet trees In Proceedings
of the 21st Annual Symposium on Combinatorial Pattern Mat;h/olume 6129Springer 2010:40-50.

33



Supplemental material for the paper:
Structator: fast index-based search for RNA
sequence-structure patterns

Fernando Meyer Stefan Kurtz Rolf Backofen Sebastian Will
Michael Beckstette

1 An example of bidirectional RSSP search

As an example of bidirectional search for RSSPs using affiyar we search for the RSSPin the
sequences of Figures 2 and 3, respectively, of the main document. Wellrétat Q = (P, R) with P

= NNNUGCUNNNandR=(((....))) represents a stem-loop structure of length= 10 and.S

= AUAGCUGCUGCUGCA has length 15. We start matchifign .S by calling procedurdidir-search

of Algorithm 2 asbidir-search((0,0 — [0..15], F), 2, 3). That is, the algorithm matches the first position
P[3] = U of the loop region in left-to-right direction. Given th¥t= F and: < j (i.e.0 < 15) hold,

it locates interval, = (0,1 — [11..14], F) with 2, = U via binary search in the interval — [0..15]

of sufg. Analogously, the following recursive calls bidir-search perform rightc-extensions ot =

U = P[3..3] with charactersP[4] = G, P[5] = C, andP[6] = U, by searching in the intervals
1 —[11..14], 2 — [12..14], and 3 — [12..14], respectively. After these extensions, the algorithm has
located the affix-intervalb, = (0,4 — [13..14], F) representing all occurrences @f = UGCU in S
such thatv; matchesu = P[3..6]. We setv = v,. Next, the algorithm performs a rightextension

of w with the pairing positiorc € ¢(P[7] = N). Therefore, it enumerates all possibig such that
v = v d for somed € o(c). We observe that, = (0,5 — [13..14], F) with o7 = UGCUG is the only
interval satisfying these conditions and concldde G. As an additional structural constraint, matches
to positions2 and7 of P shall form a base pair. To fulfill this constraint the alginit first switches
the search direction by locating the reverse intewabf v,.. The left boundary o’ is determined
with a lookup in tableaflkg asaflkg[homeg([13..14])] = 5 and the right boundary & Further, we
setlcp = min{lcpg[r] | 13 < r < 14} = 6 and calculate the context of as6 — 5 = 1. Hence, the
reverse interval of, is determined as’ = (1,6 — [5..6], R) with ¥/ = UGCUG and we set = v'.
Now the only interval satisfying (1J, = ¢, e € ©(P[2]), and (2) the complementarity condition
between positiong and 7 of P, as required by the structure stritigy is the intervalv, = (1,7 —
[5..6], R) with 7; = CUGCUG representing occurrences of substrings matcRiag7]. Observe that
v2[0] = C andvz[5] = G can form a base pair as demandedfg] and R[7]. Consequentlyp,
matcheq P[2..7], R[2..7]) and therefore we set= v,. In the next step the algorithm performs another
left c-extension of v/ by somec € o(P[1] = N) leading to intervaly, = (1,8 — [5..6],R) with

v2 = GCUGCUG representing occurrences of substrings matcR{ng7]. We setv = v,.. To match

a charactet! € ¢(c) that is complementary ta’[0] = G the algorithm performs a rigltextension of

' using a character € o(P[8]). Because the context ofis larger than zero, it consumes the context
and remains in tableufg. That is,X = R. The resulting interval after performing the righextension
isv, = (0,8 — [5..6],R) with o, = GCUGCUGC. Observe that,[0] = G andu,[7] = C can form



