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Abstract

Environmental fluctuations lead to a rapid adjustment of the physiology of E. coli, neces-
sitating changes on every level of the underlying cellular and molecular network. Thus far, the
vast majority of global analyses of E. coli stress responses have been limited to just one level
– gene expression. In this chapter, the comparison and integration of the metabolite compo-
sition together with gene expression data is shown in order to provide a more comprehensive
insight on system-level stress adjustments by describing detailed time-resolved responses of
E. coli to five different perturbations. The comparative analysis of both data sets leads to the
conclusion that the metabolic response is more specific as the general response observed on
the transcript level. Moreover, this is reflected by a much higher specificity during the early
stress adaptation phase and when comparing the stationary phase response to other perturba-
tions. Despite these differences, the response on both levels still follows the same dynamics
and general strategy of energy conservation as reflected by a rapid decrease of central carbon
metabolism intermediates coinciding with down-regulation of genes related to cell growth.

The integrative analysis of both data sets in parallel, by application of co-clustering and
CCA, identified a number of significant condition-dependent associations between metabo-
lites and transcripts. The results confirm and extend existing models about co-regulation
between gene expression and metabolites demonstrating the power of integrated systems ori-
ented analysis.

1 Introduction

The response of biological systems to environmental perturbations is characterized by a fast and
appropriate adjusting of physiology on every level of the cellular and molecular network. Stress
response, as reflected on the level of gene expression, displays some conserved features largely
independent of the organism.



Gene expression stress responses are transient, leading to new steady state levels similar to
the unstressed cells even in the presence of a persistent stress (Lopez-Maury et al., 2009). Stress
response is usually represented by a combination of both specific responses, aimed at minimiz-
ing deleterious effects (e.g. catalase during oxidative stress), or repairing damage (e.g. protein
chaperones under temperature stress) and general responses which, in part, comprise the down-
regulation of genes related to translation and ribosome biogenesis (Hengge-Aronis, 2000). This in
turn is reflected by growth cessation or reduction observed under essentially all stress conditions
and is an important strategy to adjust cellular physiology to the new condition.

E. coli has been intensively investigated in relation to stress responses (Zheng et al., 2001;
Chang et al., 2002; Phadtare and Inouye, 2004; Durfee et al., 2008; Gadgil et al., 2005; Patten et al.,
2004). Major components of the general and specific response regulate key cellular processes
ensuring global control upon perturbation. σs (RpoS) is a central regulator during the response to
many stress conditions. σs controls expression of more than 140 genes involved in metabolism,
protein processing, stress adaptation, transport, and transcriptional regulation (Weber et al., 2005).
Another important global regulator is (p)ppGpp, involved in the stringent response, one of the
mechanisms bacteria use to tune metabolism to available resources. The stringent response is
observed when depleting the system of amino acids, and during carbon starvation (Irr, 1972).

The vast majority of global analyses of the E. coli response to environmental changes have
been limited to just one level of information processing, transcription. Although this may be
explained by both the central importance of gene expression and the availability of mature tech-
niques which permit the study of transcriptional changes on a genome wide level, it is also true
that similar approaches on different molecular levels are largely missing. Specifically, compre-
hensive analyses of changes on the level of metabolites are very rare (Brauer et al., 2006). This
is particularly true for the integrated and parallel analysis of the systems response on two levels
of genome information processing such as the transcriptome and the metabolome (Bradley et al.,
2009).

To better understand a system’s response to perturbation we designed a time-resolved ex-
periment to compare and integrate metabolic and transcript changes of E. coli using four stress
conditions including non-lethal temperature shifts, oxidative stress, and carbon starvation relative
to cultures grown under optimal conditions.

The resulting dataset allowed us to identify parallel and distinct response patterns, represented
by conserved patterns on both the metabolic and gene expression levels, across all stress condi-
tions, which indicates a systematic adjustment to sub-optimal growth conditions via the imped-
iment of energy demanding growth-related processes. In addition to this conserved component,
each response displayed a large amount of stress-specificity, thus allowing the clear discrimination
of the various stresses through clustering of the metabolomic or transcriptomic data. Performing
a time-resolved analysis of the response, however, showed a higher degree of stress-specificity for
the metabolomic response when compared to the transcriptomic response during the early time
points after stress application. As well, metabolic profiles of cultures entering stationary phase
are, in contrary to transcript changes, highly dissimilar to metabolic responses to all other tested
perturbations.

Clustering and canonical correlation approaches were followed to identify coordinated changes
on the transcriptome and the metabolite level, which revealed previously known specific pathway
regulations (such as (Kleefeld et al., 2009)) as well as potential new ones that will require biolog-
ical validation through further experimentation.
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2 Results and Discussion

2.1 Experiment design

An established metabolic profiling platform was used to characterize the metabolic responses of a
E. coli to four different environmental perturbations, comprising oxidative stress, glucose-lactose
diauxic shift, heat, and cold treatments and using an unperturbed culture as a control. Each experi-
mental condition was independently repeated three times and in each of these three biological rep-
etitions, three technical replicas were made, thereby yielding a total of > 550 samples. Metabolic
profiles containing 188 metabolites (95 could be positively identified, 58 could be chemically clas-
sified and 35 of unknown structure) from E. coli cultures before, during, and after acclimation to
the four perturbations plus controls were obtained.

In parallel to GC-MS (Gas Chromatography Mass Spectrometry) measurements, microarray-
based transcript profiling was carried out for samples from time points 10-50 min post-perturbation
plus two control time points prior to each perturbation for all conditions except the oxidative
stress experiment in which all samples (12 time points) were used for transcript profiling covering
the entire growth curve, including the stationary phase. Again, three biological replicates were
analyzed for each time point, but in contrast to the metabolic profiling no technical repetitions
were performed.

The overall measurement reproducibility was determined for all independently performed bio-
logical experiments. Relative standard deviation (RSD) of technical and biological replicates was
calculated, and showed high reproducibility: the median RSD of metabolic measurements for all
biological replicates lay within the range of 19.5 (cold) to 27.1% (oxidative stress).

The experiments were designed to both compare and contrast the growth phases within any
single applied condition, and also of similar (parallel) time points from the different perturbations
on both the metabolic and transcript level. However, of greatest interest was the dynamic response
of the system to each of the different conditions applied. Therefore each experiment was sampled
with at least 11 non-linear time points with the highest sampling resolution during the adaptation
phase of the culture immediately following perturbation. The five experimental conditions resulted
in three distinct growth curves. Exponentially growing cells confronted with oxidative stress and
glucose-lactose shift arrested growth for approximately 40 min and then resumed logarithmic
growth (40-210 min after stress) until reaching stationary phase at about 210 min after stress.
After both heat and cold stress application E. coli stopped growing for approximately 40-50 min
and then slowly recovered growth (50-260 min) although at a much slower rate. Within the time
frame of the experiment (260 min after stress application) heat and cold stressed cultures did not
reach stationary phase. Unperturbed control cultures reached stationary phase about 210 min after
having reached OD 0.6 (the time-point of stress application for the treated cultures).

2.2 Growth phase has a predominant influence on metabolic profiles

Here we describe the significant metabolic changes (α = 0.05, ratio≥ 2) relative to time points
prior to perturbation, illustrating the influence growth phase has on the metabolic composition. We
first analyzed the changes of the metabolite composition across all time points of all conditions.
As cultures were harvested prior to perturbation in mid-logarithmic growth, a comparison of the
metabolic response from each condition to the average of metabolites taken prior to perturbation
is possible.

Fig. 1 shows the metabolic profiles of all identified metabolites for all four stress conditions
and the control relative to time points prior to perturbation. One of the most striking features of
the heat map is the strong influence of the growth phase on metabolite levels.

