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Abstract: Interactions of proteins shape the processes of a cell, often as functional modules or complexes. A
minority of proteins, called shared components in the biological literature, are part of multiple complexes. The
detection of shared components with current methods for protein complex identification is only implicit and a
secondary objective.

Here, we present and explore algorithms for finding shared components explicitly and compare their results
based on a curated dataset of protein complexes. Merged maximal cliques is a global clustering algorithm com-
puting overlapping clusters. An extension of the detection of articulation points to articulation groups searches
for shared components as local cut vertices. Our combined approach, Local cluster decomposition, incorporates
aspects of both and outperforms recent implicit methods for complex detection with respect to shared compo-
nents.

1 Introduction

Large-scale identification of protein complexes by high-throughput methods has led to genomewide protein-
protein interaction networks in Saccharomyces cerevisiae [KCY+06, GAG+06]. High confidence datasets can
be obtained by integrating and refining published datasets [SFK+11, BRB+07]. Protein complexes are not neces-
sarily distinct but can be overlapping. Proteins that are part of multiple complexes are called shared components
(see Fig. 1). The term has its origin in biology and might refer to single proteins [RWR+98, CRGW98], not
components in the graph theoretical sense. Gaining knowledge about shared components could be of interest for
drug development, e.g. by providing hints at side effects or anti-microbial targets [KvMBD04]. The identification
of shared components and their analysis is a largely unaddressed problem in the analysis of biological networks.

Figure 1: Examples for shared components of the SWI/SNF complex and the RSC complex. Depicted are the neighbors of
Arp7 and Arp9 in the HC dataset and their interactions. Taf14, Rt102, Arp7 and Arp9 are shared between the complexes.



1.1 Background

Many protein complexes have been validated independently using high-throughput data and individual experi-
ments. The current, curated gold standard of protein complexes for Saccharomyces cerevisiae contains 1342
proteins grouped into 236 complexes with more than two members and 176 shared components [PWT+09].

This number is relatively small and popular approaches like Molecular Complex Detection (MCODE) or ap-
proaches using Markov Clustering (MCL) do not address shared components in their core methods but in post-
processing steps [BH03, GS11, VW09, FKZ08].

MCODE undertakes a weighting of all nodes by the k-core and density of its neighborhood, followed by a partition
of the graph into disjoint complexes [BH03]. Protein complexes can be extended by proteins in their direct
neighborhood if the weight of a protein exceeds a chosen threshold. MCL searches for groups within a weighted
graph by simulating a random walk on the graph for its separation, which converges to a state with distinct
clusters [EVDO02].

An expansion by Pu et al. computes shared components by applying a power law function to every complex
defined by MCL. If a sufficient fraction of proteins belongs to two clusters, an overlap is noted. Information about
shared components is solely used for improving protein complex definition [PVE+07].

Friedel et al. describe the application of MCL on a protein-protein interaction network to determine initial clusters.
In a subsequent step, shared components are identified based on the strength of the connection between the nodes
and clusters [FKZ08]. The results were found to be superior to previous methods but the shared components and
their contributions were not explicitly benchmarked.

Complex detection from coimmunoprecipitation data (CODEC) is a recently described algorithm capable of native
detection of overlapping clusters, which performed better than Friedel et al.. Its greedy search heuristic finds
the heaviest bicliques in a bipartite graph, consisting of bait and prey interaction for the detection of protein
complexes [GS11].

In perfect data complexes could be easier modelled as maximal cliques, which can overlap. Errors in biological
network data necessitate modifications of this method and first described by Zhang et al. [ZPKS08].

1.2 Our contribution

Here, we present three approaches for the identification of shared components in protein-protein interaction net-
works. Our implementation and parametrization of the merged max cliques algorithm computes complexes on the
complete network that can overlap [ZPKS08]. Local cluster decomposition detects nodes with several clusters in
its immediate neighborhood.

The articulation groups algorithm computes sets of cut vertices without clustering. If shared components are
removed from a set of overlapping complexes, the graph disconnects (see Fig 1). Therefore, the detection of
shared components as cut vertices should be possible without definition of complexes.

Evaluation of the presented algorithms is based on a manually curated dataset comprising protein complexes and
established shared components [PWT+09].

Local cluster decomposition outperforms the other approaches, as well as the tested methods for complex detec-
tion.

2 Methods

In the following, we consider the biological networks as unweighted, undirected graphs. Let G = (V,E) be a
connected graph of protein-protein interactions. The set of all neighbors of a node v ∈ V is denoted as N(v) :=
{u|u ∈ V, (u, v) ∈ E}, where the cardinality of N(v) defines the degree of v as denoted by d(v). The total
number of nodes n in a graph G is defined as |V |.
The overlap of two groups of nodes Vi and Vj is measured by the Simpson coefficient

S(Vi, Vj) =
|Vi ∩ Vj |

min (|Vi|, |Vj |)
.