a base pair and thus, represents occurrences of substringssahatching(P/1..8], R[1..8]). We set
v = v,. The next operation is a leftextension by some € ¢(P[0] = N). Hence, the algorithm
enumerates all intervals, such thatu; = ¥'d,d € ¢(c). There are two intervals satisfying these
conditions. Namelyy,; = (0,9 — [5..5], R) with 7,; = AGCUGCUGC andv,» = (0,9 — [6..6],R)
with 7,3 = UGCUGCUGC. We set; = v, andvy = v, and continue by processing, which
represents occurrences of = AGCUGCUGC inS. Becauser is a unique substring of, for the
following right c-extension by some € ¢(P[9] = N) we can directly evaluat§R[sufg[5] — 1] = U.
Bases(v;[0] = A,U) are complementary, hence we set= (—1,9 — [5..5],R) and observe that
occurrences of substring. = AGCUGCUGCU ofS match(P[0..9], R[0..9]) and that the boundaries
of @ have been reached. With this, in the following recursionatigerithm reports a matching position
of Q via a lookup in tablesufg assufg[5] + (—1) = 4 — 1 = 3, where—1 is the context ofv,
that has to be added tafr[5]. Note that, becausk = R, 3 is a position inSR. Now the algorithm
backtracks to interval0,8 — [5..6], R) and continues to perform a rightextension of intervabs
by somec € ¢(P[9]). Again, v5 = UGCUGCUGC is a unique substring 6fand we can directly
evaluateSR[sufg[6] — 1] = A. Since base$u3[0] = U, A) can pair, we set, = (—1,9 — [6..6],R)
with 7; = UGCUGCUGCA representing occurrences of substring$ ofatching(P[0..9], R[0..9]).
The boundaries o have been reached again and in the following recursion theriim reports
another matching position @, preciselysufr[6] + (—1) = 1 — 1 = 0. There are no further intervals
to process and the search ends. In sumniadi;-search has found two occurrences fin S.

2 Comparison of two implementations of bidirectional pattern search

We measured the speedupShfuctator running inBlDsearch mode ovelONLsearch and compared the
results with previously reported measurements [1]. Beethusimplementation used by Strothmann [1]
is not available (personal communication), we calculatddtive speedups based on the absolute run-
ning times reported in [1]. We note that the measurements]af¢re performed on different hardware.
This can, according to our experiments, significantly infeeethe performance &lDsearch. See Ta-
ble S1 for the results of the comparison BifDsearch with the method of [1]. For a description of
the used RSSPs see [1]. The search was performed in the gemdfeorikoshii (GenBank Acc.:
NC_000961, 1.7 MB) andE. coli (GenBank Acc.: AC_000091,4.5 MB), which were also used in [1].
Additionally we included withP. vampyrus (GenBank Acc.: ABRP00000000, 1.9 GB) a larger eu-
karyotic genome in this experiment.

Surprisingly, with the RSSPACloop(5), ACloop(10), andACloop(15) taken from [1], which de-
scribe a loop consisting of 5 (10 and 15) repetitions of ACgpeedup of the affix array based method
of [1] decreased with increasing loop length. This is a b&lravhich is opposite to our observations
(see Figure 8 of the main document). We also noticedBhasearch obtained a higher speedup when
searching for RSSPipin2 in E. coli than the method of [1] but not when searching in the smaller
genome ofP. horikoshii. This observation remains unclear and cannot be furthesstigated due to
unavailability of the implementation used in [1].

3 A bidirectional search algorithm supporting variable-length RSSPs

Algorithm 2 of the main document matches fixed-length RS®Rshere present an extension of it also
capable of matching RSSPs with loop region allowing a végialbnmber of additional extensions with
ambiguous characters N to the left and to the right. In coatimn, also stem region of variable length
is supported. We observe that this extended version is &seeffias the original algorithm supporting
fixed-length RSSPs. Additional computation time is onlyuieed for the traversal of additional affix-

intervals due to the increased sensitivity.



P. horikoshii (1.7 MB) | E. coli K12 (4.5 MB) | P. vampyrus (1.9 GB)
RSSP ONL BID BvsO SIR| ONL BID BvsO SIR ONL BID BvsO SIR
Hpinl 169.61 65.59 2.59 10.232.94 141.84 3.05 12.17172,913.36 9,520.39 18.16
Hpin2 33.34 0.27 123.48 15588.61 0.45 196.91 99.2534,702.63 48.85 710.39
Hloop(5) | 214.8 166.94 1.29 14|652.67 372.57 1.48 18.0219,547.76 23,958.41 9.16 -
Hloop(10) [331.96 1,412.64 0.23 2.1842.32 3,235.11 0.26 2.4335,928.97 248,711.65 135 -
ACloop(5) | 59.07 4,43 13.33 182452.87 9.91 15.43 81564,053.16 825.79 7757 -
ACloop(10)| 58.71 1.37 42.85 M52.12 3.45 44.09 7.2464,136.82 391.56 163.8
ACloop(15)| 58.67 0.89 65.92 1[352.01 1.86 81.73 1.3864,199.98 278.76 230.31

Table S1: Comparison of speedupSifuctator’s BlDsearch over ONLsearch (columnBvs.O) and the
speedup of affix array based search over searching on tietpkias reported in [1] (column
STR). The respective search timeskiDsearch (columnBID) andONLsearch (columnONL)
are shown in milliseconds. F& vampyrus only measurements f@tructator are available.