During both temperature experiments (cold and heat stress) the temperature was maintained
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Figure 1: Median for metabolite levels. Per column, values denote the median of three independent
biological repetitions of each condition, expressed as ratios, relative to the median of time-point prior
to perturbation. Hierarchical clustering was performed on the 95 identified metabolites. Within each
condition, time points are ordered chronologically. Sampling time is shown in the top-panel indicating
the time after perturbation in min. The color indicates the growth phase: blue-exponential growth,
magenta-growth reduction or cessation. Time points before stress application are indicated by their
optical density.

at the altered level after the initial shock treatment. In consequence, no resumption of exponential
growth was observed (cf. Jozefczuk et al. (2010, Suppl. Material, Fig. 2)). In this sense the
applied cold and heat stresses are “permanent” which is largely reflected in the metabolic readout.
After application of cold or heat, metabolic levels stay fixed or gradually recover after the initial
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perturbations immediately following stress. This is in contrast to the more transient changes seen
following hydrogen peroxide treatment and carbon source shift which both restore exponential
growth after 40 min post-perturbation.

2.3 The conserved metabolic response pattern is in agreement with the energy con-
servation program

The requirement to conserve energy is an important feature of all stress responses and this neces-
sity has been associated with many stress response mechanisms including the stringent response
(Durfee et al., 2008), and the general stress response (Weber et al., 2005). The implementation
of the latter has been shown through gene expression studies to reduce energy expenditure via the
repression of genes involved in growth, cell division and protein synthesis (Weber et al., 2005).
The repression of transcripts involved in aerobic metabolism has also been seen in response to
oxidative stress (Chang et al., 2002), and carbon starvation (Nystrom, 2004). It has been shown
that the stringent response involves the down-regulation of transcripts involved in transcription
and translation (Barker et al., 2001).

In light of these transcriptome based observations we decided to see if the general decrease of
central metabolism is also reflected on the metabolite level across the different stress conditions.
Since induction of the general stress response takes place directly after perturbation we concen-
trated on changes specifically during the first 40 min after application of the stress, the time where
cells had not yet resumed growth (Jozefczuk et al., 2010, Suppl. Material, Fig. 2). Metabolic
profiles of all identified metabolites are presented in Fig. 1, while all significant changes can be
found in Jozefczuk et al. (2010, Suppl. Material, Table 1).

Consistent decrease in levels of metabolites related to glycolysis, the pentose phosphate path-
way (ppp), and the TCA cycle is one of the most pronounced effects of the stress application
(Jozefczuk et al., 2010, Suppl. Material, Fig. 3). Those include rapid decrease of glucose-
6-phosphate (glc-6-P), glyceric acid-3-phosphate (3PGA), pyruvic acid followed by decrease of
succinic acid, erythrose-4-phosphate (E-4-P) and ribose-5-phosphate (ribose-5-P) within 40 min,
and 6-phosphogluconic acid 90 min after heat stress application. After oxidative stress application
within 20 min glc-6-P, 3PGA, malic acid and 2-ketoglutaric acid decrease. Levels of 2-ketoglutaric
acid decreased also 10 min after glucose-lactose shift. At 90 min following cold stress levels of
malic acid and ribose-5-P significantly decreased. Noteworthy is the decrease in levels of ribose-
5-P which is precursor of the nucleotide biosynthesis. The decrease in nucleotide biosynthesis is
strongly reflected also on transcript level (see below) being one of the most pronounced responses
common to different stress conditions (Gasch et al., 2000).

The only glycolytic intermediate which accumulates during the adaptation phase is phospho-
enolpyruvic acid (PEP) which transiently increases 10 min after the glucose-lactose shift. Since
PEP serves as phosphate donor for the phosphotransferase system (PTS) responsible for glucose
import, swift accumulation of PEP was recently proposed to be a direct effect of decreased glucose
import caused by low glucose concentration in the medium (Brauer et al., 2006).

Another general effect of stress application is the accumulation of various amino acids (Joze-
fczuk et al., 2010, Suppl. Material, Fig. 3). During the adaptation phase levels of alanine, as-
paragine, lysine, isoleucine, methionine, leucine, aspartic acid, glutamic acid, phenylalanine and
homoserine significantly increase under cold; isoleucine, threonine, phenylalanine, lysine, ala-
nine, asparagine, glutamic acid and homoserine under heat; asparagine in lactose shift; alanine
and asparagine in oxidative stress experiment.

The increase in amino acid levels could be, at least in part, a result of increased protein degra-
dation (Mandelstam, 1963). Degradation of proteins can be caused by the need to eliminate ab-
normal proteins formed as a results of stress, or can be interpreted as a means to increase the
availability of amino acids required for the synthesis of new proteins important for survival un-
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der the new, less favorable condition (Willetts, 1967). It has been shown that protein degradation
is influenced by the increase of ppGpp levels during amino acid and carbon starvation and this
degradation was suggested to be dependent on the action of Lon and Clp proteases (Kuroda et al.,
2001). Proteins which are preferentially degraded by proteases are free ribosomal proteins, tagged
with a polyphosphate chain which stimulates proteolytic attack (Kuroda et al., 2001). In line with
those findings we observed a massive increase in levels of various amino acids upon the entry to
the stationary phase of growth starting from 210 min following oxidative stress, lactose shift, and
in parallel time points in the control cultures (Suppl. Material, Table 1).

Whereas many amino acids accumulate, some do show a decrease. Methionine levels sig-
nificantly decrease following both heat and oxidative stress, (cf. Jozefczuk et al. (2010, Suppl.
Material, Table 1)) which is in agreement with methionine synthase (MetE) being very sensitive
to oxidation. The addition of methionine to the growth medium leads to increased survival of E.
coli during heat stress and a shortened growth lag during oxidative stress (Hondorp and Matthews,
2004). As oxidized MetE is inactive, the resulting methionine limitation might affect protein trans-
lation (Gold, 1988). In line with these findings we observe an increase in methionine levels upon
growth resumption in the oxidative stress experiment (Fig. 1).

Taken together the changes observed on metabolic level specifically the decrease in most mea-
sured metabolites of the TCA cycle and the glycolysis pathway are in agreement with the general
energy conservation strategy previously reported for the transcriptomic response.

2.4 Major changes at the metabolic and transcript level coincide with growth tran-
sitions

As discussed in the Introduction, both specific (Fig. 1) and general responses ((Gasch et al., 2000;
Weber et al., 2005)) were observed. To further probe conserved and non-conserved responses
we analyzed time points displaying the highest number of changes. To this end the number of
metabolites and transcripts which significantly differ between two successive or neighboring time
points within each condition were calculated.

When performing this analysis for all conditions a highly conserved pattern emerged for both
transcripts and metabolites (Fig. 2 A and Fig. 2 B). Thus on both levels the largest number
of changes is observed within the first time point following stress application with the largest
number of changes on the transcriptome level displayed by the heat stress conditions. As to the
metabolite pattern the diauxic shift displays the largest number of changes followed by cold stress,
oxidative stress and heat stress. It is important to note that no significant changes were observed for
the control cultures during this growth period (mid log growth phase) indicating that exponential
growth phase is represented on both levels by few if any changes on the level of transcripts and
metabolites which is in agreement with transcript level observations (Chang et al., 2002).

Overrepresentation analysis of functional categories (based on gene ontology - GO) of genes
which change at 10 min past stress application reveals a conserved pattern across all conditions.
Genes associated with amino acid, amine, nucleotide and ribonucleotide biosynthetic processes
and ATP synthesis, proton transport were down-regulated (Jozefczuk et al., 2010, Suppl. Material,
Fig. 4). These findings are in agreement with comparable experiments performed for both yeast
and E. coli (Gasch et al., 2000; Chang et al., 2002; Durfee et al., 2008). Interestingly we observed
down-regulation of genes assigned to “flagella motility” GO term across all conditions. Since
flagella motility requires a steep proton gradient between the periplasmatic space and the cyto-
plasm, decreased cell motion could indicate energy deficiency. Other biological processes which
depend on proton gradient are ATP synthesis and trans-membrane transport. However, in contrast
to genes involved in ATP synthesis which decrease following all perturbations, genes encoding
general transport increase during glucose-lactose shift and oxidative stress. This could indicate
that transport of external carbon sources is favored over chemotaxis (Lemuth et al., 2008).

