
Structator: fast index-based search for RNA
sequence-structure patterns

Fernando Meyer1, Stefan Kurtz1, Rolf Backofen2,
Sebastian Will∗2,3, and Michael Beckstette∗1

1Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
2Chair for Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
3Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Email: FM - meyer@zbh.uni-hamburg.de; SK - kurtz@zbh.uni-hamburg.de; RB - backofen@informatik.uni-freiburg.de;

SW∗- swill@csail.mit.edu; MB∗- beckstette@zbh.uni-hamburg.de;

∗Joint corresponding author

Abstract
Background: The secondary structure of RNA molecules is intimately related to their function and often more

conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match

sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time that

is only linear in the size of sequence databases. Furthermore, established index data structures for fast sequence

matching, like suffix trees or arrays, cannot benefit from thecomplementarity constraints introduced by the

secondary structure of RNAs.

Results: We present a novel method and readily applicable software for time efficient matching of RNA

sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced

index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search,

which is required for efficiently handling the structural constraints of the pattern. Structural patterns like stem-

loops can be matched inside out, such that the loop region is matched first and then the pairing bases on the

boundaries are matched consecutively. This allows to exploit base pairing information for search space reduction

and leads to an expected running time that is sublinear in thesize of the sequence database. The incorporation of

a new chaining approach in the search of RNA sequence-structure patterns enables the description of molecules

folding into complex secondary structures with multiple ordered patterns. The chaining approach removes spu-

rious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark

experiments on theRfam database, our method runs up to two orders of magnitude faster than previous methods.

Conclusions: The presented method’s sublinear expected running time makes it well suited for RNA sequence-

structure pattern matching in large sequence databases. RNA molecules containing several stem-loop substruc-

tures can be described by multiple sequence-structure patterns and their matches are efficiently handled by a

novel chaining method. Beyond our algorithmic contributions, we provide withStructatora complete and ro-

bust open-source software solution for index-based searchof RNA sequence-structure patterns. TheStructator

software is available at http://www.zbh.uni-hamburg.de/Structator.

Background
The discovery of new roles of non-coding RNAs (ncRNAs) has made them of central research interest in
molecular biology [1, 2]. Like proteins, ncRNA sequences that have evolved from a common ancestor
can be grouped into families. For instance, theRfam database [3, 4] release 10.0 compiles1,446

1

such families. Members of a family share, to different degrees, sequence and structure similarity. In
many cases, however, the members of a family share only few sequence features, but share by far
more specific structural and functional properties. Prominent examples of such cases are tRNAs and
microRNA precursors.

In this paper, we consider the problem of searching nucleotide databases for occurrences of RNA
family members. As sequence similarity is often remote evenwithin well-established RNA families,
we cannot rely on pure sequence alignment and related techniques for this task. Indeed, it has been
shown that sequence alignments of structured RNAs fail at pairwise sequence identities below about
60% [5]. Therefore, we briefly review nucleotide database search methods that make use of sequence
and structure information. There are general sequence-structure alignment tools, which determine struc-
tural similarities and derive consensus structure patterns for RNAs that are too diverse to be alignable
at sequence level. We identify two classes of such tools. Thefirst class, withRNAforrester[6] and
MARNA[7] being the main representatives, require a known or predicted secondary structure for both
sequences as input. However, they suffer from the low quality of secondary structure prediction, espe-
cially if the boundary of the RNA elements are not exactly known. The second class of methods are
derivatives of the Sankoff algorithm [8], which provides a general solution to the problem of simultane-
ously computing an alignment and the common secondary structure of the two aligned sequences. Due
to its high complexity (O

(
n6

)
time andO

(
n4

)
memory) several variants of this approach have been

introduced such asfoldalign [9,10],dynalign[11] andLocaRNA[12]. Still, these tools have a time com-
plexity that is generally too high for a rapid database search. Thus, more specialized tools for searching
RNA families in nucleotide databases have been introduced.Tools likeRNAMotif [13], RNAMOT[14],
RNABOB[15], RNAMST[16], PatScan[17], andPatSearch[18] are based on motif descriptors defining
primary and secondary structure properties of the familiesto be searched for. They provide a language
for defining descriptors and a method to search with these in large nucleotide databases. For these
tools, the motif descriptor for a family has to be extracted externally from other information (such as
a multiple sequence-structure alignment) about the specific RNA family. There are also tools that au-
tomatically derive descriptors from structure-annotatedsequences or a multiple sequence alignment of
related RNA sequences such asInfernal [19,20],RSEARCH[21], andPHMMTS[22]. They use variants
of stochastic context-free grammars as descriptors, whereasERPIN [23] uses sequential and structural
profiles. Despite being fast compared to other methods, descriptor-based tools available today have a
running time that is, in the best case, linear in the size of the target sequence database. This makes their
application challenging when it comes to large sequence databases. A solution with sublinear running
time would require index data structures. However, widely used index structures like suffix trees [24]
or arrays [25] or the FM-index [26] perform badly on typical RNA sequence-structure patterns, because
they cannot take advantage of the RNA structure information.

Here, we present a fast descriptor-based method and software for RNA sequence-structure pattern
matching. The method consists of initially building an affixarray [27], i.e. an index data structure of the
target database. Affix arrays cope well with structural pattern constraints by allowing for an efficient
matching order of the bases constituting the pattern. Structurally symmetric patterns like stem-loops can
be matched inside out, such that first the loop region is matched and, in subsequent extensions, pairing
positions on the boundaries are matched consecutively. Because the matched substring is extended
to the left and to the right, this pattern matching scheme is known as bidirectional search. Unlike
traditional left-to-right search where the two substringsconstituting the stem region of the pattern are
matched sequentially, in bidirectional search, base complementarity constraints are checked as early as
possible. This leads to a significant reduction of the searchspace that has to be explored and in turn
to a reduced running time. We note that bidirectional searchfor RNA sequence-structure patterns was
also presented by Mauri et al. in [28]. However, their methoduses affix trees [29] instead of the more

2

memory efficient affix arrays. Affix trees require with approximately 45 bytes per input symbol more
than twice the memory of affix arrays (18 bytes per input symbol), making their application infeasible
on a large scale. Moreover, their method traverses the affix tree in a breadth-first manner, leading to
a space requirement that grows exponentially with increasing reading depth. We instead employ a
depth-first search algorithm whose space requirement is only proportional to the length of the searched
substring.

The affix array directly supports the search for sequence-structure patterns that describe sequence-
structure motifs with non-branching structure, for example stem-loops. In contrast, e.g. the search for
stems closing a multi-loop is not directly supported. Nevertheless, even for RNA containing multi-
loops, the affix array can still speed up the search. Our general approach for finding RNA families with
branching structure is to describe each stem-loop substructure by a sequence-structure pattern. Each
of these patterns is matched independently using the affix array. Then, with a new efficient chaining
algorithm, we compute chains of matches such that the chained matches reflect the order of occurrence
of the respective patterns in the molecule. Note that complex structures containing one or more multi-
loops can be expected to contain sufficiently many non-branching patterns, such that the proposed
chaining strategy identifies true matches with high specificity.

For a better understanding of the concepts underlying our method, we begin with formalizing RNA
structural motifs. We then describe the concepts and ideas of affix arrays and show how to use them
in an algorithm for fast bidirectional search for sequence-structure patterns. After presenting a de-
tailed complexity analysis of the algorithm, we proceed with a detailed description and analysis of a
novel method for computing chains of sequence-structure pattern matches. Finally, we benchmark and
validate our method in several experiments.

Methods
Preliminaries
A sequenceS of lengthn = |S| over an alphabetA is a juxtaposition ofn elements (characters) from
the setA. S[i], 0 ≤ i < n denotes thecharacter ofS at positioni. Let ε denote the empty sequence,
the only sequence of length0. By An we denote the set of sequences of lengthn ≥ 0 overA. The set
of all possible sequences overA including the empty sequenceε is denoted byA∗.

For a sequenceS = S[0]S[1] . . . S[n − 1] and 0 ≤ i ≤ j < n, S[i..j] denotes thesubstring
S[i]S[i+ 1] . . . S[j] of S. We denote thereverse sequenceof S with S−1 = S[n− 1]S[n− 2] . . . S[0].
For S = uv, u andv ∈ A∗, u is a prefix of S, andv is a suffixof S. Thek–th suffix ofS starts at
positionk, while thek–th prefix ofS ends atk. Note that the0-th suffix ofS is S itself and thatS[0] is
the0-th prefix ofS. Thek–th reverse prefixof S is thek–th suffix ofS−1. For0 ≤ k < n, Sk denotes
thek–th suffix ofS, andS−1

k = (S−1)k, denotes thek–th reverse prefix ofS.
Let A denote theRNA alphabet{A,C,G,U}. Its characters code for the nucleotides adenine (A),

cytosine (C), guanine (G), and uracil (U). In the following we fix a sequenceS over the RNA alphabet
A. For stating the space requirements of our index structures, we assume that|S| < 232, such that
sequence positions and lengths can be stored in4 bytes.

RNA structural motifs
RNA molecules can form complex secondary structures consisting of different structural elements
like stem-loops with or without bulges or internal loops. See Figure1 for an overview of some
secondary structure elements. Such elements are often important for the function of the molecule
and are structurally conserved throughout evolution. The secondary structure is formed by Watson-

3

C

A

C

A

C

A

U

C

A

G

U

G
GGUU

CI

N

A

C N
A G C C

G A

C

C

A

U

U

G
C C

G

A

U

A

A
A G

A

C

C
A

A

G

U

C
CU

C

A

A
AA

U

C

A
G

U
G A

I

A

CA

C
A

C
U

A
AG

U

G

U

G

1

10

20 30

40

50

60

70

80

C A C A C A U C A G U G G G U U C I N A C N A G C C G A C C A U U G C C G A U A A A G A C C A A G U C C U C A A A A U C A G U G A I A C A C A C U A A G U G U G

1 10 20 30 40 50 60 70 80

Interior LoopStem

Bulge
Loop

Stem Loop1 Stem Loop2 Stem Loop3

Figure 1: Secondary structure elements of an RNA molecule represented by a base-pair graph (left) and
as arc-annotated sequence (right). The depicted structurecontains three stem-loop substructures. Ob-
serve that all arcs representing base pairings arenon-crossingand stem-loop substructures can contain
interior loops and bulges. Hence this molecule forms anon-crossingsecondary structure that does not
contain higher order structural elements like pseudoknots. Secondary structure drawings were gener-
ated with theVARNAprogram [30].

Crick pairing of complementary bases and also by the slightly weaker wobble pairs. We say that two
bases(c, d) ∈ A × A are complementaryand can form abase pair if and only if (c, d) ∈ C =

{(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}. A non-crossing RNA structureR of lengthm is a set
of base pairs(i, j), 0 ≤ i < j < m, stating that the base at positioni pairs with the base at position
j, such that for all(i, j), (i′ , j′) ∈ R: i < i′ < j′ < j or i′ < i < j < j′ or i < j < i′ < j′

or i′ < j′ < i < j. For the algorithms and methods presented in this paper we only consider this
class of structures. For an example of such an RNA secondary structure see Figure1. An important
structural motif occurring in many RNA molecules is thestem-loopstructure. We callR a stem-loop
RNA structure if and only if for all(i, j), (i′, j′) ∈ R : i < i′ < j′ < j or i′ < i < j < j′. Note that
due to our definition a stem-loop can contain bulges and interior loops (see Figure1). We equivalently
call such a structurenon-branching. In Figure1, such stem-loop structures occur as substructures.

A structure string His a sequence over the alphabet{..., (((,)))} with an equal number of characters(((
and))). There is a bijection between the set of (non-crossing) RNA structuresR and the set of structure
stringsH, both of lengthm, such that for each base pair(i, j) ∈ R, H[i] = (((andH[j] =))), and
H[r] = ... for positionsr, 0 ≤ r < m, that do not occur in any base pair ofR, i.e.r 6= i ∧ r 6= j for all
(i, j) ∈ R. Due to this equivalence we identify both representations.

Let Φ = {R, Y, M, K, W, S, B, D, H, V, N} be a set of characters. The IUPAC nucleotide base
code introduces the characters inΦ to code nucleotide ambiguity and assigns a specific character class
ϕ(x) ⊆ A to eachx ∈ Φ ⊎ A. In particular, forx ∈ A : ϕ(x) = {x} andϕ(N) = A. A sequence
pattern is a sequenceP ∈ (A ∪ Φ)∗. Let m denote its length|P |. An occurrenceof P in a sequence
S is a positioni, 0 ≤ i < n, such thatP [k] = S[i + k] with S[i + k] ∈ ϕ(P [k]) for all 0 ≤ k < m.
An RNA sequence-structure pattern (RSSP)Q = (P,R) of lengthm is a pair of asequence pattern
P and astructure stringR, both of lengthm. A matchor occurrenceof Q of lengthm in an RNA
sequenceS is an occurrencei of P in S, such that for all base pairs(l, r) ∈ R: S[i + l] andS[i + r]

are complementary. Furthermore, defineCS as a mapping of a characterc ∈ Φ ∪ A to the set of its
complementary characters inA, i.e.CS(c) = {d ∈ A| ∃e ∈ ϕ(c) : d andeare complementary}.

In this paper, structures described by RSSPs are non-branching.

4

Figure 2: Unidirectional (left) and bidirectional (right)searches for the RNA sequence-structure pattern
(RSSP)Q = (P,R) with P = NNNUGCUNNN andR = (((....))), which represents a stem-loop
structure of lengthm = 10. The numbers indicate the order in which the pattern characters are matched
against the target sequence. In the unidirectional search,the characters are matched in a single direction,
beginning (ending) with a character inϕ(P [0]) (ϕ(P [m − 1])). In the bidirectional search, the loop
region of the pattern can be matched first. Then, pairing bases are matched consecutively by switching
the search direction, represented by the red arrows.

The affix array data structure
In [27] the theoretical concept of an index data structure called affix array is described. This index
structure supports efficient unidirectional as well as bidirectional searches and is more space efficient
than the affix tree [29, 31]. The termunidirectional searchrefers to the search for occurrences of a
sequence pattern where the pattern characters are comparedwith sequence characters in a left-to-right
(right-to-left) order, i.e. the already compared (matched) prefix (suffix), of the pattern is extended to
the right (left). Notably, a change of the direction is not possible.

When searching for occurrences of sequence-structure patterns, however, unidirectional search can-
not exploit the complementarity condition on base paired pattern positions. To utilize this condition
as effectively as possible, both positions of a base pair need to be accessed immediately after each
other. This is enabled bybidirectional search, which refers to methods where the direction of the
match extension can be changed freely. Figure2 illustrates the order of the character comparisons of a
sequence-structure pattern in the unidirectional and bidirectional searches.

Until now, affix arrays have received little attention in bioinformatics. Presumably, this has been
due to the lack of an open and robust implementation. As a consequence, their potential for efficient
database search with RSSPs has hardly been recognized and the details of this data structure are not
widely known in the field. Therefore, we briefly recall the basic ideas of the affix array, which consti-
tutes the central component of ourStructatorapproach.

For notational convenience, we defineSF = S andSR = S−1. We useSX for statements that
apply toSF andSR. The subscriptX is used for other notions depending onSF andSR in an analogous
way. Furthermore, we introduce the notationF = R andR = F. We reserve a character$ 6∈ A,
calledterminator symbol, for marking the end of a sequence.$ is lexicographically larger than all the
characters inA.

The affix array data structure of a sequenceS is composed of six tables, namelysufF andsufR, lcpF

and lcpR, andaflkF andaflkR. They are calledsuffix, longest common prefix, andaffix link arraysof
SF andSR, respectively. TablesufR is also known asreverse prefix array. sufX is an array of integers
in the range0 to n specifying the lexicographic order of then + 1 suffixes of the stringSX$. That is,
SX
sufX [0], S

X
sufX [1], ..., S

X
sufX [n] is the sequence of suffixes ofSX$ in ascending lexicographic order. Each

of the tablessufF andsufR requires4n bytes and can be constructed inO (n) time and space [32]. In
practice non-linear time [33, 34] construction algorithmsare often used as they are faster and require
less space.