Before describing the algorithm, we define this extensioR®EPs. Avariable-length RSSP Q con-
sists of an RSSKRP, R) and parametermaxleftloopextent (mllex), maxrightloopextent (mrlex), and
maxstemlength (mgl). mllex andmrlex denote the maximum number of respective left and right exten
sions of the loop region specified Mandmsl denotes the maximum number of base pairs in the stem.
The minimum length of occurrences &fis m = |P| = | R|. For examples of variable-length RSSPs,
see Figure 12 (E) until (H) of the main document.

To keep the code simple, we split the original algorithm i@ procedures. (i) First the loop re-
gion of a given variable-length RSSP is matched with proceduraidir-search-loop (see Algorithm
3, Figure S1). (ii) Next, the stem region is matched with prhaebidir-search-stem (see Algorithm
4, Figure S2). Note thdiidir-search-stem is very similar to Algorithm 2 of the main document. Prior
to the search foiQ, the following variables are setoopstart, minloopstart, loopend, maxloopend,
minbps, and maxbps. These variables store the following informatidoopstart (loopend) stores the
position of the base occurring in the left-most (right-mgsisition of the loop described by the struc-
ture stringR in 5’ to 3’ direction, minloopstart = loopstart — milex, maxioopend = loopend + nrlex,
andminbps (maxbps = md) is the minimum (maximum) number of base pairs occurrin@int holds:
minloopstart < loopstart < loopend < maxloopend. Note thatminloopstart can be negative. As an
example, letR = (((....))),mlex =4, andnrlex = 1. Thenloopstart = 3, minloopstart = —1,
loopend = 6, maxloopend = 7, andminbps = 3. To match@Q, procedurebidir-search-loop is ini-
tially called asbidir-search-loop((0,0 — [0..n], F), ¢ — 1,79, true), where(0,0 — [0..n], F) is an affix-
interval, o is any position in the loop region @, and parameter true states that the pattern can be
extended to the right. Procedubadir-search-loop makes a call tdidir-search-stem whenever sub-
strings of minimum lengthoopend — loopstart + 1 matching the loop in the searched database are
found. If @ has no base pairs, i.e2si = 0, it instead immediately reports the matching positions.
The call tobidir-search-stem is made asidir-search-stem(v’, loopstart — 1,loopend + 1,0), where
v is the affix-interval representing all occurrences of simigtw’ in the searched database match-
ing the loop region of9, positionsloopstart — 1 andloopend + 1 denote the inner-most base pair
(loopstart — 1,loopend + 1) of the pattern, an@ is the number of currently matched base pairs. Pro-
cedurebidir-search-stem reports matching positions @& whenever the boundaries of the RSSP are
reached ominbps < bpcount < maxbps holds.

References

[1] D. Strothmann. The affix array data structure and its igppbns to RNA secondary structure
analysis.Theor. Comput. <ci., 389(1-2):278-294, 2007.



Algorithm 3: bidir-search-loop(affix-interval v = (k, ¢ — [i..j],X), pos r, pos r/,
allowrightext)

1 if ' < mazxloopend and allowrightext = true then
// perform right extension

2 if 7/ > loopend then

3 | chr’' =N’

4 else

5 | chr' = Pr']

6 end

7 foreach v’ such that d € ¢(chr’) and ¥’ = ¥'d do

8 if r < loopstart and 7’ + 1 > loopend then

9 if msl =0 then // if entire pattern is single stranded

10 report match at positions sufx[i] + &, ...,suf x[j] + &

11 return

12 else // otherwise loop of lengthr’ —r + 1 was matched
// so extend stem region

13 bidir-search-stem(v', loopstart — 1, loopend + 1, 0)

14 end

15 end

16 if ' + 1 < mazloopend then

17 | bidir-search-loop(v', r, ' + 1, true)

18 end

19 if 7' 4+ 1 > loopend then

20 | bidir-search-loop(v', v, v’ + 1, false)