6



5
10

15
20

0 0 0 0NA NA NA NA

−
16 −

1 10 20 30 40 50 93

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
m

et
ab

ol
ite

s

0.
2

0.
6

1.
0

1.
4

G
ro

w
th

 c
ur

ve
(O

D
 6

00
n

m
)

Control

0
20

0
60

0
10

00

2 1 0 0NA NA NA NA

−
16 −

1 10 20 30 40 50 93

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
ge

ne
s

0.
2

0.
6

1.
0

1.
4

G
ro

w
th

 c
ur

ve
(O

D
 6

00
n

m
)

Control

5
10

15
20

13

2
3

−
10 0 10 20 30 40 86

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
m

et
ab

ol
ite

s

0
10

20
30

40
R

el
at

iv
e 

ex
pr

es
si

on
 o

f 
ka

tG
 g

en
eOxidative stress

0
40

0
80

0
12

00

200

97
NA

−
10 0 10 20 30 40 86

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
ge

ne
s

0
10

20
30

40

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

ka
tG

 g
en

eOxidative stress

−1
0

5
10

15
20 19

0
1 1

−
10 0 10 20 30 40 86

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
m

et
ab

ol
ite

s

0
50

00
0

15
00

00
R

el
at

iv
e 

ex
pr

es
si

on
 o

f 
la

cZ
 g

en
eGlucose-lactose shift

Time [min]

0
20

0
60

0
10

00

459

131

0 25NA NA NA

0 10 20 30 40 86

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
ge

d 
ge

ne
s

0
50

00
0

15
00

00

R
el

at
iv

e 
ex

pr
es

si
on

 o
f l

ac
Z

 g
en

eGlucose-lactose shift

5
10

15
20

11

0
1

0 NA

−
19 −

5 10 20 30 40 91

Time [min]N
um

be
r 

of
 s

ig
ni

f. 
ch

an
g

ed
 m

et
ab

ol
ite

s

0
5

10
15

20
25

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

cl
pB

 g
en

eHeat stress

0
40

0
80

0
12

00 1144

46 6 1 NA

−
19 −

5 10 20 30 40 91

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
g

ed
 g

en
es

0
5

10
15

20
25

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

cl
pB

 g
en

e

Heat stress

5
10

15
20

15

2 2
1

NA NA NA

−
23 −

4 10 20 30 40 92

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
g

ed
 m

et
ab

ol
ite

s

0
20

40
60

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

cs
pB

 g
en

eCold stress

0
40

0
80

0
12

00

152

14 4 0NA NA

−
23 −

4 10 20 30 40 92

Time [min]

N
um

be
r 

of
 s

ig
ni

f. 
ch

an
g

ed
 g

en
es

0
20

40
60

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

cs
pB

 g
en

eCold stress

NA

NA NANA NA

NA NA NA

NA NA NA0 NA NA 12 1

Figure 2: Different perturbations result in similar dynamics of responses on metabolite and
transcript level. Number of changing metabolites (A) or transcripts (B) between neighboring time
points is shown as a histogram for time points 10-90 min after stress (significance level alpha =
0.05). The actual numbers of changes are shown above each bar. The dotted grey line indicates the
growth curve, while the solid grey line represents the expression of genes indicative for each condition:
oxidative stress-katG; heat stress-clpB; glucose-lactose shift-lacZ; cold stress-cspB).
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The coincidence of the response on both levels can indicate that the changes on the metabolic
level are not transcriptionally dependent. Global proteomics analyses indicated that protein levels,
posttranslational modifications and stability are directly affected by different perturbations (for
review see (Kultz, 2005)). Since enzyme abundance and activity have predominant influence on
biochemical reactions, the possibility that metabolic changes are caused by enzymes, directly
influenced by environmental conditions, cannot be excluded. This possibility could be tested by
application of transcription inhibitors (e.g. Rifampicin) and analyzing the kinetics of metabolic
response. It would be interested to further extend this concept by applying protein synthesis or
protein posttranslational modifications inhibitors.

2.5 Stress response displays higher specificity on the metabolite as compared to the
transcript level with respect to the individual stress applied

As described above, the general response pattern on both metabolite and transcript level is similar
with respect to its kinetics within 40 min post-perturbation. To see whether or not this pattern
is due to similar or rather dissimilar responses, we determined which metabolites and transcripts
change significantly (alpha = 0.05) during the different stress treatments in comparison to the
relative time points from control. Subsequently we asked whether or not the observed changes
display a significant overlap between different conditions by applying Fisher exact test. This
analysis enables us to compare the specificity (cf. textitMethods section) of E. coli response to
perturbation on the metabolome with the transcriptome. Fig. 3 displays these results for all pair-
wise comparisons of experimental conditions in a binary form: 1 encodes a significant overlap
or dependence of the response of two conditions, whereas a 0 entry corresponds to no significant
overlap, i.e. an independent response. The absolute numbers of changing genes and metabolites
are shown in Jozefczuk et al. (2010, Suppl. Material, Fig. 5)).

With respect to the metabolites as shown on Fig. 3 A for the first post-perturbation time point
(10 min) stress specificity is high with only one of the six possible comparisons displaying signif-
icant similarity (heat and oxidative stress). At later time points (20 and 30 min post-perturbation)
three out of six conditions show overlap whereas after 40 min only heat and oxidative stress still
overlap. We summarize these findings by the positive predictive value (PPV) of the metabolic
response of 71%.

We next analyzed the overlap on the transcriptome level. However, as the number of metabo-
lites analyzed is less than the number of transcripts, a direct comparison between both data sets
would be biased. Moreover, this could lead to a higher level of conservation on the transcript
level due to the inclusion of many general transcriptional responses (as exemplified by ESR in
yeast (Gasch et al., 2000)) not paralleled by any metabolite data. Therefore, the transcriptome
analysis included only those 288 genes which are directly linked to metabolic enzymes (based
on EcoCyc), by considering genes where either the substrate or the product was contained in the
metabolite dataset (Jozefczuk et al., 2010, Suppl. Material, Table 2). In contrast to the metabolite
data, more pairwise comparisons of different conditions show dependence in the transcriptome
response (Fig. 3 B). Our results show a significant overlap for three comparisons within 10 min,
and five pairwise comparisons 20 min after stress (Fig. 3 B).

The number of dependent responses decreases with increasing time; specifically the response
of the diauxic shift experiment loses similarity to other responses correspondingly to the metabolic
response (Fig. 3 A). The highest similarity was found for the response towards heat and oxidative
stress at both levels. This corroborates the link between responses to heat and oxidative stress
observed in previous studies (Farr and Kogoma, 1991) and is in further agreement with the results
of the HCA presented in Jozefczuk et al. (2010, Suppl. Material, Fig. 7).

Taken together, the response on metabolic level is obviously more specific as the PPV on the
metabolites is 71% in contrast to 42% on the transcript level. Our observation that the metabolic
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Figure 3: Metabolic profiles are more stress specific as compared to changes at gene expression
level. Similarities between responses to different conditions on metabolic (A) and transcript (B) level
relative to control condition. Parallel time points post perturbation (t1: 10 min; t2: 20 min; t3: 30
min; t4: 40 min) from different experiments were compared against corresponding time points from
control. The significance of the overlaps between compared conditions was calculated based on Fisher
exact test. The significant overlaps (α = 0.05) are marked by 1 (blue), while no significant overlaps
are marked with 0 (orange). The number of significant overlaps between conditions was compared on
both levels and is shown in percentage to the total number of possible comparisons. The actual number
of metabolites and transcripts which overlap between compared conditions is given in Jozefczuk et al.
(2010, Suppl. Material, Fig. 5).

response displays a higher level of specificity as compared to the transcriptomics response can-
not be explained in a straightforward way. One interpretation is that metabolism has both the
capacity to react faster and the need to react more specifically compared to the more midterm
adjustment based on reprogramming of the transcription-translation machinery. A fast delivery
of metabolites needed to protect the system could be crucial for the initial survival of the system
before more massive changes brought about by changes on the gene expression program come
into play. One example of such mechanism is osmotic stress response in Synechocystis, where
the concentration of compatible solute is regulated on the posttranscriptional level of protein ac-
tivity triggered directly by the stress and paralleled by a more time-consuming induction of gene
expression (Hagemann, 1996).