5

lcpX is a table in the range0 to n such thatlcpX [0] = 0, and lcpX [i] is the length of the longest
common prefix betweenSX

sufX [i−1] andSX
sufX [i] for 1 ≤ i ≤ n. Each of the tableslcpF and lcpR

requiresn bytes and store entries with value up to255, whereas occasional larger entries are stored in
an exception table using8 bytes per entry [35]. More space efficient representations of the lcp table are
possible (see [36]). The construction oflcpF and lcpR can be accomplished inO (n) time and space
given sufF andsufR [37]. In contrast to [27] where affix arrays were described using a terminology
derived from tree-like data structures, we explain the underlying concepts of this data structure in terms
of intervals in the suffix arraysufX . Two important concepts of affix arrays are suffix-intervalsand
lcp-intervals. An interval[i..j] representing the set of suffixesSX

sufX [i], ..., S
X
sufX [j], 0 ≤ i ≤ j ≤ n, of

widthj− i+1, is asuffix-intervalin sufX with depth (prefix length)ℓ ∈ {0, . . . , n}, or ℓ-suffix-interval,
denotedℓ− [i..j], if and only if the following three conditions hold:

1. lcpX [i] < ℓ;

2. lcpX [j + 1] < ℓ; and

3. lcpX [k] ≥ ℓ for all k ∈ {i+ 1, . . . , j}.

We call a suffix-intervalℓ − [i..j] in sufX lcp-interval in sufX with lcp-valueℓ ∈ {0, . . . , n}, or
ℓ-interval, if and only if i < j andlcpX [k] = ℓ for at least onek ∈ {i+ 1, . . . , j}.

For a suffix-intervalℓ − [i..j] in sufX , we denote the common prefix of lengthℓ of its suffixes
SX
sufX [i], . . . , S

X
sufX [j] by δX(ℓ − [i..j]) = SX [sufX [i]..sufX [i] + ℓ − 1]. In case of an lcp-interval

ℓ− [i..j] in sufX , δX(ℓ− [i..j]) is the longest common prefix of all suffixes in this interval.
In summary, a suffix-intervalℓ− [i..j] in sufX describes simultaneously:

• A location in the index structuresufX by interval bordersi andj and depthℓ. For an example,
see the yellow marked region in Figure3 which corresponds to the suffix-interval4 − [4..6] in
sufF.

• A (lexicographically ordered) sequence of suffixesSX
sufX [i], . . . , S

X
sufX [j]. For an exam-

ple, consider the lexicographically ordered sequenceSF
sufF[4]

= CUGCA, . . . , SF
sufF[6]

=

CUGCUGCUGCA of suffixes in the suffix-interval4− [4..6] in sufF in Figure3.

• A substring ofSX of lengthℓ, namelyδX(ℓ− [i..j]). That is, for the suffix-interval4− [4..6] in
sufF in Figure3, δF(4− [4..6]) = CUGC.

• The occurrences of this substring inSX , namely at positionssufX [i], . . . , sufX [j]. To give an
example, consider Figure3 and observe that substring CUGC occurs at positionssufF[4] = 10,
sufF[5] = 7, andsufF[6] = 4 in SF = AUAGCUGCUGCUGCA.

For unidirectional left-to-right search of some pattern inS it is sufficient to process lcp-intervals
only in sufF. For bidirectional pattern search using affix arrays, described in detail in the next section,
we employ information from tablesufF as well assufR. Therefore, we need to associate information
of one table to the other. This is done by linking intervals via tablesaflkF andaflkR. We observe that
there exists a mapping between lcp-intervals insufF andsufR. This is stated by the following proven
lemma [27].

Lemma 1 For every lcp-intervalq = ℓ − [i..j] in table sufX there is exactly one lcp-intervalq−1 =

ℓ′ − [i′..j′] in table sufX called reverse lcp-interval ofq, such thatℓ′ ≥ ℓ and theℓ − 1-th prefix of
δX(q−1) equals(δX(q))−1. The number of suffixes (prefixes) represented byq and q−1 are the same,
i.e.,j − i = j′ − i′.

6

We note that the equivalenceq = (q−1)−1 is not necessarily true. This is stated by the next lemma.

Lemma 2 If the lcp-intervalq−1 with depthℓ′ in sufX is the reverse of the lcp-intervalq with depthℓ
in sufX andℓ = ℓ′, thenq = (q−1)−1. Otherwise, ifℓ′ > ℓ, thenq 6= (q−1)−1.

The mapping between intervals inSF andSR is encoded in tablesaflkF andaflkR as follows. Tables
aflkF andaflkR store, for each lcp-interval insufF andsufR respectively, a pointer to the reverse interval
in the reverse tablessufF andsufR. The position in the tables where the pointers are stored is determined
by the functionhomeX , defined as

homeX ([i..j]) =

{
i, if lcpX [i] ≥ lcpX [j + 1],
j, otherwise,

(1)

whereℓ− [i..j] is an lcp-interval insufX . Hence, the home position is one of two boundary positions.
Strothmann [27] shows thathomeX ([i..j]) 6= homeX ([i′..j′]) for different lcp-intervalsℓ − [i..j] and
ℓ′ − [i′..j′].

TableaflkX of string SX$ with total lengthn + 1 can now be defined as a table in the range0

to n such thataflkX [homeX (q)] = i′, whereq is an lcp-interval insufX and i′ is the left border of
the reverse intervalq−1 = [i′..j′] in sufX . We refer to the entries in tableaflkX asaffix links. Tables
aflkF andaflkR occupy4n bytes each. They can be computed by traversing the lcp-intervals in sufX
while simultaneously looking for the corresponding reverse lcp-intervals insufX . Locating reverse
lcp-intervals can be accelerated by skp-tables. These tables, introduced in Beckstetteet al. [38] and
hereinafter referred to asskpF andskpR, can be constructed in linear time [39] and allow one to quickly
skip intervals insufX (for details, see [38]). The construction of tablesaflkF andaflkR takesO

(
n2

)

time. Although the use of skp-tables requires additional2 × 4n bytes of memory, they considerably
reduce the construction times of tablesaflkR and aflkR in practice. We note that Strothmann [27]
describes a linear time construction algorithm for tablesaflkF andaflkR, which employs suffix link and
child-tables [35] and an additional table. Altogether these tables require together at least additional7n

bytes of space. Moreover, even without applying the skp-table based acceleration, Strothmann states
that the quadratic time construction algorithm is fast in practice.

An example of the affix array for sequenceS = AUAGCUGCUGCUGCA highlighted with some of
its lcp-intervals connected to the respective reverse interval via theaflkX table is shown in Figure3.

Because affix links in tableaflkX are only defined for lcp-intervals but not suffix-intervals in general,
which we require in bidirectional search, we introduce the concept ofaffix-intervals. Affix-intervals are
similar to affix nodes as defined in [27]. An affix-interval insufX is a triplev = 〈k, q,X 〉, wherek is
an integer designatedcontextof v andq is a suffix-interval insufX .

An affix-interval v = 〈k, q,X 〉 in sufX , with q = ℓ − [i..j], ℓ > 0, −m < k < ℓ, describes a
substringωX(v) of SX of lengthℓ− k, defined as thek-th suffix ofδX(q), i.e.ωX(v) = SX [sufX [i] +

k..sufX [i] + ℓ− 1]. At the same timev identifies all occurrences ofωX(v) in SX , namely the positions
sufX [i] + k, . . . , sufX [j] + k. For v = 〈k, q,X 〉, we therefore also use the notation−→v = ωF (v) if
X = F and−→v = ωR(v)

−1 if X = R. As an example, consider the affix-intervalv = 〈1, 4 − [4..6],F〉
in sufF of the affix array shown in Figure3. In this case,k = 1, q = 4− [4..6], andX = F. v identifies
all occurrences of substring−→v = UGC in SF at positionssufF[4] + 1 = 11, sufF[5] + 1 = 8, and
sufF[6] + 1 = 5. Observe that−→v = UGC is the first suffix ofδF(q) = CUGC due to contextk = 1.

Searching RNA databases for RSSPs with affix arrays
Pattern matching using affix arrays means the sequential processing of characters in the pattern guiding
the traversal of the data structure. This can be performed ineither a traditional left-to-right order

7

Figure 3: Affix array forS = AUAGCUGCUGCUGCA. Some lcp-intervals are marked by rectangles
and the affix links from an lcp-interval to its reverse interval are represented by arcs. The solid arc
points in two directions, from the the lcp-intervalq = 5 − [8..10] in sufF (on the left-hand side) to its
reverse intervalq−1 = 5− [4..6] in sufR (on the right-hand side) and vice versa. That is,q = (q−1)−1

(see Lemma 2). The dotted arc points in only one direction, from the lcp-intervalq = 4− [4..6] in sufF
to its reverse intervalq−1 = 5− [4..6] in sufR. In this case, the reverse ofq−1 is (q−1)−1 = 5− [8..10],
andq 6= (q−1)−1.

resulting in a unidirectional search or in a bidirectional way where character comparison is started
at any position of the pattern extending the already matchedsubstring of the pattern to the left or to
the right. We will see that bidirectional search using alternating series of left and right extensions is
very well suited for fast database search with RNA sequence-structure patterns (RSSPs) containing
both paired and unpaired bases. In the following we will explain the two different traversal strategies
underlying unidirectional and bidirectional search usingaffix arrays.

Unidirectional traversal
Let P = P [0] . . . P [m − 1] ∈ (A ∪ Φ)m be a sequence pattern to be searched inS in a unidirec-
tional left-to-right way using information from tablesufF only. To search forP , we call the procedure
unidir-searchof Figure4 by unidir-search([0..|S|], P, 0). Therefore, in step 0 we start searching for the
characters inϕ(P [0]) in the suffix-intervalq0 = 0− [0..n] in sufF, which represents all suffixes ofS$.
In each stepk, k ≥ 0, we locate thek + 1-suffix-intervalsqk of maximal width, such thatP [0..k − 1]d

matchesδF(qk). For eachd ∈ ϕ(P [k]), this step is performed by a binary search in the suffix-interval
qk−1 = ℓ− [i..j] for qk = (ℓ+ 1)− [i′..j′], i ≤ i′ ≤ j′ ≤ j, j′ − i′ maximal, andS[sufF[i′] + k] = d.

After m steps, if allqk could be located,δF(qm), qm = m − [r..s], matches the patternP and the
occurrencessufF[r], sufF[r + 1], . . . , sufF[s] of δF(qm) are reported as occurrences ofP in S. Note
that in this approach the matched substring ofS is extended only to the right and at each stepk the
occurrences of the already matched prefix are represented bya suffix-interval.

8

Figure 4: Unidirectional search algorithm for searching for a sequence patternP ∈ (A ∪ Φ)∗.
Given the suffix arraysufF of S, the procedure enumerates all occurrences ofP in S when called
by unidir-search([0..|S|], P, 0). In line 5, the suffix-intervalq′ is located by binary search inO (log n).

Bidirectional traversal
For the bidirectional search, we start at some position inP ∈ (A ∪ Φ)m and then compare the pattern
P character by character to the text, where we can freely switch between extending to the left or to the
right. Note that as in the case of unidirectional search, ambiguous nucleotidesx in the pattern can be
handled by enumerating all charactersc in the corresponding character classϕ(x). We can focus on the
situation in the search, where

• a ranger..r′ (0 ≤ r ≤ r′ < m) of the patternP is already compared,

• the occurrences of a substringu ∈ Am of S matchingP [r..r′] are represented by an affix-interval
v = 〈k, ℓ− [i..j],X 〉 in sufX , and

• we want to extend−→v either to the left or to the right by a sequence characterc ∈ A (that matches
the respective pattern characterP [r − 1] or P [r′ + 1]). This will result in a new, extended affix-
intervalvx.

Switch of the search direction. Like its suffix-interval, an affix-interval directly supports extension of
the represented substring in only one direction, namely searching to the left forX = F and to the right
for X = R. However, there are “corresponding” affix-intervals representing the same substring ofS
but allowing extension to the opposite direction.

If the new search direction differs from the supported search direction ofv, thisswitch of the search
direction requires determining the corresponding affix-intervalv′ in sufX unlessi = j or v has non-
empty contextk 6= 0. There are these two exceptions, since first ifi = j, independently of the value of
k, ωX(v) is already a unique substring ofSX . Second, for a non-empty contextk 6= 0, all occurrences
of substringωX(v) in SX are followed (ifk > 0) or preceded (ifk < 0) by the same substringu ∈ Ak.

Let k = 0 and i < j. The affix-intervalv′ = 〈k′, ℓ′ − [i′..j′],X 〉 in sufX is called thereverse
affix-interval of v = 〈k, ℓ − [i..j],X 〉 if and only if j′ − i′ = j − i, ℓ′ ≥ ℓ, andωX(v)−1 =

ωX(v′). The interval boundariesi′ and j′ of v′ are determined via a lookup in tableaflkX . We set
i′ = aflkX [homeX ([i..j])] andj′ = i′+(j−i). Observe thatℓ is not necessarily the length of the longest
common prefix of all suffixes in[i..j]. For this reason we defineℓlcp = min{lcpX [k] | i < k ≤ j} ≥ ℓ

and compute the context ofv′ ask′ = ℓlcp− ℓ. Further, we setℓ′ = ℓlcp. Hence the reverse affix-interval
v′ = 〈k′, ℓ′ − [i′..j′],X 〉 is well defined andv′ is the required corresponding interval ofv.

Right/left c-extension of an affix-interval In our situation,−→v = u represents the occurrences of a sub-
stringu of S matchingP [r..r′].

The right (left) extension ofv by a characterc ∈ A, also calledc-extension ofv, is an operation
that computes the affix-intervalvx representing all occurrences of a substringuc (cu). It fails, if there

9

is no such substring. We elaborate the cases for right extension. The cases for left extension are
symmetric and therefore omitted. For rightc-extension ofv = 〈k, ℓ − [i..j],X 〉, we determine the
interval vx = 〈kx, ℓx − [ix..jx],Xx〉 with −→vx = −→v c. The first two cases do not require switching the
search direction.

• CaseX = F and i = j. u is a unique substring−→v of S. If S[sufF[i] + ℓ] = c, thenvx =

〈k, (ℓ + 1)− [i..j],F〉.

• CaseX = F andi < j. We determine the minimalix ≥ i and maximaljx ≤ j in sufF such that
S[sufF[ix] + ℓ] = c andS[sufF[jx] + ℓ] = c by binary search in the suffix-intervalℓ− [i..j]. If ix
andjx exist, we setvx = 〈k, (ℓ+ 1)− [ix..jx],F〉.

The following cases require switching the search direction.

• CaseX = R, i = j. We evaluateSR[sufR[i] + k − 1]. If SR[sufR[i] + k − 1] = c, set
vx = 〈k − 1, ℓ− [i..j],R〉.

• CaseX = R, i < j, andk = 0. We first determine the reverse affix-intervalv′ = 〈k′, ℓ′ −
[i′..j′],F〉 of v via a switch of the search direction as described above. Thenwe compute the
minimal ix ≥ i′ and maximaljx ≤ j′ via binary search, such thatS[sufF[ix] + ℓ′] = c and
S[sufF[jx] + ℓ′] = c. If ix andjx exist, we setvx = 〈k′, (ℓ′ + 1)− [ix..jx],F〉.

• CaseX = R, i < j, andk > 0. We evaluate the(k − 1)–th character ofδR(ℓ− [i..j]). That is,
if δR(ℓ− [i..j])[k − 1] = c, then we consume the contextk by settingvx = 〈k− 1, ℓ− [i..j],R〉.

The operation fails ifvx cannot be determined.

RSSP matching using affix arrays
Searching a sequenceS with an RNA sequence-structure pattern (RSSP)Q = (P,R) means to find
the occurrences ofP in S under the complementarity constraints imposed by the structure stringR (cf.
our definition of RSSP-occurrence). We introduce a search algorithm that checks for complementarity
constraints as early as possible in bidirectional search tomaximally reduce the search time due to this
restriction.