We define true positives (TP) as proteins that are shared components in CYC2008 (see 2.5) and that are found
by the respective algorithm, with an analogue definition of true negatives (TN) as proteins that are not defined as
shared components in CYC2008. If a protein is detected as a shared component by an algorithm and not marked
as a shared component in CYC2008 it is called a false positive (FP). False negatives (FN) describe proteins that
are not detected by the algorithm but are actually marked as shared components in the gold standard.
Sensitivity is defined as the proportion actual positives that are predicted positive:

Sensitivity =
TP

(TP + FN)

Specificity is analogously defined by the proportion of actual negatives that are predicted negative:

Specificity =
TN

(TN + FP )

Matthews correlation coefficient (MCC) represents a measure of quality for binary classifications. Taking true and
false positives and negatives into account it computes a correlation coefficient between observed and predicted
binary classifications.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

MMC computes a correlation coefficient between observed and predicted binary classifications, returning values
between -1 (reverse prediciton) and 1 (perfect prediciton).

2.1 Merged Maximal Cliques (MMC)

Assuming a perfect method to detect protein-protein interactions, a complex would appear as a fully connected
subgraph of G. Such a subgraph is known as a maximal clique, if it cannot be extended by a node and re-
mains complete [BK73]. An appropriate algorithm to determine protein complexes respecting the undetected
and false-positive interactions of high-throughput data is based on the merging of strongly overlapping maximal
cliques [ZPKS08]. We adapt the algorithm to identify shared components as nodes that are members of two or
more merged maximal cliques.
First, all maximal cliques Ci ⊂ V in the graph G are identified using an extension of the algorithm described by
Bron and Kerbosh [BK73, CK08].

In contrast to Zhang’s algorithm, MMC merges cliques in order of decreasing size. MMC takes G and an overlap
threshold t0 as input and computes a set of overlapping cliques C as described in Algorithm 1. The proteins in the
overlap of any two cliques are shared components.

Algorithm 1 MMC
1: procedure MERGE MAXIMAL CLIQUES(G, t0)
2: C ← {∀ maximal cliques c ⊆ V in G | |c| > 2}
3: while max{S(ci, cj),∀ ci, cj ∈ C} ≥ t0 do
4: for all ci ∈ C in descending size order do
5: cj ← max

cj∈C
{S(ci, cj),∀cj ∈ C}

6: if S(ci, cj) ≥ t0 then
7: ck ← ci ∪ cj

8: C ← {ck} ∪ C\{ci, cj}
9: return C

The detection of all k maximal cliques in G is an NP-hard problem with a worst case run-time of O(3
n
3 ) [TTT06].

Merging those cliques takes O(k3) time, resulting in a total run-time for MMC of O(3
n
3 + k3). The application

of the algorithm on typical protein-protein interaction networks does not exceed several hours.



2.2 Local Cluster Decomposition (LCD)

The neighborhood of a node can be segmented into clusters. The number of clusters determines whether a given
node v is a shared component. To this end, local cluster decomposition applies MMC to the closed neighborhood
N(v) and the edge-set

F (v) := {{u, w} ∈ E|u, w ∈ N(v)}.

LCD takes a graph G, an overlap threshold t0 and s as input (See Algorithm 2). A vertex v ∈ V (G) is returned as a
shared component, if its neighborhood N(v) comprises two or more groups of clustered vertices with a minimum
number of elements s.

Algorithm 2 LCD
1: procedure LOCAL CLUSTER DECOMPOSITION(G, t0, s)
2: for all v ∈ V (G) do
3: Gv,s ← (N(v), F (v))
4: K ← MERGE MAXIMAL CLIQUES(Gv,s, t0)
5: nc(v)← |{k ∈ K | |k| ≥ s}|
6: return {v ∈ V | nc(v) ≥ 2}

Considering the neighborhood graph Gv,s := (N(v), F (v)) of a node v ∈ V (G), the clustering with MMC runs
in O(3

m
3 ) , where m is defined as |Gv,s|.

Since the cluster identification has to run for each node, a time complexity of O(n·3∆G
3 ) with the number of nodes

n and the graph’s maximum degree ∆G follows. Due to the scale-free distribution of the degree in the graph the
exponent can be expected to be much smaller than ∆G

3 in practice. As LCD applies MMC on subsets, it runs faster
than the global MMC. The fact that typical interaction networks are sparse further shortens the run-time of LCD.

2.3 Articulation Groups (AG)

In contrast to LCD and MMC, the articulation groups algorithm searches for shared components without defining
complexes.