2.6 In contrast to the highly conserved transcriptional response pattern, the metab-
olite response is different for growth arrest induced by stress and by reaching
stationary phase

E. coli responds to stress by ceasing or reducing growth. It has been shown previously that
changes on the transcript level, as a result of stress-induced growth arrest, significantly overlap
with changes observed when cells cease to grow due to entering stationary phase (Chang et al.,
2002; Weber et al., 2005). In light of the observation that the stress-induced changes on the metab-
olite level in the initial response phase display a higher stress specificity compared to the transcript
level, we were interested to determine the degree of similarity of the changes on the metabolite
level observed in response to the two different growth cessation conditions.

To this end we compared time points from the stress adaptation phase and time points taken
210 min after stress application (cf. Methods section). At this time point the lactose shift, oxidative
stress, and the control experiment had entered the stationary phase (Jozefczuk et al., 2010, Suppl.
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Figure 4: Metabolite profiles of stationary phase culture differ from metabolic profile of stress
arrested cultures. Changes in metabolites during stationary phase are similar between different cul-
tures (A) but different from metabolites changing as a result of stress (B) whereas transcripts changing
during stationary phase or in response to stress are very similar (C). The significance of the overlaps
between conditions was calculated based on the Fisher exact test. Significant overlaps (α = 0.05) are
marked by 1 (blue), whereas insignificant overlaps are marked with 0 (orange). The number of signifi-
cant overlaps between different conditions is higher for transcript responses (PPV=25%) as compared
to metabolic responses (92%). The actual number of metabolites and transcripts which overlap be-
tween conditions is given in Jozefczuk et al. (2010, Suppl. Material, Fig. 6)

Material, Fig. 2). Both temperature stress experiments were excluded from this comparison as,
due to the maintained temperature stress, these cultures do not resume exponential growth and
therefore do not run out of nutrients and enter stationary phase.

When comparing only the metabolic profiles for the three stationary phase samples a high de-
gree of similarity is seen (Fig. 4 A), suggesting an underlying common cause. Among the metabo-
lites which change consistently in all stationary phase conditions PEP, isoleucine, and phenylala-
nine all increased whereas homoserine consistently decreased. A decrease in homoserine levels
and an increase in PEP have previously been shown under carbon and nitrogen starvation (Brauer
et al., 2006). The assumption of carbon starvation as the common underlying source is further
supported by transcriptome data revealing an up-regulation of carbon starvation induced genes
(csiD, csiE, cstA).

The metabolites which significantly change their concentration upon entry into stationary
phase (210-260 min) were subsequently compared to those whose levels changed within 10-40
min following the respective perturbation. Only one of the 12 pair-wise comparisons of metabolic
responses, (heat stress response vs. stationary phase of the oxidative stress) resulted in a significant
similarity as based on the Fisher exact test (Fig. 4 B; see Jozefczuk et al. (2010, Suppl. Material)
for a discussion regarding the overlap between stationary phase and heat stress). This indicates a
high degree of dissimilarity (PPV=92%) between metabolic responses during growth cessation as
induced via stationary phases or via various stress applications which is in strong contrast to the
high level of overlap reported for the response on the transcript level (Chang et al., 2002).

To assure ourselves that the difference described above between metabolite and transcript char-
acteristics is not due to differences in experimental conditions, we performed the same comparison
between the transcriptome changes observed during growth cessation due to stationary phase as
compared to induced by stress application on our own data set. To this end stationary phase
samples from the oxidative stress experiment were analyzed for the transcriptome and compared
against the transcriptome changes occurring as a result of stress application. With the exception
of the cold stress response a highly significant overlap between stationary phase induced growth
arrest and stress induced growth arrest was observed (PPV=25%) thus further strengthening the
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significance of the observed disparate behavior for the metabolite response (Fig. 4 C).

2.7 The level of coordination between transcript and metabolite data is strongly
influenced by the environmental conditions

As outlined in the Introduction biological systems respond to changes in their environments by
adjusting their entire physiology to the new condition involving different levels of the system. In
this study we have monitored responses in parallel on the transcriptome and the metabolite level
thus allowing one to compare the level of coordination between both molecular readouts.

In order to perform this analysis we followed two different approaches, an untargeted (holistic)
co-clustering approach and a targeted approach using prior biological knowledge in conjunction
with canonical correlation analysis. In the co-clustering approach, metabolites and transcripts were
jointly subjected to a k-means clustering. The resulting clusters were subsequently analyzed for
overrepresentation of transcripts and metabolites from the same biochemical pathway (cf. Methods
section). When applying this approach to the entire data set, i.e. combining the measurements
of all individual stress conditions, no co-clustering of metabolites and transcripts from the same
pathway could be observed (data not shown).

Applying this co-clustering approach respectively to each growth phases of each stress condi-
tion separately (e.g. all time points from the oxidative stress condition), we were able to identify
several metabolites and transcripts from the same pathway within the same cluster, although the
overall enrichment is restricted to ≈ 10% of the derived clusters. Furthermore, several gene-
metabolite pathway associations are not preserved and were found for only one of the conditions.
Interestingly, the oxidative and cold stress conditions exhibit the largest number of associations
(cf. Jozefczuk et al. (2010, Suppl. Material, Table 3) for a full representation of the results).

One striking observation immediately apparent was the overrepresentation of amino acids in
the gene-metabolite associations and more specifically the association between amino acids and
genes involved in amino acid catabolism (cf. Fig. 5 which shows in an exemplary fashion a
schematic view of the corresponding pathway and the representation of the corresponding tran-
script and metabolite levels). Thus asparagine levels are highly associated with transcript levels of
the asparaginase gene ansB threonine and its precursor – aspartic acid correlate with expression
of the tdh and kbl genes, and arginine correlates with expression of genes involved in the arginine
and ornithine degradation pathway. Glutamine levels correlate with a number of transcripts associ-
ated with arginine biosynthesis which might possibly indicate a common regulation by glutamate
which is a precursor for both arginine and glutamine synthesis.

In contrast to the numerous associations between amino acid catabolism genes and amino
acids, only few associations are observable for amino acids and corresponding genes encoding
biosynthetic enzymes. Examples for this type of association are observable between valine and
one of the enzymes from the valine biosynthesis pathway – IlvC and between histidine and genes
coding two enzymes involved in histidine biosynthesis HisB and HisC. The only association ob-
served for a non-amino acid as a metabolite and a related gene is the co-clustering of trehalose and
the gene treA encoding its degrading enzyme trehalase under stationary phase (Fig. 5). Most of
the data described here and in other studies indicate that environmental changes are most profound
in central metabolism especially with respect to the early response.

In a second approach we therefore limited the analysis to particular pathways covering parts
of central metabolism which bears the further advantage of significantly reducing data complex-
ity especially with respect to the transcripts, thus allowing other algorithms to be applied. More
specifically metabolites from glycolysis, the TCA cycle, the pentose phosphate pathway (ppp) and
anaerobic respiration were subjected to a canonical correlation analysis (CCA) together with tran-
script data of all enzymes from those pathways as derived from EcoCyc. As we are also interested
in general regulators we further included several global transcriptional regulators, known to be
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Figure 5: Co-clustering between metabolic changes and transcripts of corresponding pathway
genes.Representative examples of the condition specific co-clustering analysis are shown (for full list
of associations see Jozefczuk et al. (2010, Suppl. Material, Table 3)). For the identified conditions
pathways with the respective genes and measured metabolites are shown in schematic way. Changes
in transcript are shown next to the genes, metabolic changes next to metabolites across subsequent
time points (x-axis). Both changes are presented on log2 scale.

involved in metabolism control (ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc). A complete list of all
metabolites and transcripts covered is given in Jozefczuk et al. (2010, Suppl. Material, Table 4).