21 end

22 end

23 else if r > minloopstart then
// perform left extension
24 if r < loopstart then

25 | chr =N

26 else

27 | chr = Plr]

28 end

29 | foreach v’ such that d € ¢(chr) and T’ = d¥ do

30 if r — 1 < loopstart and 1’ > loopend then

31 if msl =0 then // if entire pattern is single stranded
32 report match at positions sufx[i] + &, ...,suf x[j] + &

33 return

34 else // otherwise loop of length r’ —r + 1 was matched

// so extend stem region

35 bidir-search-stem(v', loopstart — 1, loopend + 1, 0)
36 end

37 end

38 bidir-search-loop(v', r — 1, r', allowrightext)

39 end

40 end

Figure S1: Bidirectional recursive matching of the loopioegof a variable-length RSSP using an af-
fix array. Procedureidir-search-loop searches for an RSSIP, R) defined with additional
variablesmaxleftloopextent (mllex) andmaxrightloopextent (mrlex) denoting the maximum
number of left and right extensions of the loop specifieirrespectively, ananaxstem-
length (mdl) denoting the maximum number of base pairs. Used varidtmbpstart, minloop-
start, loopend, andmaxloopend are preset according to structure striRgmllex, andmrlex
(see text)bidir-search-loop calls proceduréidir-search-stem (see Algorithm 4) whenever
substrings of minimum lengttoopend — loopstart + 1 matching the loop are found.



Algorithm 4: bidir-search-stem(affix-interval v = (k, ¢ — [i..j], X), pos 7, pos ', bpcount)

1 if (r<0andr’ >m) or (minbps < bpcount < mazbps) then

2
3

4 if (minbps < bpcount < maxbps or (r>0 and ' <m and R[r]=‘C and R[] =*))

N=T R

10
11
12

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

report match at positions suf x[i] + k, ..., suf x [j] + k

end

then

e

e

if minbps < bpcount < maxbps then
chr =N’
chr’ = ‘N’
else
chr = P[r]
chr’ = P[r']
end
if X = R then
// perform left extension first
foreach v’ such that d € p(chr) and ¥’ = d¥ do
foreach v” such that e € p(chr’) and (d,e) complementary and 7" = ¥’e do
‘ bidir-search-stem(v”, r — 1, ' 4+ 1, bpcount + 1)
end
end
else
// perform right extension first
foreach v’ such that e € ¢(chr’) and ' = Ve do
foreach v” such that d € ¢(chr) and (d,e) complementary and 7" = dv’ do
‘ bidir-search-stem(v”, r — 1, ' 4+ 1, bpcount + 1)
end

end
end

Ise if ¥’ <m and R[r']=*" and (X =F or 7 <0 or R[r] # ‘") then

foreach v’ such that d € ¢(P[r']) and ¥’ = ¥d do
bidir-search-stem(v', r, v’ + 1, bpcount)
end

Ise if r > 0 and R[r] = ‘.’ then

foreach v’ such that d € ¢(P[r]) and ¥’ = d¥ do
| bidir-search-stem(v', r — 1, r', bpcount)
end

end

Figure S2: Bidirectional recursive matching of the stemaeg@f a variable-length RSSP using an affix
array. Procedureidir-search-stem is called by procedurbidir-search-loop (see Algorithm
3) and extends substringg matching the loop region of the RS$P, R) to substrings
matching also the stem. Used variahi@sbps andmaxbps are preset according to structure
string R and variablanaxstemlength (mdl) (see text).



[2] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectig®arch in a string with wavelet trees.

In Proceedings of the 21st Annual Symposium on Combinatorial Pattern Matching, volume 6129,
pages 40-50. Springer, 2010.

[3] K. Darty, A. Denise, and Y. Ponty. VARNA: Interactive dvang and editing of the RNA seondary
structure.Bioinformatics, 25(15):1974-1975, 2009.