For further considerations, we will assume a special ‘canonical’ form for RSSPs, which we define in
the following. Independently of a sequenceS, each RSSP describes a set of pattern instances, i.e. the set
of potential subsequences matching the pattern. Often, there are several patterns that describe the same
set of instances. For example, the pattern(UNUACACGNR,(((....)))) describes the same set of
instances as(UNUACACGNR,((......))) since the additional base pair(2, 7) in (((....)))
does not make the pattern more specific. We will define a pattern to be structure minimal if there is
no, in this sense, equivalent pattern containing a true subset of the base pairs. An RSSPQ = (P,R) is
structure minimalif and only if for all base pairs(i, j) ∈ R it holds that

ϕ(P [i]) ∩ CS(P [j]) × ϕ(P [j]) ∩ CS(P [i])

6= ϕ(d) × ϕ(e), for all d, e ∈ (A ∪ Φ).

Furthermore, a general pattern is calledinconsistentif it does not have any instance. Formally, a pattern
is consistentif and only if for each base pair(i, j) it holds thatϕ(P [i]) ∩ CS(P [j]) 6= ∅ andϕ(P [j]) ∩
CS(P [i]) 6= ∅. An example of an inconsistent RSSP isQ = (P,R) with P = UAUACACGAN and

10

R = ((......)). Q is not consistent because there is a base pair(1, 8) ∈ R but the basesP [1] = A
andP [8] = A are not complementary. An example of a structure minimal and consistent RSSP is
(UNUACACGNR,((......))). Note that a pattern can be transformed into an equivalent structure
minimal pattern and checked for consistency inO (m) time. For complexity considerations, we can
therefore safely assume that patterns are consistent and structure minimal.

In this case, one can restrict the search space by comparing the two positions of each base pair
immediately after each other. Due to this, the enumeration of characters matching the pattern symbols
at each base pair can be restricted to the smaller number of complementary ones. In the search for a
sequence-structure pattern this can reduce the number of enumerated combinations of matching charac-
ters exponentially. Thus, for structure minimal patterns(P,R), the non-branching structureR suggests
a search strategy, i.e. an order of left and right extensions, which requires switching the search direction
at every base pair but makes optimal use of the complementarity constraints due to the base pairs.

Following this idea, Mauri and Pavesi [28] presented an algorithm for matching RNA stem-loop
structures using affix trees. This algorithm explores the search space in a breadth-first manner, so
memory use grows exponentially with increasing depth. Instead of an affix tree, we employ the more
space efficient affix array data structure and use a depth-first search algorithm which only requires
space for the search proportional to the length of the substring searched. The depth-first search for
all occurrences of a stem-loop RSSPQ = (P,R) is performed by calling procedurebidir-searchof
Algorithm 2 (see Figure5). Note that we explicitly support bulges and internal loopsin the stem-
loop pattern, i.e. we do not require perfect stacking of the base pairs but allow general non-branching
structures.

In our algorithm, we switch the search direction only once per base pair when matching the stem
region of the pattern, thus halving the number of lookups in the affix link tables compared to a naive
algorithm without this optimization. This was also observed by Strothmann [27] whose algorithm did
not support RSSPs containing bulges and internal loops.

To matchQ we call procedurebidir-searchinitially as bidir-search(〈0, 0 − [0..n],F〉, r0 − 1, r0),
where〈0, 0 − [0..n],F〉 is an affix-interval andr0 is any position in the loop region of the RSSP or
any position of a completely unpaired pattern. Then, the procedure traverses the affix-intervals by
performing right and left extensions, while at the same timechecking base complementarity of paired
positions. This verification takes constant time by using a binary table of size|A| × |A| containing all
valid base pairings. Matching positions are reported whenever the boundaries of the RSSP are reached.

In principle, we are free to choose any loop positionr0 (or any position ifR is empty) for starting
our bidirectional search algorithm. However, in order to reduce the combinatorial explosion of the
search space due to ambiguous IUPAC characters, it is preferable to match non-ambiguous pattern
characters first. To keep the selection simple, we setr0 to the position of the first characterc in the
possible range such that|ϕ(c)| is minimal. That is, we start the search with the most specific(least
ambiguous) character.

A detailed example of bidirectional RSSP search along with the underlying affix array traversal is
provided in Additional file 1, Section S1. We remark that procedurebidir-searchcan be extended to
support variable-length RSSPs. Such an extended version ofbidir-searchis provided in Additional file
1, Section S3.

Analysis
We analyze the complexity for searching in a sequenceS of lengthn for an RSSPQ of lengthm < n,
where the index structures forS are already computed.

The bidirectional search algorithm requires tablessufF andsufR, lcpF andlcpR, andaflkF andaflkR.

11

Figure 5: Bidirectional recursive RSSP matching using an affix array. Procedurebidir-searchfinds all
matches of a given RSSP(P,R), beginning the pattern extensions from any position in the loop region
or any position in a completely unpaired pattern. In each call, parameterv denotes the affix-interval
representing matches of the pattern substringP [r+1..r′− 1], 0 ≤ r ≤ r′ < m satisfying the structural
constraints imposed byR[r + 1..r′ − 1]. The procedure takes care to change the search direction only
as often as necessary, in particular it changes the direction only once per base pair.

12

Under our assumption thatn < 232, each of the four tablessufX andaflkX consumes4n bytes, and the
two tableslcpX are each stored inn bytes (X ∈ {F,R}). This amounts to a space consumption of18n

bytes for the index structures. The algorithm performs a depth first search, where the depth is limited
by m, and therefore requiresO(m) space. The total space complexity is thereforeO(n).

We assume thatQ = (P,R) is structure minimal. Such a patternQ without ambiguity, i.e.P ∈
Am, does not contain base pairs and the search forQ does not profit from bidirectional search. Although
such a pattern is processed by Algorithm 2, it can be handled by Algorithm 1 using only a suffix array
and saving some overhead.

Algorithm 1 accomplishes the search for a non-ambiguous patternQ on the suffix arraysufF using
binary search for locating intervals inO (m log n+ z) time, wherez is the number of occurrences of
P in S. We remark that this time bound can be lowered at the price of higher memory consumption to
O (m+ log n+ z) [25] or evenO (m+ z) [35,40] time by using additional precomputed information.

Notably, if there is ambiguity but no base pair inQ, bidirectional search can still be beneficial in
practice. This is the case when searching for a pattern in which a string of unambiguous characters is
surrounded on both sides by ambiguous IUPAC characters, because the comparison can start at the most
specific part of the pattern. The time complexities for searching ambiguous patterns with Algorithm 1
can be estimated asO (n log n) in the worst case of searching for the sequence patternP consisting only
of Ns. Furthermore, note that our Algorithm 2 behaves exactly like Algorithm 1 on patterns without
base pairs if we invoke the search procedure withr = −1 andr′ = 0.

For a patternQ = (P,R) of lengthm, let p ≥ 0 be the number of base pairs inR. In the worst
caseP consists only of Ns. Moreover, all possible strings of length m satisfying the complementarity
constraints specified inR occur in the textS. Recall that, since we allow (G, U) pairs, there are|C|=6
possible complementary base pairs. Thus, there are|A|m−2p|C|p such strings and Algorithm 2 spans
a virtual tree withEm,p = |A|m−2p|C|p paths from the root to a leaf. At each leaf, it reports the
occurrences of the respective matched substring.

On each path from the root to the leaf the algorithm performsm − 2p c-extensions and at most
one switch of the search direction for matching them − 2p unpaired characters. Then, it performs2p

c-extensions andp switches of the direction for matching the base paired positions. Therefore, we count
the total number of c-extensions as

m−2p∑

i=1

|A|i + |A|m−2p
2p∑

j=1

2|C|j

=
|A|m−2p+1 − |A|

|A| − 1
+ 2|A|m−2p |C|p+1 − |C|

|C| − 1
,

which is inO (Em,p).
The cost of eachc-extension consists of the cost of locating the suffix-interval of the new affix-

interval, which is performed by binary search inO (log n), and the cost for potentially computing the
reverse affix-interval when switching the search direction.

Instead of performing the binary search over the suffix tables, one can use the child-tables intro-
duced by Abouelhodaet al. in [35] to determine the child intervals and switch the search direction in
constant time. The child-tables, however, add at least2n bytes to the index and require additional in-
volved index construction. As the child-tables improve theworst case behavior but, on the other hand,
require more space, we analyze the complexity with and without these tables (i.e. with tablessufX ,
lcpX , andaflkX only).

First, we analyze the time required for performing a single switch of the search direction. Therefore
we assume that the current affix-interval isv = 〈k, ℓ− [i..j],X 〉. Consider the following two cases.

13

(1) Casei = j or k 6= 0. If i = j, −→v represents a unique substring ofS, or, if k 6= 0, all occurrences
of substring−→v in S are followed (ifk > 0) or preceded (ifk < 0) by the same substring of length
|k| (known as context). Switching the search direction does notrequire locating the reverse interval
of v, because the algorithm can perform thec-extension in the new search direction by consuming
context. Therefore, this case requires constant time.

(2) Casei < j andk = 0. The algorithm needs to locate the reverse affix-intervalv′ = 〈k′, ℓ′ −
[i′..j′],X 〉 of v. Interval boundariesi′ = aflkX [homeX ([i..j])] and j′ = i′ + (j − i) of v′ are
computed in constant time.

By definition, computing the reverse affix-interval ofv requires knowingℓlcp. Then, ℓ′ = ℓlcp

andk′ = ℓ′ − ℓ. Without child-tables, we determineℓlcp by computing the length of the longest
common prefix betweenSX

sufX [i] andSX
sufX [j]. It suffices to performℓlcp − ℓ+ 1 = k′ + 1 character

comparisons only, since both suffixesSX
sufX [i] andSX

sufX [j] share a common prefix of at least length
ℓ. With the help of child-tables,ℓlcp is determined in constant time [35].

Due to the following lemma, the computation of all reverse affix-intervals on one path of our virtual
tree is inO (n) if child-tables are not used.

Lemma 3 Using tablessufX , lcpX , andaflkX , the computation of all contexts on a path in the recur-
sion of Algorithm 2 is inO (n).

Proof. Let v1, v2, vt . . . , vC be the sequence of reverse intervals processed when matching Q, and
let kt denote the context ofvt for 1 ≤ t ≤ C.

To show
∑C

t=1 kt ≤ n, let v = 〈k, ℓ − [i..j],X 〉, with k = 0, i < j, andX = F (X = R), be the
current affix-interval. We assume without loss of generality that we perform a left (right)c-extension
of v and thus locate the reverse intervalvt = 〈kt, ℓt − [it..jt],X 〉. Then the following statements
hold: kt ≥ 0, ℓt = ℓ + kt, and jt − it = j − i (see Lemma 1). Observe thatkt = 0 implies
ωX(vt) = δX(ℓt − [it..jt]) andkt > 0 implies that substringδX(ℓt − [it..jt]) has a non-empty prefix

of lengthkt, namelySX [sufX [it]..sufX [it] + kt − 1]. Note thatvt is only located ifk = 0, otherwise
the contextk has to be consumed. Hence there is no reverse intervalvs = 〈ks, ℓs − [is..js],X 〉, with
1 ≤ s ≤ C, s 6= t, andks > 0, such that the (ks − 1)-th prefix of δX(ℓs − [is..js]) overlaps with

SX [sufX [it]..sufX [it] + kt − 1] for the same positions inSX . From this,
∑C

t=1 kt ≤ n follows. Since
a single contextkt can be determined by performing exactlykt +1 character comparisons, this implies
O (n) time to compute all these contexts. With this, we conclude that all switches of the search direction
performed while finding one substringw in S that matchesQ take up toO (n) time. �

Therefore, when searching forQ without child-tables, the total time for switching search direc-
tions is coarsely estimated by multiplying the complexity for one path with the number of paths as
O (Em,pn). The use of child-tables removes the linear factor.

For the worst case that all strings matching the pattern actually occur as substrings inS, the se-
quenceS must have a certain minimal length. In the case ofp = 0, the possible matches are the words
in Am and a sequence that contains all these matches is called|A|-ary de Bruijn sequence of order
m [41] without wrap-around, i.e. ade Bruijnsequence with its firstm − 1 characters concatenated to
its end. Such a sequence was shown to have a length ofn0 = |A|m +m − 1. As a consequence, the
worst case requiresn ≥ n0.

We summarize the worst-case time complexities for Algorithm 2 as follows. 1.) From determining
new suffix-intervals, we get a contribution ofO (Em,p log n). Forn ≥ n0, this is inO (n log n). Child-
tables reduce this time further toO (n). 2.) Switching directions without child-tables is inO (Em,pn)

14

worst-case time, which is reduced toO (Em,p) when using child-tables. Forn ≥ n0, Em,p is in O (n).
Finally, Algorithm 2 runs inO (Em,p(n+ log n)), which is reduced toO (Em,p) using child-tables (i.e.
O (n) for n ≥ n0).

One should note that the worst-case time complexity of bidirectional search for sequence-structure
pattern is only in the order of online search algorithms. In our implementation, we use a minimal set of
tables in order to keep the implementation simple and save space.

However, it can be clearly seen from this analysis that the worst case is based on extremely pes-
simistic assumptions that are almost contrary to the expected application. 1.) It is assumed that a pattern
consists of wildcards N only. In the expected application, however, patterns will often specify bases
in the loop region, which is of particular benefit for our algorithm. 2.) Sequences, like thede Bruijn
sequence, that contain all possible matches of an average sized pattern will be rare in practice. E.g. it
could be assumed that a sequence that contains all possible matches of a patternQ with p base pairs
(andP =N. . .N) is at least as long as the|A|-ary de Bruijn sequence of orderm, since one expects
no significant bias for the specific complementarity due toR over all substrings of lengthm. However,
Em,p = |A|m−p|C|p = 4m−2p6p = 4m/(16/6)p is even for smallpmuch smaller thann0 = 4m+m−1.
For example, four base pairs (i.e.,p = 4) reduce the time bound by a factor of(16/6)4 ≈ 50 and eight
base pairs reduce time by a factor of about 2500.

RNA secondary structure descriptors based on multiple ordered RSSPs
Obviously RNAs with complex, branching structures cannot be described completely by a single RSSP.
Describing an RNA by only a single unbranched fragment is often inappropriate, since searching a large
sequence database or a complete genome for structurally conserved RNAs (RNA homology search)
with a single RSSP will likely generate many spurious matches. However, larger RNAs can often
adequately be described by a sequence of RSSPs. This holds for 1,247 out of 1,446 RNA families in
Rfam 10.0 which have a structure containing several stem-loops but no multi-loop. Only199 out of
1,446 (13.76%) RNA families inRfam 10.0 containing multi-loops cannot be modeled completely this
way. Still, the consensus structures of these199 families contain on average4.06 stem-loops (standard
deviation2.08, median3) which can be modeled as RSSPs. In consequence, we can use a sequence
of RSSPs that consist of at least one pattern per stem-loop (and potentially also unstructured patterns)
for the description of those families. This allows to accurately identify members even of those families
containing multi-loops.

We address search for complex structured RNA families with the new concept of RNA secondary
structure descriptors (SSD for short). SSDs use the information of multiple ordered RSSPs derived
from the decomposition of an RNA’s secondary structure or from the consensus secondary structure
of a multiple sequence-structure alignment of related RNAsinto stem-loop-like structural elements.
Such consensus secondary structures for multiple RNAs can be computed with a variety of programs
following one of the three strategies introduced in [42]. Namely: (A) alignment of the sequences
followed by joint folding [43–46], (B) Sankoff style [8] simultaneous alignment and folding [10,12,47,
48], and (C) individual folding of the sequences followed byalignment of their structures [7, 49, 50].
In the following we make the concept of SSDs more precise. LetA = A1, A2, . . . , AL be a sequence
of non-overlapping alignment blocks. These alignment blocks are excised from a multiple sequence(-
structure) alignment and represent regions of the moleculethat fold into stem-loop-like structures or
remain unfolded. The indexing from1 to L reflects their order of occurrence in the alignment. Hence
A represents a sequential decomposition of the molecule’s secondary structure (in5′ → 3′ direction)
into regions, each of which can be described by an RSSP. See Figure6 (A) for an example.