Fig. 6 shows in an exemplary fashion the canonical structure correlation plot as a result of the
CCA, applied to the control condition data (see Jozefczuk et al. (2010, Suppl. Material, Fig. 8)
for the remaining two conditions discussed in this chapter). The results for the three conditions
are summarized in the form of projection onto pathways in Fig. 7 A-C.

When applying CCA to all conditions separately, multiple associations were observed only
for three conditions: control growth, heat stress and stationary phase. The visualization of the
canonical structure correlations with the first two canonical variates (cf. Chapter 4.9 and Meth-
ods section), shows a number of metabolites in close proximity to genes coding enzymes which
catalyze their biochemical conversions. For the remaining three conditions cold stress, oxidative
stress and diauxic shift) very few or no intuitive associations were observed.

Under control conditions two groups of highly associated metabolites and transcripts are ob-
served (Fig. 6 and 7 A, colored in magenta and blue). The first comprises all measured metabolites
from the oxidative ppp (glc-6-P, 6-P-gluconic acid, ribose-5-P and E-4-P) in addition to metabo-
lites from the glycolytic pathway (3PGA and PEP in addition to glc-6-P) forming a strong associa-
tion with two genes encoding pathway enzymes, i.e. rpe encoding ribulose phosphate 3-epimerase
and pps encoding PEP synthase.

The high association of metabolites and transcripts from these two pathways is only observed
under optimal growth conditions and is largely lost under all other conditions analyzed such as
heat stress and during the stationary phase (Jozefczuk et al. (2010, Suppl. Material, Fig. 8)). This
tight coupling between glycolysis and the ppp might reflect the strong demand of fast growing cells
for synthesis of high levels of the nucleotide precursor ribose-5-P. It is known that exponentially
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Control condition

Figure 6: Visualization of the CCA results of metabolites and genes involved in primary metabo-
lism under exponential growth. The canonical structure correlations of 69 genes and 11 metabolites
covering ppp, glycolysis, TCA cycle, anaerobic respiration and 8 transcriptional regulators involved in
metabolic control with the first two canonical variates show two distinct groups of metabolite-transcript
associations. The first group, colored in magenta, consists of metabolites from the oxidative pentose
phosphate pathway (glc-6-P, 6-P-gluconic acid, ribose-5-P and E-4-P) as well as all measured metabo-
lites from the glycolytic pathway (3PGA and PEP in addition to glc-6-P) and the genes pps and rpe.
The second group, colored in blue, consists of TCA cycle intermediates, i.e. 2-ketoglutaric, fumaric,
malic, and succinic acids. In addition the mqo gene encoding malate-quinone oxidoreductase (MQO)
and pyruvic acid belong to this group.

growing cells metabolize glc-6-P into fructose-6-phosphate (fru-6-P) and 3PGA by glycolytic en-
zymes, and next use transketolase and transaldolase enzymes from ppp to convert two molecules
of fru-6-P and one molecule of 3PGA into 3 molecules of ribose-5-P (Berg et al., 2006). Finally
these data suggest that both rpe and pps could have a major regulatory function mostly exerted via
transcriptional regulation of both genes.

The second group of coordinated metabolites and genes found under optimal growth condi-
tions form part of the TCA cycle. Thus the expression of the mqo gene encoding malate-quinone
oxidoreductase (MQO) is associated with all TCA cycle intermediates measured: 2-ketoglutaric
acid, fumaric acid, malic acid, and succinic acid. In addition, pyruvic acid which is located at the
key point between glycolysis and the TCA cycle, shows association with mqo. MQO catalyzes the
irreversible oxidation of malate to oxaloacetate (Kather et al., 2000) which in turn regulates the
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Figure 7: Canonical correlation analysis (CCA) reveals condition dependent association between
response dynamics on the transcript and metabolite level: comparison of metabolite-transcript
associations of central metabolism between control growth, heat stress, and stationary phase.
Metabolites and genes displaying a close association in the CCA were extracted (Fig. 6 and Jozefczuk
et al. (2010, Suppl. Material, Fig. 8)) and projected on a schematic representation of the TCA cycle,
glycolytic pathway and ppp. Dotted lines indicate optional anaerobic pathways. Measured metabolites
are indicated in bold. Biosynthetic genes are circled, regulatory genes displayed in diamond shape.
Transcripts and metabolites showing a close association in the CCA are indicated by the same color.
With respect to heat stress a selected part of the associations are shown.

activity of citrate synthase which is a major rate determining enzyme of the TCA cycle (Neidhardt
and Curtiss, 1996). Though the conversion of malate to oxaloacetate is also catalyzed by other
enzymes including the NAD-dependent malate dehydrogenase (mdh), it was recently suggested
that under optimal growth conditions MQO is the major route of malate oxidation (van der Rest
et al., 2000). The strong association between mqo gene expression and multiple members of the
TCA cycle as well as pyruvate suggest mqo expression to play a major role for the regulation of
the TCA cycle, which need to be experimentally validated.

The tight coupling between the oxidative ppp and glycolysis is lost however, under non-
optimal growth conditions. Thus during stationary growth no association is observed between
any metabolites and transcripts related to those pathways (Fig. 7 C). In contrast under heat stress
(Fig. 7 B, Jozefczuk et al. (2010, Suppl. Material, Fig. 8 B)) the expression of zwf gene encod-
ing the glc-6-P dehydrogenase correlates with three intermediates of the ppp including glc-6-P,
6-phosphogluconic acid and E-4-P suggesting a control of the flux through ppp by changes in zwf
expression. Expression of zwf gene which encodes the first key enzyme from ppp is amongst
others controlled by the SoxRS regulon in response to oxidative stress (Fawcett and Wolf, 1995).
Correlation of expression of zwf and ppp metabolites under heat stress indicates a similar redi-
rection of ppp under heat stress conditions again emphasizing the similarity between heat and
oxidative stress.

Analysis of the stationary phase data reveals amongst others the association of three metabo-
lites of the TCA cycle including malic, fumaric and succinic acid with the expression of sev-
eral genes including fumarate reductase (frd C,D), fumarase B (fumB), and fumarate-succinate
antiporter (dcuB). This is a most interesting observation as fumaric acid is known to serve as
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an alternative electron acceptor during anaerobic respiration further regulating the expression of
genes associated with anaerobic respiration including the four genes mentioned above (Jones and
Gunsalus, 1987; Zientz et al., 1998; Golby et al., 1999). The mechanism of this regulation in-
cludes activation of the DcuS-DcuR two component system by fumaric acid, which subsequently
stimulates expression of target genes (Kleefeld et al., 2009). Our data confirm this model and
in addition demonstrate that this regulation only holds true under stationary phase characterized
amongst others by limiting oxygen availability. This model can be further extend based on the
tight coordination between the expression of both fumarate reductase genes (frdC, frdD) also with
malic and succinic acid that expression of these genes might be regulated by levels of all three
metabolites, a proposal recently also suggested by (Kleefeld et al., 2009).