Organism Genome

sufg lcpr Icper aflkg sufr lcpr Icper aflkg
size (n) (4n) (n) (4n) (4n) (n) (4n)
C.elegans 100.29 401.14 100.29 6.29 401.14 401.14 100.29 6.29 401.14
A.thaliana 119.67 478.67 119.67 8.85 478.67 478.67 119.67 8.85 478.67
D.melanogaster 168.74 674.95 168.74 94.34 674.95 674.95 168.74  94.34 574.9
C.intestinalis 173.52 694.02 173.50 28.03 694.02 694.02 173.50 28.03 594.0
O.sativa 374.33 1,497.33 374.33 71.05 1,497.33 1,497.33 374.33 571.0,497.33
M.gallopavo 1,087.50 4,349.99 1,087.50 2.01 4,349.99 4,349.99 1,087.52.01 4,349.99
G.gallus 1,108.48 4,433.93 1,108.48 98.86 4,433.93 4,433.93 14&08. 98.86 4,433.93
D.rerio 1,481.32 5,925.08 1,481.27 457.26 5,925.08 5,925.08 1D#481457.26 5,925.08
X.tropicalis 1,510.98 6,043.63 1,510.91 310.89 6,043.63 6,043.63 1D1510310.89 6,043.63
P.vampyrus 1,999.71 7,998.82 1,999.71 170.84 7,998.82 7,998.82 1,999170.84 7,998.82

Table S2: Sizes in megabytes of the different tables the affexy consists of for the genomes used in
Experiment 1llcper andlcper are the exception tables storing entries with value largen t

255 which cannot be stored in tablesg andlcpg, respectively. In tablekper andlcpeg,
each entry consumesbytes.

Organism Genome size BWI
C.elegans 100.29 157.96
Acthaliana 119.67 188.59
D.melanogaster 168.74 295.37
C.intestinalis 173.52 279.83
O.sativa 374.33 602.21
M.gallopavo 1,087.50 1,800.88
G.gallus 1,108.48 1,757.84
D.rerio 1,481.32 2,424.81
X.tropicalis 1,510.98 2,309.24
P.vampyrus 1,999.71 3,282.55

Table S3: Size in megabytes of the bidirectional wavelegxn@W!1) [2] for different genomes.



= S
[¢e] | —
|
! 1 Lo
' o
: 0
c
| L X3
[ =
3 - i 5
| ~ S
| L ™~ ®©
| © 2
o
Speedup BlDsearch over RNAMotif : © g-
| T © 3
%)
c Speedup BlDsearch over RNABOB ' - 8_
L o{ | _______\4_____] alll | wn @
+= < . . M <
g a Fraction of patterns with BIDsearch © =
H* speedup over RNAMotif greater than S i
. . | L X e
o Fraction of patterns with BIDsearch I L =l
speedup over RNABOB greater than S I 1 %
. | m S
_ ~ - L[ o5
o _| |
N 1| - et g
=L | Z
— (@) ('U
S
(I
TR |
HV” m ]
o dlm rﬂlﬂ ’_H H_‘ o
Speedup obtained by Structator [S] ©
[eleolololNolNoNolBoloNoRoNoNolNoNolNolNoNololoNoloNoNoloNoNoleoNe]
N OO O OO0 000 000 00000000000 OO OO o o
I 1 1T N OOO OO OO0 OO0 0000000000 O oo
A A = ] A N®MITOHON~N0OOONmOoOLmLOoOOoOOoOmOoOOoO oo oo
A N o A A | | | I | | | | Il 7T A N NOMSTONO OO O O O
mLoodddddd A A I | | | | I 1 | "N MLW O O
" N O OO0 O0OO0OO0CO0OO0 dd dddddd | | | I =
D O OO O0O0O0 0000000000 ddod-w | A
A NM T IO OO0 OO0 0 0000000 O o
OO0 N OoOwmnmOoO OO OO0 OO o o
A N NMITOHOO O O O
N O O O O
- N M 8

Figure S3: Distribution of speedup factorsBiDsearch overRNABOB (yellow) andRNAMatif (green)
when searching for 397 RSSPsRFAM10 consisting of~ 622 megabases of RNA se-
guence data. The red and blue curves show the values of oms thimempirical cumulative
distribution function of the speedup factors distributiohat is, for a given speedup factor
S they show the fraction of RSSPs for whiBhDsearch obtained a speedup greater th&in
over RNAMoatif (red curve) andRNABOB (blue curve), respectively. We observed tBHD-
search is more tharb0,000 times faster thaRNABOB andRNAMoitif for the majority of the
patterns (see intersection point of dashed lines). Momretwve total search time required by
BlDsearch is dominated by only a small number of patterns describingelainconserved
loop regions.