An articulation point or cut vertex v ∈ V is any node that increases the number of connected components when
removed from the graph. A linear-time algorithm for detecting articulation points, based on a depth-first search,
was provided by Hopcroft and Tarjan [HT73]. The articulacy av of a node v ∈ V is given by the minimal number
of nodes k which have to be removed, before removing v disconnects G. To find nested shared components, like
Arp7 and Arp9 (see Fig. 1), we extended this algorithm for detecting cut vertices of articulacy > 0. For any
articulacy av > 0 an articulation group VA ⊂ V is defined as the set of av + 1 nodes that has to be removed to
disconnect the graph.

The algorithm could be executed on the giant component of the network, the biggest connected component of the
given graph, considering all found articulation points up to a certain articulacy threshold at as shared components,
which becomes infeasible to compute for a meaningful number of shared components.

Large, connected complexes do not have a shortest path length > 3. We can therefore select each node as a center
node vc of a subgraph Gs(vc) containing all nodes within a distance of 3 to vc and apply the algorithm repeatedly
on each Gs(vc). The result is a list of all articulation points found in the subgraphs and their frequency.

For identifying all nodes showing a specified articulacy at, the algorithm has a run-time of O(nat+1). To speed up
the algorithm for articulacy > 0, only nodes with betweenness-centrality bv ≥ median(bv∀v ∈ V ) are considered
being candidates for articulation points. By this preprocessing step, peripheral nodes and uninformative node-
chains are excluded. Furthermore, a node v can never be considered as an articulation point of any order if the
local clustering coefficient cv is 1, which is equal to v being in a maximal clique M and having no edges to any
node u /∈M .



2.4 Data sources

High confidence networks of protein interaction in yeast were selected for analysis. The semi-manually curated,
unweighted HC network comprises 2534 nodes and 6398 interactions [BRB+07]. The STRING database V8.3
contains weighted interactions. We selected the yeast networks at edge weights > 0.7 comprising 5203 nodes and
69225 edges (STRING700) and > 0.9, 4246 nodes and 31934 interactions (STRING900), respectively [SFK+11].

Two datasets retrieved by mass spectrometry of tandem affinity purification data (TAP-MS) were analyzed, one
by Gavin et al. containing 2551 proteins and 21413 interactions [GAG+06] and one by Krogan et al. containig
2705 proteins forming 7139 interactions [KCY+06].

2.5 Validation

The manually curated catalogue of yeast protein complexes CYC2008 serves as gold standard [PWT+09]. Com-
plexes composed of only two members cannot be identified in unweighted interaction graphs and are not consid-
ered for the analysis. CYC2008 contains megacomplexes, holding recognized complexes as subsets. One example
is the ribosome, consisting of two subunits which may or may not be considered as one complex [KvMBD04].
Another complication arises from variant complexes that differ only in a few proteins. An example is the RSC
complex, which includes two homologous subunits RSC1 and RSC2, which are mutually exclusive [NRYS02].

To take the ambiguity due to megacomplexes and variant complexes into account, we merge complexes in the
CYC2008 that are highly similar to each other, as measured by the Simpson coefficient S . Note, if Ci ⊆ Cj or
Cj ⊆ Ci holds for two complexes Ci and Cj , then S(i, j) = 1. Shared components are proteins located in at least
two CYC2008 complexes i and j with a Simpson coefficent S(i, j) ≤ 0.8. To find the best parameters for MMC,
LCD and AG, we determine the maximum MCC of the algorithms applied to the networks.

Only the intersections of CYC2008 and the corresponding datasets were considered, leading to different numbers
of possible shared components contained in each dataset (see Table 1). Sensitivity and specificity were com-
puted based on the set of binary classificators obtained from each network. MCODE was parametrized according
to [BVH06]. Results of CODEC were taken from the supplementary material of the original publication [GS11].

Table 1: Matthews correlation coefficient, sensitivity and specificity of the algorithms in networks with different number of
proteins (n), average degree (d(G)) and number of shared components in CYC2008 (# SC). Data for CODEC is exclusively
available for Gavin’s and Krogan’s interaction networks [GS11]. All algorithms’ prediction accuracies apparently depend on
the network’s average degree d(G).

HC STRING700 STRING900 Gavin Krogan
n 2534 5203 4246 2551 2705
d(G) 5.0 26.6 15.0 16.8 5.3
# SC 80 98 96 58 59
MCODE 0.083

0.41/0.76
0.015
0.75/0.3

0.056
0.69/0.49

0.058
0.84/0.33

0.068
0.43/0.75

CODECw0 - - - 0.064
0.65/0.5

0.014
0.92/0.11

CODECw1 - - - 0.099
0.68/0.55

0.051
0.89/0.27

MMC 0.279
0.54/0.92

0.092
0.98/0.34

0.144
0.82/0.65

0.126
0.88/0.55

0.313
0.73/0.91

LCD 0.357
0.36/0.98

0.170
0.69/0.81

0.239
0.62/0.9

0.209
0.53/0.9

0.419
0.44/0.99

AP 0.134
0.63/0.72

0.064
0.63/0.6

0.085
0.27/0.9

-0.013
0.02/0.97

0.085
0.56/0.71
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Figure 2: ROC-curves of the algorithms’ performance on Krogan (left) and STRING900 (right). Note the superiority of the
LCD algorithm in the dense STRING900 network. See Table 2 for comparison.