A complex picture different from both the stationary phase and the optimal growth conditions
emerge from the analysis of the heat stress experiment concerning the TCA cycle. Inspection of
the canonical loadings shows amongst other associations a high similarity between the expression
levels of pflB gene coding pyruvate formate-lyase (PFL) and concentration of pyruvic acid. Pyru-
vic acid further is strongly associated with the transcriptional regulator FNR (fnr). This association
is in full agreement with a model developed for anaerobic conditions (which are approximated by
heat stress) which suggests that expression of pflB is regulated in an FNR dependent manner by
pyruvic acid (Sawers and Bock, 1988). It is interesting to see that also two other genes from up-
per glycolysis (pgk and pgi) are in close proximity of fnr, pflB, pyruvic acid and 3PGA . Both of
these genes seem to have an important function in anaerobic metabolism. The expression of pgk
encoding phosphoglycerate kinase is induced under anaerobiosis (Nellemann et al., 1989) while
a mutation in pgi was shown to reduce the expression of several anaerobically induced genes, in-
cluding PFL, with glucose as the sole carbon source (Rasmussen et al., 1991). Interestingly, the
effect of the pgi mutation could be overcome by addition of pyruvic acid (Rasmussen et al., 1991).
This, together with our data, might suggest that the induction of PFL expression is dependent on
the presence of glycolytic metabolic intermediates, whose synthesis is blocked in pgi mutant, most
likely pyruvic acid (Leonardo et al., 1993).

This leads to the hypothesis that products of both pgk and pgi could play important roles
under hypoxic conditions by controlling the levels of pyruvate which is then converted by PFL in
anaerobic respiration.

3 Conclusion

The time-resolved and combined analysis of the transcriptomic and metabolomic response of E.
coli to four different stresses reveals conserved and specific responses on both levels of infor-
mation processing. Different stress conditions have similar global impact on cell metabolism
which consists on energy conservation strategy as is evident on the transcript and metabolic level.
Co-occurring responses on the transcript and metabolic level were observed as peaks of maxi-
mal changes directly post-perturbation irrespective of the stress applied. The co-occurrence of
metabolic and transcript responses was observed for functionally related genes and metabolites
and proposed to be an effect of strong co-regulation of both levels of response. Specificity of the
response is higher on the metabolome as compared to the transcriptome level especially during
early time points after perturbation. Stress induced growth cessation is similar to stationary phase
growth cessation when compared on the level of the transcriptome, but different when compared
on the level of the metabolome.

Application of co-clustering and canonical correlation analysis on combined metabolite-
transcript data identified a number of condition dependent significant associations between
metabolites and transcripts. The results obtained confirm and extend existing models about co-
regulation between gene expression and metabolites demonstrating the power of integrated sys-
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tems oriented analysis.

4 Methods

4.1 E. coli Culture Conditions

For all experiments E. coli strain MG1655 was used, obtained from the American Type Culture
Collection (ATCC R©700926). The minimal medium used for all experiments was a modification
of MOPS (morpholinopropane sulfonate) minimal medium (Neidhard et al., 1974) obtained from
Teknova, CA (product number M2006) which contains 86 mM NaCl, 9.5 mM NH4Cl, 5 mM
K2HPO4 and 0.2% glucose.

All cultures were grown aerobically in a thermostatically controlled 37◦C culture room. Cul-
tures (150ml culture volume) were stirred by magnetic stirrers at 330 rpm (Thermo Scientific Var-
iomag Multipoint 6in) 1000ml Erlenmeyer flask. Analysis of gene expression data for transcripts
indicative for anaerobiosis showed the absence of any oxygen shortage under optimal growth con-
ditions and rather in contrast showed a slight induction of genes associated with aerobic respiration
e.g. ubiquinone oxidoreductase (nuoH, nuoN, nuoL). Induction of expression of genes associated
with hypoxia was however observed following glucose-lactose shift, oxidative stress and more
pronounced during heat and stationary phase. Temperature and pH were carefully monitored dur-
ing growth. Starting cultures were inoculated from a single colony and grown overnight. Each
experimental culture was then inoculated from such an overnight culture at a dilution of 1:20 into
150 ml fresh MOPS minimal medium in a 1000 ml flask. Growth of cultures was monitored by
measuring optical density (OD) at 600nm using an Eppendorf Biophotometer. All cultures were
grown until early-mid log phase (OD 0.6), at which point each of the perturbations was applied.

Oxidative Stress

200 µg/ml of 30% pre-warmed hydrogen peroxide (Fluka) was added to 150 ml constantly stirred
(330 rpm) cultures kept in 1000 ml flasks. The amount of hydrogen peroxide used for the stress
was calculated to cause a non-lethal ∼40 min lag phase. This was monitored by plating on solid
LB medium and calculating viable cell number.

Cold Stress

Cultures were transferred from 37◦C into an ice cold water bath in order to lower the temperature,
while stirring, to 16◦C in less than 2 min. When 16◦C had been attained, flasks were transferred
to a 16◦C water bath while constantly stirring (330rpm).

Heat Stress

Cultures were transferred from 37◦C to a 50◦C water bath. While stirring, the temperature of each
culture was raised to 45◦C in less than 2 min. The constantly stirring (330rpm) cultures were then
transferred to a 45◦C water bath to maintain this temperature. In both temperature treatments the
temperature was constantly monitored ensuring both temperatures are constant.

Glucose-Lactose Shift

Carbon source concentrations of 0.15% lactose and 0.05% glucose were used (150 ml culture in
1000 ml flasks, 330 rpm stirring). This meant that the growth lag phase was observed at OD∼0.6.
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4.2 Sampling

The first two time points were taken before stress at OD 0.5 and 0.6, in case of glucose-lactose
shift additional time point prior to stress was taken at OD 0.3. Following stress application the
subsequent sampling time points were at 10 min intervals for up to 40 min (lactose shift and
oxidative stress) or 50 min (cold, heat and control). Rapid filtering using 2.5 cm diameter, 0.45µm
pore size Durapore (C) filter disks (Millipore Corporation, MA) and a vacuum manifold and pump
was used. Metabolite (1 ml) and transcript (3 ml) samples were taken simultaneously. Filters with
adhering bacteria were rapidly transferred into 2 ml centrifuge tubes and flash frozen in liquid
nitrogen. The whole process took less than five seconds (metabolites) or 10 seconds (transcripts)
per sample from sampling to flash freezing in liquid nitrogen and has been shown to be superior
to methods such as quenching or centrifugation (Bolten et al., 2007).

For GC-MS metabolite analysis, each of the filter discs with adhered bacteria was extracted in
500µl Methanol (Merck) at 4◦C as this has previously been shown to be superior to hot methanol,
hot ethanol, cold perchloric acid, hot alkaline and cold methanol/chloroform extraction protocols
(Maharjan and Ferenci, 2003). The extraction solution contained 0.1µg/ml cholesterol as an an-
alytical internal standard. Tubes were subsequently shaken at 4◦C for 10 min at 1000 rpm and
again frozen in liquid nitrogen. This freeze-thaw cycle was repeated to ensure cell membrane rup-
ture. Finally filters were removed, samples centrifuged for 3 min at 14,000 rpm at 4◦C (Eppendorf
model 5417R) and 450 µl of the supernatant transferred into new 2 ml centrifuge tubes. These
samples were then dried to complete dryness in a rotary vacuum centrifuge device. Dried samples
were subsequently stored at -20◦C for a maximum of two weeks before analysis.

4.3 GC-MS Analysis

Prior to GC-MS analysis, samples must be derivatized. A variation on the two-stage technique
used by (Roessner et al., 2001) was employed to firstly protect carbonyl moieties via methox-
imation, through a 90 min 30◦C reaction with 5µl of 40 mg/ml methoxyamine hydrochloride
(Sigma-Aldrich) in pyridine (Merck), followed by derivatization of acidic protons via a 30 min
37◦C reaction with the addition of 45 µl MSTFA(N-methyl-N-trimethylsilyltrifluoroacetamide)
(Machery-Nagel). 1 µl of the derivatized sample was injected onto the column and analysis was
commenced in non-split mode. GC-MS hardware comprised an Agilent 6890 series GC system fit-
ted with a 7683 series autosampler injector (Agilent Technologies GmbH, Waldbronn, Germany)
coupled to a Leco Pegasus 2 time-of-flight mass spectrometer (LECO, St. Joseph, MI, USA). Iden-
tical chromatogram acquisition parameters were used as those previously described (Weckwerth
et al., 2004). Chromatograms were processed using Leco ChromaTOF software (version 3.25) and
analytical peaks determined using the method of Lisec et al. (2006) with a modified peak picking
algorithm which searches for local apex intensity from all mass traces in raw chromatograms. All
data were normalized to cell number and the chromatographic internal standard.