>HP1
NNNNNI
ool
>HP2
NNNNN
el

NUNGCNNNNCN ~ NNNNNUNUANNNNN NNNNNNANGUNNNNNN ~ NNNNNNNNUUNACCNNNNNNNN
(....0))))) CCCCCa.o0))) CCCCCC2)))))) COCOOCCCen e ))))))))
>HP4 >HP6 >HPB
GGUNANNNNN NNNNNNNNNNNUNAACNNUNNNNNNNNN ~ NNNNCAANGANNNNN NNNNNANCAUNNNNNN
..... ))))) (a0 Qttlocconoaaaasad )N (4ooosoaald ) (CdQlocosoal DN

Figure S4: Consensus secondary structure of the @psig family (RFAM Acc.: RF00193) visual-

ized with theVARNA program [3] and SSD iftructator syntax describing this family. ThHe
given RSSPs correspond to the colored stem-létips - HP8. Positions at which sequence
information is used in the descriptor are marked with anreskte

(A) >RSSP1|startpos=22

[ ) ssccco ))
>RSSP2 | startpos=46

e (e 1) e )) et 1))

>RSSP3|startpos=93

Figure S5: (A) SSD for HAR1F RNA family consisting BESSP1, RSSP2, andRSSP3 in Structator

parms
we += gu;
descr
h5 (len=2)
ss (len=1)
h5 (len=4)
ss(seq="ACAGC", len=5)
h3 (len=4)
ss (len=6)
h3 (len=2)
h5 (len=1)
ss(len=1)
h5 (len=3)
ss (len=1)
h5 (len=2)
ss (len=2)
h5 (len=2)
ss (seq="NUAGAC", len=6)
h3(len=2)
ss (len=2)
h3(len=2)
ss(len=14)
h3 (len=3)
ss (len=1)
h3 (len=1)
ss (len=4) #single strand between HP2 and HP3
h5 (len=5)
ss (seq="NNNNNNNUUURGAG", len=14)
h3 (len=5)

syntax. RSSPs were built from stem-lod#B1, HP2, andHP3 shown in (C). (B)RNAMotif
descriptor for the same structural elements. Secondargtste drawing shown in (C) was
generated with/ARNA [3].



0T

Acc.  #Matching #TP #FP #FN Sensitivity Specificity Accuracy Precision #RSSMin.chain  Tpp [sec] TonL [sec] SpeedupT; [sec]