An SSDR of lengthL is a sequence ofL RSSPsR = Q1,Q2, . . . ,QL whereQi denotes the RSSP

15

Figure 6: (A) Non-overlapping alignment blocks of stem-loop regions excised from a multiple
sequence-structure alignment and derived sequence-structure patterns. Sinceli ≤ ri < lj ≤ rj
and sequence regionsS[li . . . ri] fold into stem-loop structures for1 ≤ i ≤ j ≤ 7, A =
A1, A2, A3, A4, A5, A6, A7 is an ordered sequence of non-overlapping alignment blockssuitable to
construct an RNA secondary structure descriptorR = Q1,Q2,Q3,Q4,Q5,Q6,Q7. The sequence-
structure patternsQi, i ∈ [1, 7] of R given on top of their underlying alignment blocks describe the
seven marked stem-loops shown in the RNA secondary structure (B) of the Citrus tristeza virus replica-
tion signal (Rfam: RF00193). (C) Matches of RSSPsQi, i ∈ [1, 7], on sequenceS, sorted in ascending
order of their start position. (D) Graph-based representation of the matches ofQi, i ∈ [1, 7]. An optimal
chain of collinear non-overlapping matches is determined by computing an optimal path in the directed
acyclic graph. Observe that not all edges in the graph are shown in this example and that the optimal
chain (indicated here by their red marked members) is not necessarily the longest possible chain.

16

describingAi, i ∈ [1,L]. The order≪ of the RSSPs inR is imposed by the order of the corresponding
alignment blocks. Byli andri we denote the start and end positions ofAi in the multiple alignment,
respectively. In practice,R can be obtained from multiple sequence-structure alignments of related
RNA sequences (i.e., of an RNA family) as they are available in databases likeRfam [3,4]. A match to
R is a non-overlapping sequence of matches for some or all of the RSSPs inR in their specified order.
We will now make this more precise.

Consider an RNA SSDR with total order≪. LetMS be the set of all matches for all RSSP fromR
in sequenceS of lengthn. A match is represented by a pair(Q, p) such thatQ matches at positionp in
S. With eachQ in R we associate a positive weightα(Q) which can be defined by the user. This weight
allows to quantify the expressiveness ofQ and/or its significance. For example,α(Q) can be the length
of Q or it might be derived from the number of non-ambiguous nucleotides inQ or the probability of
obtaining a match forQ just by chance assuming a certain (mono-)nucleotide background distribution.

We say that matches(Q, p) and(Q′, p′) arecollinear, written as(Q, p) ≪ (Q′, p′) if Q ≪ Q′ and
p+ |Q| − 1 < p′. A chainC for an SSDR is a sequence of matches

C = 〈(Qj1 , p1), (Qj2 , p2), . . . , (Qjk , pk)〉,

all from MS, such that(Qji , pi) ≪ (Qji+1 , pi+1) for all i, 1 ≤ i ≤ k − 1.
There are two modes to score chains, depending on the nature of the search problem. If the multiple

sequence-structure alignment our SSD is derived from and the searched sequences have comparable
length, we want the chain to cover as much as possible of the sequence and we define theglobal chain
scorefor chainC as follows:

gcsc (C) =
k∑

i=1

α(Qji). (2)

Then, the global chaining problem is to find a chainC with maximum global chain score.
If we are searching in a whole genome or chromosome for a relatively short structural RNA, we are

interested in local chains covering only parts of the genomeor chromosome. Then we have to penalize
gaps using a penalty functiong and thus thelocal chain scoreis defined by

lcsc (C) =
k−1∑

i=1

(α(Qji)−

g
(
(Qji , pi), (Qji+1 , pi+1)

)
) + α(Qjk) (3)

where

g
(
(Qji , pi), (Qji+1 , pi+1)

)

=
∣∣(pi+1 − pi)− (lji+1 − rji)

∣∣ . (4)

To solve the local chaining problem we use our own implementation of a fast local chaining algorithm
described in [51] with modified gap costs. While the algorithm of [51] penalizes gaps by the sum of
their lengths, our solution is based on the difference between their observed lengths (in the chain of
matches) and their expected lengths (as given by the multiple alignment of the family), confer Equation
4. This algorithm runs inO(q log q) time whereq is the size ofMS.

To solve the global chaining problem we have developed a new efficient chaining algorithm de-
scribed next.

17

An improved method for global RSSP match chaining
So far our description was based on a single sequence. However, the results described below are based
on a large set of sequencesS1, . . . , Sk as it occurs when searching a large sequence database. I.e. in
case of databases likeRfam k can be in the range of millions. To handle these, we concatenate the
single sequences with separator symbols and construct the affix array for the concatenation. For a given
SSDR = Q1,Q2, . . . ,QL, all RSSPsQi, 1 ≤ i ≤ L, are matched one after the other using fast
bidirectional search on the affix array. This results in match setsMS(Qi) for RSSPQi. L is typically
in the range of tens while the number of RSSP matches for a particular sequenceSj is in the order of
hundreds to thousands ifSj is an mRNA or complete genome sequence. For each matchf the following
information is recorded:

• The ordinal numberi of the RSSPQi involved inf . This is denoted byf.rssp.

• The length of the RSSP involved inf . This is denoted byf.length.

• The numberj of the sequenceSj f occurs in. This is denoted byf.seqnum.

• The starting position off in Sj . This is denoted byf.pos .

• The weightα(Qf.rssp) of f . The weight off is denoted byf.weight .

In an initial sorting step the unionMS of all match setsMS(Qi), 1 ≤ i ≤ L, is sorted in
ascending order off.seqnum. Matches with identical sequence numbers are sorted in ascending order
of the ordinal number of the RSSP, i.e., byf.rssp. Suppose thatb∗ is the size ofMS. As there are
at mostb∗ sequences with at least one RSSP match, the sorting according to the sequence numbers
can be done inO (k∗ + b∗) time andO (k∗) space using the counting sort algorithm [52]. Here,k∗ is
the number of sequences with at least one RSSP match. Ask∗ ≤ b∗, the sorting requiresO (b∗) time
and space. We obtain disjoint subsetsMS(Sj), 1 ≤ j ≤ k, whereMS(Sj) is the set of all matches
in MS matching a substring ofSj. As MS is ordered by the ordinal number of the RSSP and the
counting sort algorithm is stable, the setsMS(Sj) are also sorted by the ordinal number of the RSSPs.
Let MS(Sj,Qi) denote the matchesf ∈ MS(Sj) such thatf.rssp = i. In a second sorting step,
eachMS(Sj ,Qi) is sorted according to the starting position of the matches.As this is a typical integer
sorting problem, it requiresO (bj,i log bj,i) time, wherebj,i is the size ofMS(Sj ,Qi). Altogether, the

two initial sorting steps can be performed inO
(
b∗ +

∑k
j=1

∑L
i=1 bj,i log bj,i

)
time.

For allS1, S2, . . . , Sk one now solves independent chaining problems for setsMS(Sj), 1 ≤ j ≤ k,
of matches sorted according to the ordinal number of the RSSPand the starting position of the matches
in Sj. Let j be fixed, but arbitrary. For each matchf ∈ MS(Sj), the weightf.weight is positive.
Hence, an optimal chain ends with a matchf such that there is no matchf ′ satisfyingf ≪ f ′. Similarly,
an optimal chain begins with a matchf ′ such that there is no matchf satisfyingf ≪ f ′.

The chaining problem is solved by a dynamic programming algorithm which tabulates for all
matchesf ′ ∈ MS(Sj) the maximum scoref ′.score of all chains ending withf ′. In addition, it com-
putes the predecessorf ′.prec of f ′ in a chain with maximum score ending withf ′. To obtainf ′.score ,
one has to maximize over all matchesf such thatf.rssp < f ′.rssp andf.pos+f.length−1 < f ′.pos .
This is a two dimensional search problem. As the matches inMS(Sj) are already sorted according to
the first dimension (i.e., by the ordinal number of the RSSP),one can reduce it to a one dimensional
sorting problem. This has already been observed in [51], andled to the development of an algorithm
solving the chaining problem inO (b log b), whereb is the number of matches inMS(Sj). However,
the algorithm of [51] was developed for chaining pairwise sequence matches. The RSSP chaining prob-
lem is a special instance of this problem: the first “sequence” consists of the positions1, . . . , L, and

18

a match for RSSPQi is a match of length one to positioni. Moreover, matches at positioni in the
first sequence can be treated as being of equal length becausethey are matches to the same RSSPQi.
In addition to this, our initial sorting step delivers, for all i, 1 ≤ i ≤ L, the matches inMS(Sj ,Qi)

in sorted order according to the starting position inSj. All these properties allow us to simplify and
improve the algorithm of [51] in the following aspects:

• While the algorithm of [51] requires a dictionary data structure with insert, delete, predecessor,
and successor operations running in logarithmic time (e.g., an AVL-tree or a red-black tree [52]),
our approach only needs a linear list, which is much easier toimplement and requires less space.

• While the algorithm of [51] requires an initial sorting stepusingO (b∗ log b∗) time, our method

only needsO
(
b∗ +

∑k
j=1

∑L
i=1 bj,i log bj,i

)
time for this step. Note that thebj,i satisfy

∑k
j=1

∑L
i=1 bj,i = b∗.

• While the algorithm of [51] solves the chaining problem forMS(Sj) in O (b log b) time, our
approach runs inO (b · L) time. If L is considered to be a constant, the running time becomes
linear inb, whereb = |MS(Sj)|.

To explain our algorithm, leti, 1 ≤ i ≤ L be arbitrary but fixed and assume that all match sets
MS(Sj ,Qi′), i′ < i have been processed. In a first loop over the sorted matches inMS(Sj ,Qi) one
determines the score of the matches. In a second loop, one inserts them into a linear list if necessary.
The linear list contains a subset of the previously processed and scored matches. This split of the
computation into two loops is different from the algorithm of [51] where the scoring and insertions are
interweaved in one loop, requiring an extra array of length2b containing references to the matches. The
separation into two loops allows us to get rid of this extra array.

Now consider the first loop over all elements inMS(Sj ,Qi) in sorted order of the match position
in Sj. Let f ′ be the current element. At this point, all matchesf such thatf.rssp < f ′.rssp have been
processed already. In particular, the scoref.score and the previous match (if any) in an optimal chain
ending withf has been determined. Among the processed matches we only have to consider those
matchesf satisfyingf.pos + f.length − 1 < f ′.pos . If there is such a match, one takes the one with
maximal score, sayf . Then, the optimal chain ending withf ′ contains the previous matchf , and the
score isf ′.score = f ′.weight + f.score . If there is no such match, then the optimal chain ending with
f ′ only consists off ′ andf ′.score = f ′.weight .

Now consider the second loop over all elements inMS(Sj,Qi) for which the scores and predeces-
sor matches (if any) are already determined. Letf ′ be the current element to be inserted. As explained
in the previous case, one has to make sure that, among the processed matches, one can efficiently de-
termine the matchf with the maximum score such thatf.pos + f.length − 1 is smaller than some
value depending onf ′. The processed matches are stored in a linear list which is sorted in ascending
order of the position of the matches inSj. Let ≺pos denote this order, that isf ≺pos f ′′ if and only if
f.pos + f.length < f ′′.pos + f ′′.length for any matchesf andf ′′. If for two processed matchesf and
f ′′ one hasf.pos < f ′′.pos andf.score > f ′′.score , then an optimal chain does not includef ′′. Each
chain that usesf ′′ can also usef and increase the chain score. As a consequence, one has to take care
thatf ′′ is not inserted into the linear list or it is deleted if it was inserted earlier. In this way,f ≺pos f

′′

always impliesf.score ≤ f ′′.score for two matchesf andf ′′ in the linear list. As the elements to be
scored in the first loop and to be inserted in the second loop are ordered in the same way as the elements
in the linear list, one can perform the scoring and the insertion loop (which also may involve deletions)
by merging two lists of lengthl1 and l2 in O (l1 + l2) time wherel1 is the number of matches to be
scored and inserted andl2 is the length of the linear list involved. Letb = |MS(Sj)|. As l1 + l2 ≤ b,

19

one obtains a running time ofO (b) for each setMS(Sj,Qi). As there areL such sets, the running
time isO (b · L).

Results
Implementation and computational results
We implemented (1) the algorithms necessary for affix array construction, (2) the fast bidirectional
search of RSSPs using affix arrays as sketched in Algorithm 2 (hereinafter calledBIDsearch), (3) an on-
line variant operating on the plain sequence (hereinafter calledONLsearch) for validation ofBIDsearch
and reference benchmarking, and (4) the efficient global andlocal chaining algorithms. Algorithm
ONLsearchshifts a window of lengthm = |RSSP | along the sequence of lengthn to be searched and
compares the substring inside the window with the RSSP from left to right until a mismatch occurs.
Hence, it runs inO (nm) time in the worst andO (n) time in the best case. AlgorithmsBIDsearchand
ONLsearchwere implemented in the programafsearch. Theafconstructprogram makes use of routines
from thelibdivsufsort2library (see http://code.google.com/p/libdivsufsort/)for computing thesufF and
sufR tables inO (n log n) time. For the construction of thelcpF and lcpR tables we employ our own
implementation of the linear time algorithm of [37]. TablesaflkF andaflkR are constructed inO

(
n2

)

worst-case time with fast practical construction time due to the use of the skip tablesskpF andskpR [38].
The programs were compiled with the GNU C compiler (version 4.3.2, optimization option -O3) and
all measurements were performed on a Quad Core Xeon E5410 CPUrunning at2.33 GHz, with64 GB
main memory (using only one CPU core). To minimize the influence of disk subsystem performance
the reported running times are user times averaged over10 runs. Allowed base pairs were canonical
Watson-Crick (A, U), (U, A), (C, G), (G, C), and wobble (G, U),(U, G), unless stated otherwise.

Affix array construction times
In a first experiment we constructed the affix array for genomes of selected model organisms of different
sizes and stored it on disk. We measured the total running times needed byafconstructto construct each
table comprising the affix array. See Figure7 for the results of this experiment. The total size for each
table is given in Additional file 1, Table S2. Construction times were in the range of25 minutes for
theC.elegansgenome containing∼ 100 megabases to15.7 hours for the∼ 2 gigabase genome of the
megabatP.vampyrus.

We also measured the running time ofafconstructto construct the affix array for a set of3,192,599
RNA sequences with a total length of∼ 622 MB compiled from the full alignments of allRfam release
10.0 families. The construction and storage on disk required 126 minutes. In the following we refer to
this dataset asRFAM10 for short.

Influence of loop length on search performance
In a second experiment we investigated the influence of the loop length and the number of non-
ambiguous characters in the loop of an RSSP on the running time of BIDsearchandONLsearch. For
this experiment we constructed artificial RSSPs with a fixed stem length of7 and a loop lengthl varying
from 3 to 20. For each loop length, we also varied the number of consecutive non-ambiguous charac-
ters q from 0 to 4. For q = 0 this means that the RSSP contains structural constraints only. That
is, for q = 0 and l = 5 the used RSSP matches all substrings that are able to fold into a stem-loop
structure with loop length5 and stem length7. Such a pattern is written in dot-bracket notation as
(((((((.....))))))). Allowed base pairs were (A, U), (U, A), (C, G), and (G, C). We measured
the time needed byBIDsearchandONLsearchto search for these patterns in theRFAM10 dataset.

20

Figure 7: Experiment 1: Running times for affix array construction for genomes of different model
organisms. Genome sizes are given for each organism in megabases in brackets. We measured the
running time in seconds for all tables the affix array consists of (y-axis,log10 scale). Total construction
times were in the range of∼ 25 minutes forC.elegansup to15.7 hours forP.vampyrus.

21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Loop length l

R
u

n
n

in
g

 t
im

e
[m

s]

0
50

00
0

10
00

00
15

00
00

Dependency of running time on loop length and #speci�ed characters (q) in loop region

BIDsearch(q=0)

ONLsearch(q=0)

BIDsearch(q=1)

ONLsearch(q=1)

BIDsearch(q=2)

ONLsearch(q=2)

BIDsearch(q=3)

ONLsearch(q=3)

BIDsearch(q=4)

ONLsearch(q=4)

Figure 8: Experiment 2: Influence of loop length and number ofnon-ambiguous characters in loop
region on total running time ofBIDsearchandONLsearch. We measured the running time in millisec-
onds to search with artificial RSSPs with loops of varying length l ∈ {3, . . . , 20} on∼ 622MB of RNA
sequence data. For each loop lengthl we also varied the numberq ∈ {0, . . . , 4} of non-ambiguous nu-
cleotides in the loop. The used RSSPs had a fixed stem length of7. For more details on this experiment
see corresponding text.