4.4 General statistical Analysis

All samples were normalized to the median of time points taken before stress to minimize tech-
nical influence. To ensure proper alignment of different biological replica the expression of stress
specific marker genes was used as an anchor marking the actual moment of stress. In the case
of the control culture all time points were normalized to the average of time points taken at
OD 0.5 and 0.6. The hierarchical clustering of metabolite-concentration profiles presented in
Fig. 1 is based on log2 transformed Euclidean distances using average linkage as the aggre-
gation method. The heat map was created using the MultiExperiment Viewer (MeV) software
(http://www.tm4.org/).
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To calculate the changes between neighboring time points (Fig. 2 A and Fig. 2 B) multiple
t-tests and ratios (fold change on a linear scale) between the time point of interest and the directly
preceding one were calculated. The following significance thresholds were applied: α = 0.05
and ratio≥ 2 for metabolic data and α = 0.05, ratio≥ 3 for transcript data. To determine the
overlap of responses between different conditions the number of significant changes between time
points from all stress conditions and parallel time points from control culture were calculated
using the same strategy as described for neighboring time points, but additionally the direction
of change (relative to control) was included. The number of significantly changed features in the
same direction across different conditions was calculated, and the significance of overlaps between
all pairwise comparisons was tested using the Fisher exact test (α = 0.05) implemented in the R
software package.

Responses to stationary phase and different stress conditions were compared in the following
way: metabolites and transcripts which change significantly (significance thresholds the same as
above) within 10 to 40 min post-perturbation (relative to time points prior to perturbation) respec-
tively 210-260 min during stationary phase (relative to time points 90-150 min which reflect the
resumption of growth) were compared and the significance of potential overlaps (same direction
of the change) was tested using Fisher exact test with a significance level of α = 0.05).

4.5 Transcript analysis

Microarray Design

For transcript analyses customized arrays were generated on the basis of the Agilent one-color
microarray technology platform. The bases for the probe set design are the full genome and
sequence annotation files of E. coli K12 which were downloaded from the NCBI genome FTP di-
rectory (ftp://ftp.ncbi.nih.gov/genomes/, date: 08.11.2006). The genome sequence
file was parsed according to the annotation files to generate a full sequence list of coding and
non-coding regions. The probes were designed using OligoArray 2.1.3. (Rouillard et al., 2002)
covering all open reading frames. For each of the designed probes a probe statistic was generated
covering the position from 5’ end, the probe length, the melting temperature, the number of poten-
tial cross hybridizations, the relative GC frequency within the probe, the longest homeomeric run
and the Agilent base composition (BC) score. Based on this list, probes with less than 10 overlap-
ping nucleotides, a minimal sequence length of 50 nt and the best BC score by minimal differences
to the arbitrary melting temperature of 88.5◦C were selected and filtered. Only probe-sets covering
open reading frames were analyzed and used for quantification of signal intensity.

Sample Preparation

RNA was extracted using the Qiagen RNeasy Mini Kit (74104) and mechanical cell disruption
with glass beads but without enzymatic lysis. This was carried out in the Qiagen RNeasy kit
lysis RLT buffer with β-mercaptethanol, according to the manufacturer’s recommendations. Me-
chanical cell disruption was completed through shaking for five min using a Retsch mill (Retsch
MM200) on maximum speed. RNA was subsequently cleaned on-column with an additional
DNase treatment (Qiagen 79254). The quality of extracted RNA was determined with an Agilent
2100 bioanalyzer having used an Agilent RNA 6000 Nano Kit according to the manufacturer’s
recommendations. The labeling and hybridization of cDNA microarrays was performed by the
out-sourced service provider imaGene GmbH (Berlin, Germany) and was based on Agilent tech-
nology.
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Microarray Data Extraction and Normalization

For further analyses the processed signal intensities of all coding regions and RNA genes were
extracted and used. Variance stabilization and normalization of the extracted intensities were
performed with the vsn packages (Huber et al., 2002) of the statistical software R and back-
transformed to normal intensity scale. For each probe-set, e.g. all probes representing for example,
a single coding gene, outliers were removed by boxplot statistics and the outlier-removed probe
intensities were averaged in a robust way by computing the Tukey biweight. The complete tran-
script data is deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE20305).

4.6 GO term enrichment analysis

The analysis of overrepresentation of gene ontology (GO) terms (Ashburner, 2000) describing bio-
logical processes was done using PageMan software (http://mapman.mpimp-golm.mpg.
de/pageman/). The significance of overrepresentation of GO terms was assessed by Bonferroni
corrected Fisher exact test with a significance level of α = 0.05.

4.7 Specificity of E. coli’s response on metabolite and transcript level

To compare the specificity of the response to perturbations between the metabolite and transcript
levels, we rely on the variables (i.e., metabolites and transcripts) which show differential behavior
over all examined conditions with respect to the control and over all time points. For a given
time point, t, we then attempt to determine whether or not the overlap of the variables showing
differential behavior arises by chance. To this end, for two conditions a and b, at time t, we build a
dichotomous 2× 2 contingency table, denoted by Tt. The contingency table Tt has the following
entries:

condition b

condition a |A ∩B| |Ā ∩B|

|A ∩ B̄| |Ā ∩ B̄|

Here,A denotes the set of variables with a differential behavior under condition a and analogously
B corresponds to variables of condition b. Then, |A∩B| denotes the number of variables showing
differential behavior under both conditions a and b. Furthermore, |Ā ∩ B| and |A ∩ B̄| denote
the number of variables showing differential behavior only under condition b or a, respectively.
Finally, |Ā ∩ B̄| represents the number of variables not changing under both conditions.

Let H0 denote the null hypothesis that the numbers of condition-specific variables with dif-
ferential behavior for a and b are independent, i.e., the overlap results by chance. By employing
Fisher exact test, we are able to either verify the null hypothesis or reject it in favor of the al-
ternative hypothesis H1. Fisher’s test gives the probability of the observed configuration for the
contingency table under H0 regardless of the sample size (Agresti, 2002). This is important,
because the sample size (equal to the sum of all entries in Tt) for the metabolites includes 191
variables, whereas the transcript sample consists of 288 variables. In our analysis, we consider a
level of significance α = 0.05. If the null hypothesis is valid, we will call the system’s response
to the conditions a and b specific.

Finally, we quantify the specificity of E. coli’s response by the positive predictive value (PPV)
of the 24 pairwise condition comparisons either on the metabolite or transcript level. Let TP
denote the number of comparisons, where both conditions show an independent response and FP
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denote the number of dependent pairs of responses. We then define the positive predictive value
as PPVl = TPl/(TPl + FPl) where l denotes either the metabolite or transcript level.

Note that our definition of the specificity differs from the classical statistical measure of the
performance of a binary classification. This is attributed to the fact, that there is no equivalent
to negative realizations in this experimental setup: among all conditions, the number of changing
genes or metabolites is always > 0.

4.8 Co-clustering and pathway enrichment of genes and metabolites

Here, we use a co-clustering approach to determine the extent to which genes and metabolites,
showing differential expression under the investigated conditions, are involved in the same bio-
chemical pathway. We simultaneously apply a k-means clustering algorithm to the combined
metabolite and transcript level data for a specific condition, given in a form of an m× n matrix J
(m is the total number of genes and metabolites and n is the number of time points).