chains length i
RF00044 8 8 0 0 1.000 1.000 1.000 1.000 8 2 0.964 117.359 121.74 0.001
RF00193 37 37 0 0 1000 1000 1000  1.000 8 5 1.220 140,681 3125. 0.063
RF00126 106 106 0 1 0991 1000 1000 1000 6 2 1.032 128476492 0.000
RF00503 78 78 0 2 0.975 1.000 1.000 1.000 10 2 1.084 164.866.09652 0.002
RF00209 1511 1493 18 58 0963 1000 1000  0.988 s 2 105 3129122511 0.006
RF00625 24 22 2 1 0957 1000 1000 0917 5 3 3.304 102066 920.8  0.656
RFO0061 6211 6211 [} 285 095 1000 1000 1000 7 4 1188 2399100370 0032
RF00224 21 21 0 1 0955 1000 1000 1000 10 3 1508 202.6613384 0138
RF00084 111 111 0 7 0941 1000 1000  1.000 4 2 1.180 78.6696686. 0.050
RF00372 22 2 0 3 0933 1000 1000  1.000 7 3 1.092 104.663 4858  0.007
RFO0115 58 58 0 5 0821 1000 1000  1.000 9 4 1128 167.9629028. 0.024
RF00488 24 24 0 3 0.889 1.000 1.000 1.000 6 4 1.084 94.938 B7.58 0.043
RF00294 44 44 0 9 0830 1000 1000 1000 12 3 1124 164.8146326 0.008
RF00210 345 345 0 72 0.827 1.000 1.000 1.000 14 3 1.308 206138594 0.104
RF00228 348 346 2 79 0814 1000 1000 0994 13 2 1.048 225988632 0.006
RF00036 18,312 18,312 0 4,452 0.804 1.000 0.999 1.000 16 3 641.4 224.778 153.537 0.145
RF00549 39 38 1 10 0792 1000 1000 0974 10 4 1584 154.3824637 0142
RF00448 11 11 0 3 0.786 1.000 1.000 1.000 7 4 1.000 102.730 7302. 0.002
RFO0177 584748 582839 1909 179250 0765 0999 0946 9709 13 3 11.004 221798 20.156 2414
RF00101 142 142 o 45 0759 1000 1000 1000 6 3 1.000 119.409.407 0.004
RF00166 54 54 0 18 0.750 1.000 1.000 1.000 8 3 1.068 127.872.7309 0.009
RF00018 278 272 6 9 0739 1000 1000 0978 11 5 3.944 212158786 0.666
RF00252 26 26 0 10 0.722 1.000 1.000 1.000 10 3 1.260 143.709.033 0.057
RF00547 39 39 0 18 0684 1000 1000 1000 14 3 2604 2214580485 0452
RF00011 355 353 2 185 0.656 1.000 1.000 0.994 10 4 2.988 1B3.921.554 0.582
RF00010 2478 2402 76 1679 0589 1000 0999 0969 12 5 2621 187616 30.202 1548
RF00449 33 32 1 26 0.552 1.000 1.000 0.970 9 3 1.308 154.726.2928 0.073
RF00040 92 92 0 8 0529 1000 1000 1000 9 4 1.248 1534109222 0.050
RF00023 1362 1362 0 1699 0445 1000 0999 1000 11 3 2076 193740 93.324 0229
RF00229 1257 1256 1 1637 0434 1000 0999 0999 11 3 1472 193168 131.228 0139
RF00222 26 26 0 35 0426 1000 1000 1000 12 3 1.148 201555507 0.025
RF00459 223 215 8 341 0387 1000 1000  0.964 7 2 4776 221008273 0.012
RFO0028 10,647 10229 418 28820 0262 1000 0991 0961 13 2 1476 203.889 138136 0.075
RF00261 21 21 0 65 0244 1000 1000  1.000 8 4 1552 171.0632210 0130
RF00373 82 75 7 247 0.233 1.000 1.000 0.915 8 4 1.692 143.64589B4 0.166
RF00230 2059 1753 306 6507 0212 1000 0998 0851 s 3 0890 220410 5651 0471
RF00226 18 18 0 73 0.198 1.000 1.000 1.000 7 4 2.664 108.687 7980. 0.449
RF00009 136 111 25 455 0.196 1.000 1.000 0.816 11 3 3.260 640.158.333 0.480
RF00629 6 6 0 25 0194 1000 1000  1.000 8 4 1816 153526 BA54 0248
RF00030 20 20 0 476 0.040 1.000 1.000 1.000 9 5 10.632 175.558512 2.427
RF00100 614 614 0 15042 008 1000 0995 1000 13 7 1240 688160203 0.065
RF00004 257 257 0 7,252 0.034 1.000 0.998 1.000 8 4 1.320 128.897.585 0.034
AeragaD): 0620 100 0996 006 945 338 3100 163330101500 025
Total(5): 37 13013 68597 1223

Table S4: Results diiructator searches oRFAM10 (1,446 families; 3,192,599 sequences) using SSDs describifjgRfam families. The manually
compiled SSDs used in this experiment are available oiSittuetator website. They were designed to be highly specific and coosii7
RSSPs in total with an average ®fi5 RSSPs per SSD. These are the s88%eRSSPs used in section “Searching large sequence databases”
in the main document. Columns 2, 3, 4, and 5 show the numbegmqfenices containing high-scoring global chains, the nwsniietrue

positives (TP), false positives (FP), and false negatif$ (respectively. Sensitivity is computed 8§41, specificity aszzi- 7,
TP+#TN

accuracy aS#W%W’ and precision a%. Observe that these values strongly depend on the used $@humber

of RSSPs constituting an SSD is given in column 10. Columnhbivs the minimal required length of a chain to be considerethizhing
chain. Total running times dructator operating inBlDsearch andONLsearch mode are given in columns 12 and 13, respectively. Column
14 showsBIDsearch’'s speedups oveDNLsearch. The running time required for chaining of RSSP matchesstedi in column 15. Observe
that the sum of running times does not match the times neexteskfirching with th&97 single RSSPs reported in the main document
because here each SSD was searched using a sefavatator program call.