Results are given in Figure8. In this experimentBIDsearchperformed very well and was faster than
ONLsearchfor all parameter combinations. We also investigated the influence of different stem length
(data not shown here) and found that the impact on the total running time is negligible. We observe that
the advantage ofBIDsearchover ONLsearchdecreases with increasing loop lengthl for fixed q. We
explain this behavior with the increasing number of affix-intervals that have to be processed for finding
all different substrings of the sequences that match the RSSP. However, even for an RSSP with loop
lengthl = 20 containing only structural constraints (q = 0), BIDsearchis still faster thanONLsearch.
We further notice that the number of non-ambiguous characters in the loop region has a strong influ-
ence on the running time ofBIDsearch. That is, by specifying only a few conserved nucleotides in the
RSSP’s loop region, the running time ofBIDsearchis reduced dramatically. For an example of this
effect, see the running times ofBIDsearchin Figure8 for parametersl = 15 andq ∈ {2, 3, 4}. This
rendersBIDsearchin particular useful for searching with RSSPs with moderateloop length or existing
sequence conservation in the loop region. The speedup factors measured in this experiment were in the
range from1.001 to 78.1 for q = 0 and from9.28 to 11× 103 for q = 4. Table1 gives more details on
the speedups ofBIDsearchoverONLsearchfor all investigated combinations ofq andl.

Searching large sequence databases
To measure the performance ofBIDsearchfor non-artificial real-world RSSPs, we manually compiled
a set of397 RSSPs describing42 highly structured RNA families taken from theRFAM10 database.

22

l 3 4 5 6 7 8 9 10 11
q = 0 78.10 48.64 35.42 23.55 16.35 11.01 7.31 4.89 3.48
q = 1 329.81 180.45 105.67 57.41 33.75 19.20 11.30 7.14 4.81
q = 2 749.94 418.65 227.45 121.80 67.81 36.99 21.44 12.73 8.41
q = 3 2,345.17 1,169.53 653.31 353.49 188.34 103.34 56.59 33.08 20.79
q = 4 11,045.75 3,638.14 2,144.8 1,132.53 610.63 338.77 184.56 106.11 64.93

l 12 13 14 15 16 17 18 19 20
q = 0 2.67 2.15 1.79 1.51 1.37 1.20 1.13 1.07 1.00
q = 1 3.58 3.13 2.28 1.89 1.68 1.46 1.35 1.27 1.12
q = 2 5.96 4.88 3.64 2.94 2.57 2.19 2.02 1.82 1.63
q = 3 14.27 11.88 8.25 6.50 5.53 4.74 4.19 3.76 3.34
q = 4 43.09 35.23 25.74 19.52 15.91 13.25 11.75 10.32 9.28

Table 1: Experiment 2: Obtained speedup ofBIDsearchover ONLsearchfor different loop length
l ∈ {3, . . . , 20} and number of non-ambiguous characters in the loop regionq ∈ {0, . . . , 4}. For the
parameter combinationl = 3, q = 4 also one character of the stem was specified.

BIDsearch ONLsearch RNAMotif RNABOB
46.1(1) 6,203(134.5) 11,745(254.7) 9,061(196.5)

Table 2: Experiment 3 (A): Running times in seconds needed bythe programs to search for397 RSSPs
describing42 RFAM10 families in∼ 622 megabases of RNA sequence data. For each program the
speedup factor ofBIDsearchover the particular program is given in brackets.

These were all families with a consensus secondary structure containing at least5 stem-loop substruc-
tures. We measured the running time needed byBIDsearch, ONLsearch, and the widely used tools
RNAMotif [13] andRNABOB[15] to search for these397 RSSPs in theRFAM10 dataset. As expected,
all tools delivered identical results. However, while it took BIDsearchless than50 seconds to search
for the397 patterns as shown in Table2, RNABOBandRNAMotif needed more than2.5 and3.2 hours
respectively to complete the same task. This made for a speedup factor of196.5 (254.7) for BIDsearch
overRNABOB(RNAMotif). Even if we include the time needed for affix array construction, BIDsearch
is still faster thanRNABOBandRNAMotif.

We also investigated the distribution of speedup factors obtained byBIDsearchwhen searching
for the 397 RSSPs. We observed thatBIDsearchis more than50,000 times faster thanRNABOBand
RNAMotif for the majority of the patterns and that the total search time required byBIDsearch is
dominated by only a small number of patterns. These patternsdescribe large unconserved loop regions.
See Figure S3 in Additional file 1 for a graphical visualization of the distribution of speedup factors.

Scaling behavior of bidirectional pattern search using affix arrays
In a further experiment we investigated the scaling behavior of BIDsearchandONLsearchfor an in-
creasing size of sequences to be searched. For this, we searched with different RSSPs on random
subsets ofRFAM10 of different sizes and measured the running time for both algorithms. The results
are given in Figure9. Herepattern1 is an RSSP containing only structural constraints. It describes a
stem-loop with loop length4, stem length10 and no specified nucleotides in the loop region. The RSSP
pattern2 (pattern3) only differ from pattern1 by containing one (two consecutively) non-ambiguous
nucleotides in the loop region.

In this experimentBIDsearchclearly showed a sublinear scaling behavior, whereasONLsearch
scaled only linearly. It tookBIDsearchonly 566.8 (pattern1), 133.8 (pattern2), and37.1 (pattern3)
milliseconds to search the wholeRFAM10 dataset. The obtained speedups ofBIDsearch over
ONLsearchwere in the range from4.63 (1MB subset) to 104.79 (full RFAM10) for pattern1, from

23

Figure 9: Scaling behaviorBIDsearch(left) andONLsearch(right). We measured the running time
needed to search with three different patterns on random subsets ofRFAM10 of different sizes. For
details, see main text.

12.23 (1MB subset) to 223.18 (full RFAM10) for pattern2, and from35.0 (1MB subset) to 618.37 (full
RFAM10) for pattern3. We observe again that the specification of only one or two nucleotides in an
RSSP’s loop region considerably reduces the running time oftheBIDsearchalgorithm.

RNA family classification by global chaining of RSSP matches
To demonstrate the effect of global chaining of RSSP matches, we searched with an SSD built for the
Rfam family of OxyS RNAs (Acc.: RF00035). OxyS is a small109-nucleotide long non-coding RNA
which is included in response to oxidative stress inE.coli [53]. Members of this family fold into a char-
acteristic secondary structure consisting of three stem-loop substructures, referred to asHP1, HP2, and
HP3 in Figure10 (C). From the three stem-loops we derived three descriptorscalledRSSP1, RSSP2,
and RSSP3, which constitute the SSD describing this family. We note that in this experiment the
RSSPs were constructed to guarantee high specificity and thus to minimize the number of false posi-
tives. For the SSD specified inStructatorsyntax, see Figure10 (A). Searching for this SSD inRFAM10,
Structatordelivers8,619 matches forRSSP1, 1,699 matches forRSSP2, and142,219 matches for
RSSP3. Instead of reporting these matches,Structatorcomputes high-scoring global chains for each
sequence containing matches to all three RSSPs. The chains and the sequences they occur in are re-
ported in descending order of the chain score. This procedure resulted in61 sequences, all belonging
to the OxyS family which contains115 members in total. Hence, by considering only high-scoring
chains all the spurious RSSP matches were eliminated. We also described the same three stem-loops
in a format compatible withRNAMotif (see Figure10 (B)). A search onRFAM10 with this descriptor
returned exactly the same61 sequences. However,Structator operating inBIDsearch(ONLsearch)
mode with subsequent global chaining of RSSP matches neededonly 3.9 (122.5) seconds to identify
all family members, whereasRNAMotif needed84.7 seconds. The search times forStructatorinclude
0.05 seconds required for the chaining.

We also employed global chaining to detect members of the structurally more complex family of
Citrus tristeza virus replication signal (Rfam Acc.: RF00193). Therefore we built an SSD comprising
8 RSSPs, describing8 of 10 stem-loops the molecule is predicted to fold into. For more information
on the molecule’s secondary structure and the used descriptor, see Additional file 1, Figure S4. Using
Structatoroperating inBIDsearch(ONLsearch) mode and global chaining of RSSP matches it took

24

>RSSP1|maxrightloopextent=1|maxleftloopextent=1|maxmispair=6|weight=1

NNNNNNNNNNNNNNNNNNNNNNACCCNUNANNNNNNNNNNNNNNNN

(((((((.((((.((.((..........)).))..)))))))))))

>RSSP2|maxrightloopextent=5|weight=1

GNNNNNCUCACNN

((((.....))))

>RSSP3|maxmispair=2|maxrightloopextent=2|weight=1

NNGGANCUNNNNNNNNNNN

(((((((.....)))))))

(A) (B)

G U

(C)

parms

 wc +=gu;

descr

 h5(len=7)

 ss(len=1)

 h5(len=4)

 ss(len=1)

 h5(len=2)

 ss(len=1)

 h5(len=2)

 ss(seq="N\{0,1\}NNNNACCCNUN\{0,1\}",minlen=10,maxlen=12)

 h3(seq="NA",len=2)

 ss(len=1)

 h3(len=2)

 ss(len=2)

 h3(len=4)

 h3(len=7)

 ss(minlen=2,maxlen=3) #single strand between HP1 and HP2

 h5(len=4)

 ss(seq="NNCUCN\{0,5\}",minlen=5,maxlen=10)

 h3(len=4)

 ss(minlen=27,maxlen=31)#single strand between HP2 and HP3

 h5(len=7, seq="NNGGANC",mispair=2,ends='mm')

 ss(seq="UN\{4,6\}",minlen=5,maxlen=7)

 h3(len=7)

R

R

A

A

C

G

G

A

G

C

G

G

Y

W

Y

C

U

C

K

U

U

U

A A
C

C

C

U

U

G

A

A

G

W

C

A

C

Y

G

C

C

C

G

U

U

Y

M G A G

R

G

U

C

Y

C G A A A U A A C U A A A G C C A A G A A C U U U U G

C

G

G

A

Y

C

U

C
C

A

K

G

R

U

C

C

G

C U

10

20

30

40

60

100

110

c

g

A

A

W

U

C

U
C

u

HP1 HP2 HP3

C

Figure 10: (A) Secondary structure descriptor for the family of OxyS RNAs inStructatorsyntax. The
SSD consists of RSSPsRSSP1, RSSP2, andRSSP3 describing the three stem-loop structures (HP1,
HP2, and HP3, see (C)) of this small non-coding RNA. (B)RNAMotifdescriptor for the same structural
elements. (C) Consensus secondary structure of the OxyS RNAfamily as drawn byVARNA[30].
Sequence information (non-wildcard nucleotides) used in both descriptors are marked with an asterisk.
Observe that both descriptors use predominantly structureand very little sequence information.

only 1.3 (138.7) seconds to searchRFAM10 with this SSD, where0.06 seconds were required for
the chaining. The computed global chains with a minimum length of 5, computed from the184,199
single RSSP matches, were ranked according to their global chain score. We observe that the sequences
containing the37 highest scoring chains are exactly all37 members of the family.

In addition we measured the performance ofStructatorusing global chaining for RNA family clas-
sification with manually compiled SSDs for42 Rfam families. For the results of this experiment see
Additional file 1, Table S4.

Searching whole genomes using local chains of RSSP matches
As an example of searching a complete genome or whole chromosomes for non-coding RNAs, we
searched for the RNA gene Human accelerated region 1F (HAR1F) on both strands of the human
genome sequence. HAR1F is one of49 regions in the human genome that differ significantly from
highly conserved regions of the chimpanzee [54]. The consensus structure of the HAR1F family in
Rfam (Acc.: RF00635) contains three stem-loop regions, denotedHP1, HP2, andHP3 in Figure11
(A). From these regions, we built an SSD for the family with RSSPsRSSP1, RSSP2, andRSSP3,
shown in Figure11 (B). Since we were searching on complete chromosomes, we only wanted to con-
sider RSSP matches that occurred at a similar distance to each other w.r.t. to the distances of the
corresponding descriptors in the SSD. Therefore, unlike inthe previous experiment where we searched
for global chains of RSSP matches, we now computed high-scoring local chains. Gap costs were com-
puted according to Equation (4) and we used an RSSP weightα(RSSPi) = 10, for 1 ≤ i ≤ 3.
Affix array construction for all human chromosomes was accomplished in12.6 hours byafconstruct.

25

>RSSP1|startpos=22|weight=10

NNNNNNNACAGCNNNNNNNNNNNN

((.((((.....))))......))

>RSSP2|startpos=46|weight=10

NNNNNNNNNNNNNUAGACNNNNNNNNNNNNNNNNNNNNNNNNN

(.(((.((..((......))..))..............))).)

>RSSP3|startpos=93|weight=10

NNNNNNNNNNNNUUURGAGNNNNN

(((((..............)))))

RSSP1
RSSP2

RSSP3

(A)

(C) distance=0 distance=4
distance=47

startpos=22 startpos=46 startpos=93
(RSSP1)=weight=10 (RSSP2)=weight=10 (RSSP3)=weight=10

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))

UCAAAAGAACAUGAAACGGAGGNNNNNNNACAGCNNNNNNNNNNNNNNNNNNNNNNNNNUAGACNNNNNNNNNNNNNNNNNNNNNNNNNUAUCNNNNNNNNNNNNUUURGAGNNNNNCCUCAAGUUUCAAAU

...........((((((.((((((.((((.....))))......))(.(((.((..((......))..))..............))).)....(((((..............)))))))))..))))))...

GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

(B)

U C S A A A G A A C A Y

G

A

A

A

U

G

G

A

G

G
A

G

A

A

A

U

U

A

C
A

G

C

A

A

U

U

U

A

U

C

A
R C

U

G
A

A
A

U

U

A

U

A

G

G

U

G

U

AG

A

C

A

C

A

Y

G

U
C

A

G

C

V

G

U

G
G A A

A

Y

R

G
U

U
U

C

U
A U

C

A A A A U

U

A
A A

G

U

R

U

U

U
AG

A

G

AUUUU

C

C

U

C

A

M

A

U

U

U

C

A A A U

20

30

40

50

60

70

80

90 100

110

120

HP1

HP2

HP3

distance=16 distance=10

distance=8

distance=50

C1

C2

C3

lcsc(C1)=8

lcsc(C2)=12

lcsc(C3)=17

(D)

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

distance=2 distance=3

C4 lcsc(C4)=27

g((P1,p1), (P3,p3))=|47-50|=3

αα α

Figure 11: (A) Consensus secondary structure visualized with the VARNAprogram of the HAR1F
RNA family showing stem-loopsHP1, HP2, andHP3. (B) SSD consisting ofRSSP1, RSSP2, and
RSSP3 in Structatorsyntax describing the three stem-loop regions of HAR1F. (C)Regions of HAR1F
described by the RSSPs, including distancesli+1 − ri, 1 ≤ i < 3, between neighbored RSSPs and
RSSP weightsα(RSSPi), 1 ≤ i ≤ 3. (D) Examples of local chainsCi, 1 ≤ i ≤ 4 found with the SSD,
showing, in each chain, the distance between RSSP matches and their local chain scorelcsc (Ci). Gap
cost computation according to Equation (4) is shown exemplary for the two RSSP matches of chainC3.

We searched withStructator for the three RSSPs and found15,090, 1,578, and14,491 matches for
RSSP1, RSSP2, andRSSP3, respectively. For these RSSP matches we computed local high-scoring
chains (see Figure11 (D)). ChainsC were ranked according to their local chain scorelcsc (C). We
observed that the highest-scoring chain corresponds to thecorrect location of the gene on chromosome
20. UsingBIDsearch(ONLsearch) this task needed3.1 (633.4) seconds only, including0.02 seconds
for the chaining.RNAMotifalso found a single match corresponding to the correct location of the gene,
but needed274.7 seconds. See Figure S5 in Additional file 1 for the usedRNAMotif descriptor.