To limit the effect of the absolute magnitude of concentration or expression-levels on an em-
ployed similarity measure, we normalized every row in J to have zero mean and unit variance (i.e.
z-score transformation). In order to supply a suitable estimate for the initial number of clusters
(i.e. parameter k) for the k-means algorithm for every experimental condition, the graph-based
approach presented in Klie et al. (2010) is employed. As already stated, the obtained range for
parameter k is dependent on the employed similarity measure and was computed for Euclidean
distance and Pearson’s correlation coefficient, each resulting in an independent clustering of J .
To further increase the robustness of the presented findings, we repeated the clustering procedure
100 times with randomized initial cluster centers for each k in the previously determined interval,
for both similarity measures. Out of those 100 clustering runs, we selected the clustering which
minimizes the root mean square error (RMSE) for a given k. This approach aims at compensating
for the non-deterministic nature of the k-means algorithm.

Finally, over-representation of certain pathways on each cluster was determined analogous to
finding enriched GO-Terms, using the hyper-geometric distribution as a null distribution (Rivals
et al., 2007). The significance level was, again, set to α = 0.05 and the p-values are Benjamini-
Hochberg corrected. We focus only on pathways which are enriched for both metabolites and
genes, although the pathways enriched only for metabolites and only for genes can also be read-
ily determined. In summary, we searched for pathway-over-enrichment in each combination of
experimental condition, choice of k, and similarity measure.

Significance estimation of co-clustering events via bootstrap sampling

In order to determine the statistical significance of a co-clustering event of genes and metabolites
that leads to a pathway enrichment, we employed a non-parametric bootstrap procedure (Efron
and Tibshirani, 1993) for each set of co-clustered genes and metabolites. Let X denote such a set
comprised of at least one gene and at least one metabolite that resulted in a pathway enrichment
by membership of the same cluster. For each set X we perform the following steps:

(1) We sample with replacement from the original set of genes and metabolites (containing in
total m variables) by randomly selecting m genes and metabolites with equal probability of 1

m . If
necessary, this step is repeated until all elements of X are present in this bootstrap sample.

(2) The bootstrap sample is subjected to k-means clustering as outlined previously. Let P =
{P1, . . . , Pk} be a clustering composed of k clusters. We define the co-clustering indicator func-
tion fco for the set X as:

fco =

{
1 ifX ⊆ Pi, i ≤ i ≤ k
0 else

.
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Since the granularity of the clustering (i.e. the choice of parameter k) greatly effects a possible in
the original condition-specific clustering.

(3) The bootstrap sampling procedure and subsequent clustering is repeated 1000 times to
obtain an empirical probability pobserved of the occurrence of the co-clustering event for X .

The outlined approach consisting of steps (1)-(3) is therefore a Bernoulli trial with 1000 inde-
pendent repetitions and the dichotomous outcome of 1 (= co-clustering) and 0 (= no co-clustering).
Furthermore, we assume that the co-clustering of all members of X occurs randomly. Then, the
probability prandom of such a random co-clustering for set X equals k

kl
, where k denotes the num-

ber of clusters and l is the size of set X . A binomial expansion with the parameters n = 1000 (i.e.
the sample size), prandom = k

kl
(i.e. the probability of success) and q = 1− p (i.e. the probability

of failure) yields a probability distribution which equals the binomial distribution B(n, prandom).
Now, we let H0 denote the null hypothesis that a co-clustering of set X occurs randomly. By

application of the binomial test (e.g. the binom.test()-function in R) using B(n, prandom)
as the null-distribution, we can decide if the observed probability pobserved for a particular co-
clustering is in agreement with H0 or should be rejected in favor of the alternative hypothesis H1.
Rejection of H0 implies that a co-clustering event is not random and occurs with the probability
of pobserved.

Naturally, we only consider the possibility that pobserved � prandom which corresponds to a
right-sided test. Finally, we account for the multiple testing of all co-clustering events found in
our analysis by Bonferroni-correction and set the significance level to alpha = 0.01. Note that by
applying the outlined procedure, all observed co-clustering events are determined to be significant.
The individual p-values, as well as the empirically determined co-clustering probabilities, are
presented in Jozefczuk et al. (2010, Suppl. Material, Table 1), in conjunction with the respective
sets of clusters and pathway enrichment.

4.9 CCA of genes and metabolites involved in primary metabolism

Canonical correlation analysis Canonical correlation analysis (CCA) is a multivariate statistical
technique employed for studying associations between two sets of variables (Hotelling, 1936).
In systems biology, CCA has previously been used to either integrate different sources of data
from the same system (e.g., complementing gene expression data with phenotypic data (Gonza-
lez et al., 2008) or to integrate data from different “omics” technologies (Jozefczuk et al., 2010;
Le Cao et al., 2009) as well as to compare data of identical origin (e.g., transcript data) from dif-
ferent species (van den Berg et al., 2009). The two sets of data are represented by matrices X
and Y . Instead of analyzing pair-wise similarities of individual variables, CCA finds two linear
combinations of the columns from matrices X and Y which are maximally correlated.

The equal or correspondent nature of CCA with respect to the impact of both matrices, is a
conceptual advantage as CCA – unlike in multiple linear regression – assumes no classification of
dependent (responses) and independent (predictors) variable sets. Translated to biological system-
levels this would imply that one would assume bi-lateral associations of variables in X and Y are
present: for instance metabolites triggering transcriptional responses but also adaptations of gene
expression levels affecting metabolite concentrations in the form of a feedback system.

Matrix X is of dimension n× p and Y , of dimension n× q, respectively. Columns in X and
Y denote the p, respectively q variables (e.g. genes and metabolites), while rows in both X and Y
represent the same n observations (e.g. time-course expression or concentration measurements).

We denote the ith column of matrixX byXi and correspondingly denote by Y j the jth column
vector of Y . Likewise, Xi and Yj denote the ith or jth row inX and Y , respectively. Furthermore,
we assume that the columns of X and Y are standardized (by subtraction of a mean and division
by variance) and X as well as Y are of full column rank p and q. Now, let a1 = (a11; . . . ; a

1
p)
> and

b1 = (b11; . . . ; b
1
q)
> denote the two basis vectors, such that the correlation between the projections
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of the variables – columns in X and Y – onto these basis vectors given by

U1 = Xa1 = a11X
1 + a12X

2 + · · ·+ a1pX
p

and
V 1 = Y b1 = b11Y

1 + b12Y
2 + · · ·+ b1qY

q,

are maximized, i.e.
ρ1 = cor(U1, V 1) = max

a1,b1
cor(Xa1, Y b1). (1)

The derived linear projections U1 and V 1 are called the first canonical variates, both constrained
to be of unit variance, var(U1) = var(V 1) = 1, and ρ1 is referred to as the first canonical
correlation. Higher order canonical variates (up to q, for q ≤ p) can be found as a stepwise
problem, restricted to be orthogonal to the previously determined set of canonical variates. The
successively computed canonical correlations are ordered, i.e. ρ1 ≥ ρ2 ≥ · · · ≥ ρq.

In this work, CCA was employed to initially integrate the obtained metabolite and gene ex-
pression data and subsequently study the resulting associations between the two sets of variables.
Briefly, given a set of genes and a set of metabolites, the principle idea of CCA is to find two lin-
ear combinations, one for the set of genes and one for the set of metabolites, which are maximally
correlated (a detailed treatment of CCA is given in Chapter 4.9).

Here, the set of genes is described by the matrix X of dimension n × p, where rows corre-
spond to the expression levels measured at n time points of p genes (columns) under one specific
condition. Correspondingly, Y of dimension n × q represents the n measured concentrations of
q metabolites under the same experimental condition. In this work we use the results of the CCA
on a subset of 69 genes and 11 metabolites involved in the primary metabolism as an explanatory
tool to display associations between genes and metabolites which are less prominent by means of
direct linear relationships (e.g. Pearson correlation) in the initial data.

Specifically, for the purpose of visualization, we employ 2-dimensional scatter-plots for the
genes and metabolites which are also known as canonical loadings plots. The CCA results pre-
sented in this work rely on a regularized version of CCA, which is available in the CCA package
(Gonzalez et al., 2008), available for R.
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