3 Results and discussion

The performance of all methods is dependend on the attributes of interaction data sets like density and degree
distribution. However, a consistent picture emerges that finds LCD superior. The comparison table 1 lists the
results of the presented algorithms and from the implicit algorithms CODEC and MCODE .

Table 2: Areas under the curve for the three explicit algorithms. Parameters used for gaining the underlying ROC-curves are
size for LCD, Simpson coefficient for MMC and percentile detection cutoff in case of AG.

HC STRING700 STRING900 Gavin Krogan
MMC 0.867 0.657 0.760 0.719 0.881
LCD 0.870 0.761 0.856 0.823 0.896
AP 0.673 0.608 0.643 0.474 0.634

3.1 Previous work

The two differently weighted CODEC versions, though verifiably producing decent results for clustering co-
immunoprecipitation data [GS11], yield poor results for the detection of shared components in the Gavin and
Krogan data sets. The specificity is low and indicates copious amounts of false positives.

MCODE results cannot compete with any of the explicit approaches as its Matthew correlation coefficient are
comparably poor. If ever, the MCCs gained by MCODE are comparable to AG’s results.

The exclusive use of complex finding algorithms is not satisfying the demands of shared component detection.

3.2 Merged Maximal Cliques

MMC yields results with improved shared component detection quality compared to the implicit approaches con-
sidered here, particularly in sparsely connected networks like HC and Krogan. The higher the density of a net-
work is, the less reliable the detection of shared components becomes, which is especially true for MMC. As the
higher connectivity leads to a higher number of cliques to be merged, false positive rates increase. MMC is a
straightforward algorithm for the detection of shared components in high quality interaction networks that per-
forms remarkably well given the simplistic and strict approach and the high noise in experimentally determined
networks.



3.3 Local Cluster Decomposition

For all regarded networks, LCD shows a consistently increased Matthews correlation coefficient over MMC. See
Fig. 2, Table 1 and Table 2. LCD’s superiority for finding shared components shows in dense networks like
STRING700 and STRING900, which can be referred to the locally executed clustering in its process, resulting
in lower false positive rates. As a whole, LCD gave the best results for all tested networks, thus representing the
most appropriate algorithmic approach for detecting shared components. Its stringent and local nature appears to
be well suited and could constitute a working definition for shared components.

3.4 Articulation Groups

Theoretically, two overlapping complexes contain a set of cut vertices, which would be identified by the artic-
ulation groups algorithm. Its practical application however disappoints: The results are much inferior to other
algorithms and of a comparable quality to MCODE that uses a simple method to group nodes to complexes.

We explain the finding that many nodes in the network are articulation points or groups but do not correspond to
shared components. Proteins in the periphery of a protein complex might be mapped to several complexes but are
not an integral part of any complex [GAG+06]. Occasionally, interacting proteins of small degrees build chains.
The resulting structures comprise articulation groups but neither graph theoretic nor biological considerations
would identify them as protein complex.

The identification of shared components without consideration of clusters is apparently not solved by identifying
sets of cut vertices and might not constitute an advisable strategy. It might be possible to include considerations
of the degree of a vertex to improve the sensitivity.

The results of the brute force articulation groups computation are not particularly fruitful but sizes of different
neighborhoods might provide enhancements.

3.5 Run-time

The time complexity of the algorithms is reflected in the practical run-times, which in term depend on the size
of the network. LCD yielded results in under one hour for all networks. With our implementations, MMC as the
second most complex algorithm typically takes several hours. Even with a parallelization of the AG algorithm,
results required days for higher articulacy. The current implementations in Python could be optimized.

3.6 Discussion

It remains to be seen as to whether the shared components not part of CYC2008 set are bona fide shared com-
ponents. Visual inspection suggests that several are but it would require substantial efforts in data integration to
assess whether the results can be supported by external methods. It is unclear how shared components of protein
complexes appear in gene expression studies or functional data sets. As complex membership is often used to
annotate the function of a protein, simply using the provided functional annotation might be insufficient to make
meaningful statements about the functional relevance.

4 Conclusion

Protein complex detection in interaction networks is difficult to improve without considering shared components.
Shared components in protein interaction networks can be detected by several methods. The quality and exper-
imental background of the interaction network influences the results. Explicit approaches like LCD outperform
published implicit approaches and could be used to improve the detection of protein complexes in conjunction
with disjoint clustering approaches.
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