Comparison of implementations of bidirectional pattern search
In the last experiments we comparedStructator’s running time using usingBIDsearchwith the time
needed by a recently published bidirectional pattern search implementation for the same task. The im-
plementation of [55], to which we refer asBWI, uses a compressed data structure called bidirectional
wavelet index. We remark thatBWI can only search with a small set of hard-coded patterns, i.e., the
user cannot use it to search with his/her own patterns. Moreover, unlikeStructator, which provides a
full command line interface with many configurable options (see section about the software package),
BWI reports neither matching substrings nor matching positions (which is known to be the most time
consuming part when querying compressed index structures [26]). It only outputs the search time of
individual patterns and the number of matches. Thus, it serves rather as a prototype implementation
of the concepts introduced in [55]. Nevertheless, since it also makes use of bidirectional search, we
comparedBWI with StructatorusingBWI’s hard-coded patterns. See Table3 for the results. Details of
the database and patterns are as previously described [55].We noticed thatBIDsearchwas faster than

26

hairpin1 hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)
BWI 10,484 64 612 26,413 896 420

BIDsearch 8,325 32 330 16,768 511 295
BIDsearchvs. BWI 1.26 2 1.85 1.58 1.75 1.42

Table 3: Search time comparison betweenStructator’s BIDsearchand an implementation, here called
BWI, of bidirectional search using the wavelet tree data structure described in [55]. Search times are in
milliseconds. The last row shows the speedup ofBIDsearchoverBWI.

BWI for matching all patterns by up to factor2, hence making it preferable when speed is most im-
portant. However, we note thatBWI’s compressed wavelet index consumes significantly less memory
thanStructator’s affix array index, which would makeBWI preferable in cases where space consump-
tion is critical. See Table S3 in Additional file 1 for the memory required byBWI’s index for different
genomes.

We also measured the speedup ofStructator running in BIDsearchmode overONLsearchand
compared the results with previously reported measurements [27]. Because the implementation used
there is not available (personal communication with the author), we calculated relative speedups based
on the reported absolute running times. Details on this experiment are given in Additional file 1, Section
S2.

Structator software package
Structator is an open-source software package for fast database searchwith RNA structural patterns
implementing the algorithms and ideas presented in this work. It consists of the command line programs
afconstructandafsearch.

afconstructimplements all algorithms necessary for affix array construction, namely a lightweight
suffix sorting algorithm for construction of the suffix arrays sufF andsufR, the algorithm for construc-
tion of tableslcpF and lcpR [37], and the algorithm for computation of the affix link tablesaflkF and
aflkR. The program constructs all or if necessary only some of the tables of the affix array for a target
database provided in FASTA format and stores them on disk. Therefore the program can also be used
to compute only the tables needed for a traditional enhancedsuffix array [35].afconstructcan handle
RNA as well as DNA sequences. Moreover, it supports the transformation of input sequences according
to user-defined (reduced) alphabets and allows the index construction for transformed sequences. Such
personalized alphabets are easily specified in a text file.

afsearchis the program for performing structural pattern matching.That is, it searches (ribo)nucleic
acid sequence databases for entries that can adopt a particular secondary structure. For an overview of
the supported RNA sequence-structure patterns (RSSPs), see Figure12. The simplest RSSP describes
a single-stranded region, where ambiguous (not well-conserved) nucleotides can be specified with IU-
PAC characters. All ambiguous IUPAC characters are hard-coded in afsearch, e.g. N standing for
nucleotides A, C, G, and U (and T) and R standing for A and G. Besides fixed-length RSSPs with or
without ambiguous characters (Figure12 (A) until (D)), also RSSPs describing loop or stem regions of
variable size (Figure12 (E) until (H)) are supported. More precisely, one can specify with parameters
maxleftloopextent (mllex)andmaxrightloopextent (mrlex)a variable number of allowed extensions to
the left (nucleotides marked in yellow in Figure12 (E)) and/or to the right (nucleotides marked in blue
in Figure12 (F)) for the specified loop pattern. Variable stem sizes can be addressed with parameter
maxstemlength (msl)(see regions marked in pink in Figure12 (G)). Also supported is the combination
of variable loop and stem size (see Figure12 (H)) and a maximal number of allowed mispairings in the
stem region. All these different RSSPs can be specified by theuser in a text file which use, as shown in

27

NACNUGUNNC

..........

NNNNNNACUNNNNNNNN

(((((.......)))))

NNNNNNNNNNNNACUNNNNNNNN

(((...((((......)))))))

NNNNNNNNNNNNNACUNNNNNNNNNNNN

(((....((((.....)))).....)))

NNNNNACNNNNNNNNNN

(((((.......)))))

NNNNNACNNNNNNNN

(((((.....)))))

NNNNNNNNNNNN

(((......)))

NNNNNNNNNNACNNNNNNNNNN

((...(((.........)))))

>single stranded region >simple HP with wildcards N >HP with bulge >HP with interior loop

>HP with variable loop|mllex=3 >HP with var. loop|mllex=3|mrlex=2 >HP with var. stem|msl=8 >HP with var. loop and stem|mllex=3|mrlex=2|msl=8

Figure 12: Supported structural patterns and corresponding pattern definitions inStructator syntax.
Non-ambiguous nucleotides are marked in red. Positions containing ambiguous nucleotides, denoted
here with character N, are marked in green and can contain anynucleotide fromA. Maximal allowed
left and right extensions of the loop region of a pattern as specified by parametersmaxleftloopextent
(mllex)andmaxrightloopextent (mrlex)are marked in yellow and blue, respectively. Allowed possible
extensions of a pattern’s stem region as specified by parameter maxstemlength (msl)are marked in
purple. As an example for the semantics of the parametermsl consider pattern (G): it matches all
substrings of the searched sequence that are able to fold into a stem-loop structure with loop length6
and stem length between3 and8. For further details see corresponding text.

28

Figure12, an expressive but easy to understand pattern syntax. For additional details on the supported
patterns see the corresponding section in theStructatoruser manual.afsearchalso permits user-defined
base pairing rules. That is, the user can define an arbitrary subset fromA × A as valid pairings. This
ensures a maximum of flexibility. For example, the standard canonical Watson-Crick pairings as well
as non-standard pairings such as G-U can be specified.

The search is performed efficiently on a pre-computed affix array. afsearchimplements the bidi-
rectional index-based search algorithmsBIDsearchand the online algorithmONLsearchoperating on
the plain sequence, both extended to support patterns with variable loop size and/or stem length. Fur-
ther, it implements the methods for fast global and local chaining of RSSP matches. The search with
RSSPs can be performed on the forward and, in case of nucleotide sequences, also on the reverse strand.
Searching on the reverse strand is implemented by reversal of the RSSP and transformation according
to Watson-Crick base pairing. Hence it is sufficient to buildthe affix array for one strand only.

RSSP matches can be reported directly byafsearchor can be used as input for the computation
of high-scoring global or local chains of matches. Computedchains resemble the order of the RSSPs
given in the pattern file and are reported in descending orderof their chain score. This allows the
description of complex secondary structures with our new concept of secondary structure descriptors
(SSDs). This is done by simply specifying a series of RSSPs inthe pattern file describing the stem-loop
substructures the RNA molecule is composed of in the order oftheir occurrence in 5’ to 3’ direction. To
incorporate different levels of importance or significanceof an RSSP into SSD models and subsequently
in the computation of chain scores, RSSP specific weights canbe defined in the pattern file. This is
particularly useful in the context of RNA family classification where the used SSD may be derived
from a multiple sequence-structure alignment or a consensus structure-annotated multiple sequence
alignment. Here, it permits the assignment of higher weights to RSSPs describing highly conserved
functionally important structural elements occurring in afamily of RNAs, and lower weights to RSSPs
describing less conserved substructures that occur only incertain members of the family.

The output format ofafsearchcontains all available information of a match or chain of matches,
either in a human-readable, or a tab-delimited format. Moreover,afsearchcan also report matches in
BED format. This allows a direct visualization of the results in e.g. the UCSC genome browser.

Discussion and conclusion
We have presented a method for fast index-based search of RNAsequence-structure patterns (RSSPs),
implemented in theStructatorsoftware. As part of the software, we give the first publicly available
implementation of bidirectional pattern search using the affix array data structure. For the majority
of biologically relevant RSSPs, our implementation ofBIDsearchshows superior performance over
previous programs. In a benchmark experiment on theRfam database,BIDsearchwas faster than
RNAMotif andRNABOBby up to two orders of magnitude. Furthermore, in a comparison between
BIDsearchand the program of [55], which works on compressed index datastructures,BIDsearchwas
faster by up to 2 times. We observed that for RSSPs with long unconserved loop regions, the advantage
of BIDsearchover ONLsearchdecreases. For such cases,Structatorcan also employONLsearchon
the plain sequence data. As a further contribution, we presented for the first time a detailed complexity
analysis of bidirectional search using affix arrays. While bidirectional search does not does not improve
the worst-case time complexity compared to online search, in practice it runs much faster than online
search algorithms and the running time scales sublinearly with the lengthn of the searched sequences.

Our implementation of the affix array data structure requires only 18n bytes of space. This is a
significant space reduction compared to the∼ 45n bytes needed for the affix tree. With the program
afconstructwe present for the first time a command line tool for the efficient construction and persistent

29

storage of affix arrays that can also be used as a stand-alone program for index construction.
With the new concept of RNA secondary structure descriptors(SSDs) combined with fast global

and local chaining algorithms, all integrated intoStructator, we also introduce a powerful technique
to describe RNAs with complex secondary structures. This even allows to effectively describe RNA
families containing branching substructures like multi-loops, by decomposition into sequences of non-
branching substructures that can be described with RSSPs. Compared to programs likeRNAMotif,
Structator’s pattern description language for RSSP formulation is simple but powerful, in particular in
combination with the SSD concept. Beyond the algorithmic contributions, we provide with theStruc-
tator software distribution a robust, well-documented, and easy-to-use software package implementing
the ideas and algorithms presented in this manuscript.

Availability
The Structatorsoftware package including documentation is available in binary format for different
operating systems and architectures and as source code under the GNU General Public License Version
3. See http://www.zbh.uni-hamburg.de/Structator for details.

Authors’ contributions
F.M. implemented the presented algorithms and wrote parts of the manuscript and theStructatorman-
ual. S.K. developed and implemented the RSSP chaining algorithms and contributed to the manuscript.
S.W. provided supervision and wrote parts of the manuscript. M.B. initiated the project, provided su-
pervision and guidance, designed/performed the experiments and wrote large parts of the manuscript.
R.B. contributed to the introduction. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the German Research Foundation (grant WI 3628/1-1). We also thank the
anonymous referees, especially referee 2, for their valuable comments and suggestions.

References
1. Mattick J:RNA regulation: a new genetics?Nat Rev Genet2004,5(4):316–323.

2. Mattick J, Taft R, Faulkner G:A global view of genomic information - moving beyond the geneand the
master regulator. Trends Genet.2009.

3. Gardner P, Daub J, Tate J, Moore B, Osuch I, Griffiths-JonesS, Finn R, Nawrocki E, Kolbe D, Eddy S,
Bateman A:Rfam: Wikipedia, clans and the “decimal” release. Nucl. Acids Res.2010.

4. Gardner P, Daub J, Tate J, Nawrocji E, Kolbe D, Lindgreen S,Wilkinson A, Finn R, Griffith-Jones S, Eddy
S, Bateman A:Rfam: updates to the RNA families database. Nucl. Acids Res.2008,37:D136–D140.

5. Gardner PP, Wilm A, Washietl S:A benchmark of multiple sequence alignment programs upon struc-
tural RNAs . Nucl. Acids Res.2005,33(8):2433–9.

6. Höchsmann M, Voss B, Giegerich R:Pure multiple RNA secondary structure alignments: a progressive
profile approach. IEEE/ACM Trans Comput Biol Bioinform2004,1:53–62.

7. Siebert S, Backofen R:MARNA: multiple alignment and consensus structure prediction of RNAs based
on sequence structure comparisons. Bioinformatics2005,21(16):3352–3359.

8. Sankoff D:Simultaneous solution of the RNA folding, alignment and protosequence problem. SIAM
Journal on Applied Mathematics1985,45:810–825.

30

9. Gorodkin J, Heyer LJ, Stormo GD:Finding the most significant common sequence and structure motifs
in a set of RNA sequences. Nucl. Acids Res.1997,25(18):3724–32.

10. Havgaard J, Lyngso R, Stormo G, Gorodkin J:Pairwise local structural alignment of RNA sequences
with sequence similarity less than 40%.Bioinformatics2005,21:1815–1824.

11. Mathews DH, Turner DH:Dynalign: an algorithm for finding the secondary structure common to two
RNA sequences. Journal of Molecular Biology2002,317(2):191–203.

12. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R:Inferring noncoding RNA families and classes by
means of genome-scale structure-based clustering. PLoS Comput. Biol.2007,3(4):e65.

13. Macke T, Ecker D, Gutell R, Gautheret D, Case D, Sampath R:RNAMotif – A new RNA secondary
structure definition and discovery algorithm. Nucl. Acids Res.2001,29(22):4724–4735.

14. Gautheret D, Major F, Cedergren R:Pattern searching/alignment with RNA primary and secondary
structures: an effective descriptor for tRNA. Comput Appl Biosci1990,6(4):325–31.

15. RNABOB: a program to search for RNA secondary structure motifs in sequence databases[http://
selab.janelia.org/software.html].

16. Chang T, Huang H, Chuang T, Shien D, Horng J:RNAMST: efficient and flexible approach for identifying
RNA structural homologs. Nucl. Acids Res.2006,34:W423–W428.

17. Dsouza M, Larsen N, Overbeek R:Searching for patterns in genomic data. Trends Genet.1997,
13(12):497–8.

18. Grillo G, Licciulli F, Liuni S, Sbisà E, Pesole G:PatSearch: A program for the detection of patterns and
structural motifs in nucleotide sequences. Nucl. Acids Res.2003,31(13):3608–12.

19. Nawrocki E, Eddy S:Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Com-
put. Biol.2007,3(56).

20. Nawrocki E, Kolbe D, Eddy S:Infernal 1.0: inference of RNA alignments. BMC Bioinformatics2009,
25:1335–1337.

21. Klein R, Eddy S:RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformat-
ics2003,4:44.

22. Sakakibara Y:Pair hidden markov models on tree structures. BMC Bioinformatics2003,19:i232–40.

23. Gautheret D, Lambert A:Direct RNA motif definition and identification from multiple sequence align-
ments using secondary structure profiles. J Mol Biol 2001,313:1003–11.

24. Gusfield D:Algorithms on strings, trees, and sequences : computer science and computational biology.
Cambridge Univ. Press 1997.

25. Manber U, Myers E:Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing
1993,22(5):935–948.

26. Ferragina P, Manzini G:Indexing compressed text. Journal of the ACM2005,52(4):552–581.

27. Strothmann D:The affix array data structure and its applications to RNA secondary structure analysis.
Theor. Comput. Sci.2007,389(1-2):278–294.

28. Mauri G, Pavesi G:Algorithms for pattern matching and discovery in RNA secondary structure . Theor.
Comput. Sci.2005,335:29–51.

29. Maaß MG:Linear bidirectional on-line construction of affix trees. Algorithmica2003,37:43–74.

30. Darty K, Denise A, Ponty Y:VARNA: Interactive drawing and editing of the RNA seondary structure .
Bioinformatics2009,25(15):1974–1975.

31. Mauri G, Pavesi G:Pattern discovery in RNA secondary structures using affix trees. In Proceedings of
the 14th Annual Symposium on Combinatorial Pattern Matching, Volume 2676, Springer 2003:278–294.

31

32. Kärkkäinen J, Sanders P:Simple linear work suffix array construction . In Proceedings of the 13th Inter-
national Conference on Automata, Languges and Programming, Springer 2003.

33. Puglisi SJ, Smyth W, Turpin A:The performance of linear time suffix sorting algorithms. In DCC
’05: Proceedings of the Data Compression Conference, Washington, DC, USA: IEEE Computer Society
2005:358–367.

34. Manzini G, Ferragina P:Engineering a lightweight suffix array construction algorithm. Algorithmica
2004,40:33–50.

35. Abouelhoda M, Kurtz S, Ohlebusch E:Replacing suffix trees with enhanced suffix arrays. Journal of
Discrete Algorithms2004,2:53–86.

36. Fischer J:Wee LCP. Information Processing Letters2010,110(8-9):317–320.

37. Kasai T, Lee G, Arimura H, Arikawa S, Park K:Linear-time longest-common-prefix computation in
suffix arrays and its applications. In Proceedings of the 18th Annual Symposium on Combinatorial Pattern
Matching2001:181–192.

38. Beckstette M, Homann R, Giegerich R, Kurtz S:Fast index based algorithms and software for matching
position specific scoring matrices. BMC Bioinformatics2006,7:389.

39. Beckstette M, Homann R, Giegerich R, Kurtz S:Significant speedup of database searches with HMMs
by search space reduction with PSSM family models. Bioinformatics2009,25(24):3251–3258.

40. Abouelhoda MI, Ohlebusch E, Kurtz S:Optimal exact string matching based on suffix arrays. In Pro-
ceedings of the 9th International Symposium on String Processing and Information Retrieval, Volume 2476,
Springer 2002:31–43.

41. de Bruijn N: A combinatorial problem . Koninklijke Nederlandse Akademie v. Wetenschappen1946,
49:758–764.

42. Gardner P, Giegerich R:A comprehensive comparison of comparative RNA structure prediction ap-
proaches. BMC Bioinformatics2004,5(140).

43. Hofacker I, Fekete M, Stadler P:Secondary structure prediction for aligned RNA sequences. Journal of
Molecular Biology2002,319(5):1059–66.

44. Knudsen B, Hein J:Pfold: RNA secondary structure prediction using stochastic context-free grammars.
Nucl. Acids Res.2003,31(13):3423–8.

45. Hofacker I:RNA consensus structure prediction with RNAalifold. Methods Mol Biol2007,395:527–544.

46. Bremges A, Schirmer S, Giegerich R:Fine-tuning structural RNA alignments in the twilight zone. BMC
Bioinformatics2010,11(222).

47. Torarinsson E, Havgaard J, Gorodkin J:Multiple structural alignment and clustering of RNA sequences.
Bioinformatics2007,23:926–932.

48. Harmanci A, Sharma G, Mathews D:Efficient pairwise RNA structure prediction using probabil istic
alignment constraints. BMC Bioinformatics2007,8(130).

49. Reeder J, Giegerich R:Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus
structure prediction . Bioinformatics2005,21(17):3516–23.

50. Wilm A, Higgins D, Notredame C:R-Coffee: a method for multiple alignment of non-coding RNA. Nucl.
Acids Res.2008,36(9).

51. Abouelhoda M, Ohlebusch E:Chaining algorithms for multiple genome comparison. J. Discrete Algo-
rithms2005,3(2-4):321–341.

52. Cormen T, Leiserson C, Rivest R:Introduction to algorithms. Cambridge, MA: MIT Press 1990.

53. Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G:The Escherichia coli OxyS regulatory RNA represses
fhlA translation by blocking ribosome binding . EMBO1998,15(20):6069–75.

32

54. Pollard K, Salama S, Lambert N, Lambot M, Coppens S, Pedersen J, Katzman S, King B, Onodera C, Siepel
A, Kern A, Dehay C, Igel H, Ares M, Vanderhaeghen P, Haussler D: An RNA gene expressed during
cortical development evolved rapidly in humans. Nature2006,443(7108):167–172.

55. Schnattinger T, Ohlebusch E, Gog S:Bidirectional search in a string with wavelet trees. In Proceedings
of the 21st Annual Symposium on Combinatorial Pattern Matching, Volume 6129, Springer 2010:40–50.

33

Supplemental material for the paper:

Structator: fast index-based search for RNA

sequence-structure patterns

Fernando Meyer Stefan Kurtz Rolf Backofen Sebastian Will
Michael Beckstette

1 An example of bidirectional RSSP search

As an example of bidirectional search for RSSPs using affix arrays, we search for the RSSPQ in the
sequenceS of Figures 2 and 3, respectively, of the main document. We recall thatQ = (P,R) with P
= NNNUGCUNNN andR = (((....))) represents a stem-loop structure of lengthm = 10 andS
= AUAGCUGCUGCUGCA has length 15. We start matchingP in S by calling procedurebidir-search
of Algorithm 2 asbidir-search(〈0, 0− [0..15],F〉, 2, 3). That is, the algorithm matches the first position
P [3] = U of the loop region in left-to-right direction. Given thatX = F andi < j (i.e. 0 < 15) hold,
it locates intervalvx = 〈0, 1 − [11..14],F〉 with −→vx = U via binary search in the interval0 − [0..15]
of sufF. Analogously, the following recursive calls ofbidir-search perform rightc-extensions ofu =
U = P [3..3] with charactersP [4] = G, P [5] = C, andP [6] = U, by searching in the intervals
1 − [11..14], 2 − [12..14], and3 − [12..14], respectively. After these extensions, the algorithm has
located the affix-intervalvx = 〈0, 4 − [13..14],F〉 representing all occurrences of−→vx = UGCU in S
such that−→vx matchesu = P [3..6]. We setv = vx. Next, the algorithm performs a rightc-extension
of u with the pairing positionc ∈ ϕ(P [7] = N). Therefore, it enumerates all possiblevx such that
−→vx = −→v d for somed ∈ ϕ(c). We observe thatvx = 〈0, 5− [13..14],F〉 with −→vx = UGCUG is the only
interval satisfying these conditions and concluded = G. As an additional structural constraint, matches
to positions2 and7 of P shall form a base pair. To fulfill this constraint the algorithm first switches
the search direction by locating the reverse intervalv′ of vx. The left boundary ofv′ is determined
with a lookup in tableaflkF asaflkF[homeF([13..14])] = 5 and the right boundary as6. Further, we
setℓlcp = min{lcpF[r] | 13 < r ≤ 14} = 6 and calculate the context ofv′ as6 − 5 = 1. Hence, the
reverse interval ofvx is determined asv′ = 〈1, 6 − [5..6],R〉 with −→v ′ = UGCUG and we setv = v′.
Now the only interval satisfying (1)−→vx = e−→v , e ∈ ϕ(P [2]), and (2) the complementarity condition
between positions2 and7 of P , as required by the structure stringR, is the intervalvx = 〈1, 7 −
[5..6],R〉 with −→vx = CUGCUG representing occurrences of substrings matchingP [2..7]. Observe that
−→vx[0] = C and−→vx[5] = G can form a base pair as demanded byR[2] andR[7]. Consequently,−→vx
matches(P [2..7], R[2..7]) and therefore we setv = vx. In the next step the algorithm performs another
left c-extension of−→v by somec ∈ ϕ(P [1] = N) leading to intervalvx = 〈1, 8 − [5..6],R〉 with
−→vx = GCUGCUG representing occurrences of substrings matchingP [1..7]. We setv = vx. To match
a characterd ∈ ϕ(c) that is complementary to−→v [0] = G the algorithm performs a rightc-extension of
−→v using a characterc ∈ ϕ(P [8]). Because the context ofv is larger than zero, it consumes the context
and remains in tablesufR. That is,X = R. The resulting interval after performing the rightc-extension
is vx = 〈0, 8 − [5..6],R〉 with −→vx = GCUGCUGC. Observe that−→vx[0] = G and−→vx[7] = C can form

1

a base pair and thusvx represents occurrences of substrings ofS matching(P [1..8], R[1..8]). We set
v = vx. The next operation is a leftc-extension by somec ∈ ϕ(P [0] = N). Hence, the algorithm
enumerates all intervalsvx such that−→vx = −→v d, d ∈ ϕ(c). There are two intervals satisfying these
conditions. Namely,vx1 = 〈0, 9 − [5..5],R〉 with −→vx1 = AGCUGCUGC andvx2 = 〈0, 9 − [6..6],R〉
with −→vx2 = UGCUGCUGC. We setv1 = vx1 andv2 = vx2 and continue by processingv1, which
represents occurrences of−→v1 = AGCUGCUGC inS. Because−→v1 is a unique substring ofS, for the
following right c-extension by somec ∈ ϕ(P [9] = N) we can directly evaluateSR[sufR[5] − 1] = U.
Bases(−→v1 [0] = A,U) are complementary, hence we setvx = 〈−1, 9 − [5..5],R〉 and observe that
occurrences of substring−→vx = AGCUGCUGCU ofS match(P [0..9], R[0..9]) and that the boundaries
of Q have been reached. With this, in the following recursion thealgorithm reports a matching position
of Q via a lookup in tablesufR as sufR[5] + (−1) = 4 − 1 = 3, where−1 is the context ofvx
that has to be added tosufR[5]. Note that, becauseX = R, 3 is a position inSR. Now the algorithm
backtracks to interval〈0, 8 − [5..6],R〉 and continues to perform a rightc-extension of intervalv2
by somec ∈ ϕ(P [9]). Again,−→v2 = UGCUGCUGC is a unique substring ofS and we can directly
evaluateSR[sufR[6] − 1] = A. Since bases(−→v2 [0] = U,A) can pair, we setvx = 〈−1, 9 − [6..6],R〉
with −→vx = UGCUGCUGCA representing occurrences of substrings ofS matching(P [0..9], R[0..9]).
The boundaries ofQ have been reached again and in the following recursion the algorithm reports
another matching position ofQ, preciselysufR[6] + (−1) = 1 − 1 = 0. There are no further intervals
to process and the search ends. In summary,bidir-search has found two occurrences ofQ in S.

2 Comparison of two implementations of bidirectional pattern search

We measured the speedup ofStructator running inBIDsearch mode overONLsearch and compared the
results with previously reported measurements [1]. Because the implementation used by Strothmann [1]
is not available (personal communication), we calculated relative speedups based on the absolute run-
ning times reported in [1]. We note that the measurements of [1] were performed on different hardware.
This can, according to our experiments, significantly influence the performance ofBIDsearch. See Ta-
ble S1 for the results of the comparison ofBIDsearch with the method of [1]. For a description of
the used RSSPs see [1]. The search was performed in the genomes of P. horikoshii (GenBank Acc.:
NC 000961, 1.7 MB) andE. coli (GenBank Acc.: AC 000091,4.5 MB), which were also used in [1].
Additionally we included withP. vampyrus (GenBank Acc.: ABRP00000000, 1.9 GB) a larger eu-
karyotic genome in this experiment.

Surprisingly, with the RSSPsACloop(5), ACloop(10), andACloop(15) taken from [1], which de-
scribe a loop consisting of 5 (10 and 15) repetitions of AC thespeedup of the affix array based method
of [1] decreased with increasing loop length. This is a behavior which is opposite to our observations
(see Figure 8 of the main document). We also noticed thatBIDsearch obtained a higher speedup when
searching for RSSPHpin2 in E. coli than the method of [1] but not when searching in the smaller
genome ofP. horikoshii. This observation remains unclear and cannot be further investigated due to
unavailability of the implementation used in [1].

3 A bidirectional search algorithm supporting variable-length RSSPs

Algorithm 2 of the main document matches fixed-length RSSPs.We here present an extension of it also
capable of matching RSSPs with loop region allowing a variable number of additional extensions with
ambiguous characters N to the left and to the right. In combination, also stem region of variable length
is supported. We observe that this extended version is as efficient as the original algorithm supporting
fixed-length RSSPs. Additional computation time is only required for the traversal of additional affix-
intervals due to the increased sensitivity.

2

P. horikoshii (1.7 MB) E. coli K12 (4.5 MB) P. vampyrus (1.9 GB)
RSSP ONL BID Bvs.O STR ONL BID Bvs.O STR ONL BID Bvs.O STR
Hpin1 169.61 65.59 2.59 10.26432.94 141.84 3.05 12.17172,913.36 9,520.39 18.16 -
Hpin2 33.34 0.27 123.48 15588.61 0.45 196.91 99.2534,702.63 48.85 710.39 -

Hloop(5) 214.8 166.94 1.29 14.6552.67 372.57 1.48 18.09219,547.76 23,958.41 9.16 -
Hloop(10) 331.96 1,412.64 0.23 2.13842.32 3,235.11 0.26 2.43335,928.97 248,711.65 1.35 -
ACloop(5) 59.07 4.43 13.33 182152.87 9.91 15.43 815 64,053.16 825.79 77.57 -

ACloop(10) 58.71 1.37 42.85 4152.12 3.45 44.09 7.2464,136.82 391.56 163.8 -
ACloop(15) 58.67 0.89 65.92 1.3152.01 1.86 81.73 1.3864,199.98 278.76 230.31 -

Table S1: Comparison of speedup ofStructator’s BIDsearch overONLsearch (columnBvs.O) and the
speedup of affix array based search over searching on the plain text as reported in [1] (column
STR). The respective search times ofBIDsearch (columnBID) andONLsearch (columnONL)
are shown in milliseconds. ForP. vampyrus only measurements forStructator are available.

Before describing the algorithm, we define this extension ofRSSPs. Avariable-length RSSP Q con-
sists of an RSSP(P,R) and parametersmaxleftloopextent (mllex), maxrightloopextent (mrlex), and
maxstemlength (msl). mllex andmrlex denote the maximum number of respective left and right exten-
sions of the loop region specified inR andmsl denotes the maximum number of base pairs in the stem.
The minimum length of occurrences ofQ is m = |P | = |R|. For examples of variable-length RSSPs,
see Figure 12 (E) until (H) of the main document.

To keep the code simple, we split the original algorithm intotwo procedures. (i) First the loop re-
gion of a given variable-length RSSPQ is matched with procedurebidir-search-loop (see Algorithm
3, Figure S1). (ii) Next, the stem region is matched with procedurebidir-search-stem (see Algorithm
4, Figure S2). Note thatbidir-search-stem is very similar to Algorithm 2 of the main document. Prior
to the search forQ, the following variables are set:loopstart, minloopstart, loopend, maxloopend,
minbps, andmaxbps. These variables store the following information.loopstart (loopend) stores the
position of the base occurring in the left-most (right-most) position of the loop described by the struc-
ture stringR in 5’ to 3’ direction,minloopstart = loopstart − mllex, maxloopend = loopend + mrlex,
andminbps (maxbps = msl) is the minimum (maximum) number of base pairs occurring inQ. It holds:
minloopstart ≤ loopstart ≤ loopend ≤ maxloopend. Note thatminloopstart can be negative. As an
example, letR = (((....))), mllex = 4, andmrlex = 1. Thenloopstart = 3, minloopstart = −1,
loopend = 6, maxloopend = 7, andminbps = 3. To matchQ, procedurebidir-search-loop is ini-
tially called asbidir-search-loop(〈0, 0− [0..n],F〉, r0 − 1, r0, true), where〈0, 0− [0..n],F〉 is an affix-
interval, r0 is any position in the loop region ofQ, and parameter true states that the pattern can be
extended to the right. Procedurebidir-search-loop makes a call tobidir-search-stem whenever sub-
strings of minimum lengthloopend − loopstart + 1 matching the loop in the searched database are
found. If Q has no base pairs, i.e.msl = 0, it instead immediately reports the matching positions.
The call tobidir-search-stem is made asbidir-search-stem(v′, loopstart − 1, loopend + 1, 0), where
v′ is the affix-interval representing all occurrences of substring −→v ′ in the searched database match-
ing the loop region ofQ, positionsloopstart − 1 and loopend + 1 denote the inner-most base pair
(loopstart − 1, loopend + 1) of the pattern, and0 is the number of currently matched base pairs. Pro-
cedurebidir-search-stem reports matching positions ofQ whenever the boundaries of the RSSP are
reached orminbps < bpcount < maxbps holds.

References

[1] D. Strothmann. The affix array data structure and its applications to RNA secondary structure
analysis.Theor. Comput. Sci., 389(1-2):278–294, 2007.

3

Algorithm 3: bidir-search-loop(affix-interval v = 〈k, ℓ − [i..j],X〉, pos r, pos r′,
allowrightext)

if r′ ≤ maxloopend and allowrightext = true then1

// perform right extension

if r′ > loopend then2

chr′ = ‘N’3

else4

chr′ = P [r′]5

end6

foreach v′ such that d ∈ ϕ(chr′) and −→v ′ = −→v d do7

if r < loopstart and r′ + 1 > loopend then8

if msl = 0 then // if entire pattern is single stranded9

report match at positions sufX [i] + k, ..., sufX [j] + k10

return11

else // otherwise loop of length r′ − r + 1 was matched12

// so extend stem region

bidir-search-stem(v′, loopstart− 1, loopend+ 1, 0)13

end14

end15

if r′ + 1 ≤ maxloopend then16

bidir-search-loop(v′, r, r′ + 1, true)17

end18

if r′ + 1 > loopend then19

bidir-search-loop(v′, r, r′ + 1, false)20

end21

end22

else if r ≥ minloopstart then23

// perform left extension

if r < loopstart then24

chr = ‘N’25

else26

chr = P [r]27

end28

foreach v′ such that d ∈ ϕ(chr) and −→v ′ = d−→v do29

if r − 1 < loopstart and r′ > loopend then30

if msl = 0 then // if entire pattern is single stranded31

report match at positions sufX [i] + k, ..., sufX [j] + k32

return33

else // otherwise loop of length r′ − r + 1 was matched34

// so extend stem region

bidir-search-stem(v′, loopstart− 1, loopend+ 1, 0)35

end36

end37

bidir-search-loop(v′ , r − 1, r′, allowrightext)38

end39

end40

Figure S1: Bidirectional recursive matching of the loop region of a variable-length RSSP using an af-
fix array. Procedurebidir-search-loop searches for an RSSP(P,R) defined with additional
variablesmaxleftloopextent (mllex) andmaxrightloopextent (mrlex) denoting the maximum
number of left and right extensions of the loop specified inR, respectively, andmaxstem-
length (msl) denoting the maximum number of base pairs. Used variablesloopstart, minloop-
start, loopend, andmaxloopend are preset according to structure stringR, mllex, andmrlex
(see text).bidir-search-loop calls procedurebidir-search-stem (see Algorithm 4) whenever
substrings of minimum lengthloopend − loopstart + 1 matching the loop are found.

4

Algorithm 4: bidir-search-stem(affix-interval v = 〈k, ℓ− [i..j],X〉, pos r, pos r′, bpcount)

if (r < 0 and r′ ≥ m) or (minbps < bpcount < maxbps) then1

report match at positions sufX [i] + k, ..., sufX [j] + k2

end3

if (minbps < bpcount < maxbps or (r ≥ 0 and r′ < m and R[r] = ‘(’ and R[r′] = ‘)’)4

then
if minbps < bpcount < maxbps then5

chr = ‘N’6

chr′ = ‘N’7

else8

chr = P [r]9

chr′ = P [r′]10

end11

if X = R then12

// perform left extension first

foreach v′ such that d ∈ ϕ(chr) and −→v ′ = d−→v do13

foreach v′′ such that e ∈ ϕ(chr′) and (d, e) complementary and −→v ′′ = −→v ′e do14

bidir-search-stem(v′′, r − 1, r′ + 1, bpcount+ 1)15

end16

end17

else18

// perform right extension first

foreach v′ such that e ∈ ϕ(chr′) and −→v ′ = −→v e do19

foreach v′′ such that d ∈ ϕ(chr) and (d, e) complementary and −→v ′′ = d−→v ′ do20

bidir-search-stem(v′′, r − 1, r′ + 1, bpcount+ 1)21

end22

end23

end24

else if r′ < m and R[r′] = ‘.’ and (X = F or r < 0 or R[r] 6= ‘.’) then25

foreach v′ such that d ∈ ϕ(P [r′]) and −→v ′ = −→v d do26

bidir-search-stem(v′, r, r′ + 1, bpcount)27

end28

else if r ≥ 0 and R[r] = ‘.’ then29

foreach v′ such that d ∈ ϕ(P [r]) and −→v ′ = d−→v do30

bidir-search-stem(v′, r − 1, r′, bpcount)31

end32

end33

Figure S2: Bidirectional recursive matching of the stem region of a variable-length RSSP using an affix
array. Procedurebidir-search-stem is called by procedurebidir-search-loop (see Algorithm
3) and extends substrings−→v matching the loop region of the RSSP(P,R) to substrings
matching also the stem. Used variablesminbps andmaxbps are preset according to structure
stringR and variablemaxstemlength (msl) (see text).

5

[2] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in a string with wavelet trees.
In Proceedings of the 21st Annual Symposium on Combinatorial Pattern Matching, volume 6129,
pages 40–50. Springer, 2010.

[3] K. Darty, A. Denise, and Y. Ponty. VARNA: Interactive drawing and editing of the RNA seondary
structure.Bioinformatics, 25(15):1974–1975, 2009.

6

Organism Genome sufF lcpF lcpeF aflkF sufR lcpR lcpeR aflkR
size (n) (4n) (n) (4n) (4n) (n) (4n)

C.elegans 100.29 401.14 100.29 6.29 401.14 401.14 100.29 6.29 401.14
A.thaliana 119.67 478.67 119.67 8.85 478.67 478.67 119.67 8.85 478.67

D.melanogaster 168.74 674.95 168.74 94.34 674.95 674.95 168.74 94.34 674.95
C.intestinalis 173.52 694.02 173.50 28.03 694.02 694.02 173.50 28.03 694.02

O.sativa 374.33 1,497.33 374.33 71.05 1,497.33 1,497.33 374.33 71.05 1,497.33
M.gallopavo 1,087.50 4,349.99 1,087.50 2.01 4,349.99 4,349.99 1,087.50 2.01 4,349.99

G.gallus 1,108.48 4,433.93 1,108.48 98.86 4,433.93 4,433.93 1,108.48 98.86 4,433.93
D.rerio 1,481.32 5,925.08 1,481.27 457.26 5,925.08 5,925.08 1,481.27 457.26 5,925.08

X.tropicalis 1,510.98 6,043.63 1,510.91 310.89 6,043.63 6,043.63 1,510.91 310.89 6,043.63
P.vampyrus 1,999.71 7,998.82 1,999.71 170.84 7,998.82 7,998.82 1,999.71 170.84 7,998.82

Table S2: Sizes in megabytes of the different tables the affixarray consists of for the genomes used in
Experiment 1.lcpeF andlcpeR are the exception tables storing entries with value larger than
255 which cannot be stored in tableslcpF and lcpR, respectively. In tableslcpeF and lcpeR,
each entry consumes8 bytes.

Organism Genome size BWI
C.elegans 100.29 157.96
A.thaliana 119.67 188.59

D.melanogaster 168.74 295.37
C.intestinalis 173.52 279.83

O.sativa 374.33 602.21
M.gallopavo 1,087.50 1,800.88

G.gallus 1,108.48 1,757.84
D.rerio 1,481.32 2,424.81

X.tropicalis 1,510.98 2,309.24
P.vampyrus 1,999.71 3,282.55

Table S3: Size in megabytes of the bidirectional wavelet index (BWI) [2] for different genomes.

7

1−
10

11
−

20
21

−
50

51
−

10
0

10
1−

20
0

20
1−

50
0

50
1−

10
00

10
01

−
20

00
20

01
−

30
00

30
01

−
40

00
40

01
−

50
00

50
01

−
60

00
60

01
−

70
00

70
01

−
80

00
80

01
−

90
00

90
01

−
10

00
0

10
00

1−
15

00
0

15
00

1−
20

00
0

20
00

1−
25

00
0

25
00

1−
30

00
0

30
00

1−
40

00
0

40
00

1−
50

00
0

50
00

1−
75

00
0

75
00

1−
10

00
00

10
00

01
−

20
00

00
20

00
01

−
30

00
00

30
00

01
−

50
00

00
50

00
01

−
10

00
00

0
>

10
00

00
0

#p
at

te
rn

s

Speedup obtained by Structator [S]

0
20

40
60

80

F
ra

ct
io

n
of

 p
at

te
rn

s
w

ith
 s

pe
ed

up
 g

re
at

er
 th

an
 S

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Speedup BIDsearch over RNAMotif

Speedup BIDsearch over RNABOB

Fraction of patterns with BIDsearch
speedup over RNAMotif greater than S

Fraction of patterns with BIDsearch
speedup over RNABOB greater than S

Figure S3: Distribution of speedup factors ofBIDsearch overRNABOB (yellow) andRNAMotif (green)
when searching for 397 RSSPs inRFAM10 consisting of∼ 622 megabases of RNA se-
quence data. The red and blue curves show the values of one minus the empirical cumulative
distribution function of the speedup factors distributions. That is, for a given speedup factor
S they show the fraction of RSSPs for whichBIDsearch obtained a speedup greater thanS
overRNAMotif (red curve) andRNABOB (blue curve), respectively. We observed thatBID-
search is more than50,000 times faster thanRNABOB andRNAMotif for the majority of the
patterns (see intersection point of dashed lines). Moreover, the total search time required by
BIDsearch is dominated by only a small number of patterns describing large unconserved
loop regions.

8

Figure S4: Consensus secondary structure of the CTVrep sig family (RFAM Acc.: RF00193) visual-
ized with theVARNA program [3] and SSD inStructator syntax describing this family. The8
given RSSPs correspond to the colored stem-loopsHP1 - HP8. Positions at which sequence
information is used in the descriptor are marked with an asterisk.

Figure S5: (A) SSD for HAR1F RNA family consisting ofRSSP1, RSSP2, andRSSP3 in Structator
syntax. RSSPs were built from stem-loopsHP1, HP2, andHP3 shown in (C). (B)RNAMotif
descriptor for the same structural elements. Secondary structure drawing shown in (C) was
generated withVARNA [3].

9

Acc. #Matching
chains

#TP #FP #FN Sensitivity Specificity Accuracy Precision #RSSPs Min.chain
length

TBIDsearch [sec] TONLsearch [sec] SpeedupTchaining[sec]

RF00044 8 8 0 0 1.000 1.000 1.000 1.000 8 2 0.964 117.359 121.742 0.001
RF00193 37 37 0 0 1.000 1.000 1.000 1.000 8 5 1.220 140.681 115.312 0.063
RF00126 106 106 0 1 0.991 1.000 1.000 1.000 6 2 1.032 128.476 124.492 0.000
RF00503 78 78 0 2 0.975 1.000 1.000 1.000 10 2 1.084 164.866 152.090 0.002
RF00209 1,511 1,493 18 58 0.963 1.000 1.000 0.988 9 2 1.056 129.372 122.511 0.006
RF00625 24 22 2 1 0.957 1.000 1.000 0.917 5 3 3.304 102.066 30.892 0.656
RF00061 6,211 6,211 0 285 0.956 1.000 1.000 1.000 7 4 1.188 119.239 100.370 0.032
RF00224 21 21 0 1 0.955 1.000 1.000 1.000 10 3 1.508 202.661 134.391 0.138
RF00084 111 111 0 7 0.941 1.000 1.000 1.000 4 2 1.180 78.669 66.669 0.050
RF00372 42 42 0 3 0.933 1.000 1.000 1.000 7 3 1.092 104.663 95.845 0.007
RF00115 58 58 0 5 0.921 1.000 1.000 1.000 9 4 1.128 167.962 148.902 0.024
RF00488 24 24 0 3 0.889 1.000 1.000 1.000 6 4 1.084 94.938 87.581 0.043
RF00294 44 44 0 9 0.830 1.000 1.000 1.000 12 3 1.124 164.814 146.632 0.008
RF00210 345 345 0 72 0.827 1.000 1.000 1.000 14 3 1.308 206.133157.594 0.104
RF00228 348 346 2 79 0.814 1.000 1.000 0.994 13 2 1.048 225.982215.632 0.006
RF00036 18,312 18,312 0 4,452 0.804 1.000 0.999 1.000 16 3 1.464 224.778 153.537 0.145
RF00549 39 38 1 10 0.792 1.000 1.000 0.974 10 4 1.584 154.382 97.463 0.142
RF00448 11 11 0 3 0.786 1.000 1.000 1.000 7 4 1.000 102.730 102.730 0.002
RF00177 584,748 582,839 1,909 179,250 0.765 0.999 0.946 0.997 13 3 11.004 221.798 20.156 2.414
RF00101 142 142 0 45 0.759 1.000 1.000 1.000 6 3 1.000 119.407 119.407 0.004
RF00166 54 54 0 18 0.750 1.000 1.000 1.000 8 3 1.068 127.872 119.730 0.009
RF00018 278 272 6 96 0.739 1.000 1.000 0.978 11 5 3.944 212.13353.786 0.666
RF00252 26 26 0 10 0.722 1.000 1.000 1.000 10 3 1.260 143.709 114.055 0.057
RF00547 39 39 0 18 0.684 1.000 1.000 1.000 14 3 2.604 221.458 85.045 0.452
RF00011 355 353 2 185 0.656 1.000 1.000 0.994 10 4 2.988 183.923 61.554 0.582
RF00010 2,478 2,402 76 1,679 0.589 1.000 0.999 0.969 12 5 6.212 187.616 30.202 1.548
RF00449 33 32 1 26 0.552 1.000 1.000 0.970 9 3 1.308 154.726 118.292 0.073
RF00040 92 92 0 82 0.529 1.000 1.000 1.000 9 4 1.248 153.410 122.925 0.050
RF00023 1,362 1,362 0 1,699 0.445 1.000 0.999 1.000 11 3 2.076 193.740 93.324 0.229
RF00229 1,257 1,256 1 1,637 0.434 1.000 0.999 0.999 11 3 1.472 193.168 131.228 0.139
RF00222 26 26 0 35 0.426 1.000 1.000 1.000 12 3 1.148 201.557 175.572 0.025
RF00459 223 215 8 341 0.387 1.000 1.000 0.964 7 2 4.776 221.00246.273 0.012
RF00028 10,647 10,229 418 28,820 0.262 1.000 0.991 0.961 13 2 1.476 203.889 138.136 0.075
RF00261 21 21 0 65 0.244 1.000 1.000 1.000 8 4 1.552 171.063 110.221 0.130
RF00373 82 75 7 247 0.233 1.000 1.000 0.915 8 4 1.692 143.645 84.897 0.166
RF00230 2,059 1,753 306 6,507 0.212 1.000 0.998 0.851 8 3 39.006 220.410 5.651 0.471
RF00226 18 18 0 73 0.198 1.000 1.000 1.000 7 4 2.664 108.687 40.798 0.449
RF00009 136 111 25 455 0.196 1.000 1.000 0.816 11 3 3.260 190.164 58.333 0.480
RF00629 6 6 0 25 0.194 1.000 1.000 1.000 8 4 1.816 153.526 84.541 0.248
RF00030 20 20 0 476 0.040 1.000 1.000 1.000 9 5 10.632 175.559 16.512 2.427
RF00100 614 614 0 15,042 0.039 1.000 0.995 1.000 13 7 1.240 198.652 160.203 0.065
RF00004 257 257 0 7,252 0.034 1.000 0.998 1.000 8 4 1.320 128.812 97.585 0.034

Average(∅): 0.629 1.000 0.998 0.983 9.45 3.38 3.100 163.330 101.500 0.29
Total(Σ): 397 130.13 6,859.7 12.236

Table S4: Results ofStructator searches onRFAM10 (1,446 families;3,192,599 sequences) using SSDs describing42 Rfam families. The manually
compiled SSDs used in this experiment are available on theStructator website. They were designed to be highly specific and consistof 397
RSSPs in total with an average of9.45 RSSPs per SSD. These are the same397 RSSPs used in section “Searching large sequence databases”
in the main document. Columns 2, 3, 4, and 5 show the number of sequences containing high-scoring global chains, the numbers of true
positives (TP), false positives (FP), and false negatives (FN), respectively. Sensitivity is computed as #TP

#TP+#FN , specificity as #TN
#TN+#FP ,

accuracy as #TP+#TN
#TP+#FP+#FN+#TN , and precision as #TP

#TP+#FP . Observe that these values strongly depend on the used SSD. The number
of RSSPs constituting an SSD is given in column 10. Column 11 shows the minimal required length of a chain to be considered amatching
chain. Total running times ofStructator operating inBIDsearch andONLsearch mode are given in columns 12 and 13, respectively. Column
14 showsBIDsearch’s speedups overONLsearch. The running time required for chaining of RSSP matches is listed in column 15. Observe
that the sum of running times does not match the times needed for searching with the397 single RSSPs reported in the main document
because here each SSD was searched using a separateStructator program call.

10

