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Abstract:
DNA methylation is an important epigenetic biomarker, for instance in cancer

medicine, but the degree of modification at a specific genomic cytosine may vary
according to individual cells, tissues, or developmental stages. To capture and elu-
cidate the heterogenous nature of DNA methylation is one of the challenges in both,
biological and computational aspects. Deep sequencing data after bisulfite conversion
of non-methylated cytosines which provide the methylation state at single-bp resolu-
tion allow to tackle this problem since individual reads represent individual genomic
copies, even if the DNA was prepared from multiple cell types. We introduce a com-
putational approach to identify the minimal number of distinct methylation profiles in
such pooled data sets. We use a graph coloring method, called MethColor, together
with empirical heuristics to characterize different, cell- or tissue-type-specific methy-
lation profiles. A simulation study demonstrates the potential of this method.

1 Introduction

DNA methylation is an important epigenetic mark that plays a crucial role in the cellular
development of many eukaryote organisms [Lai10]. It is also known as a crucial biomarker
in nearly all types of cancers [JB03]. DNA methylation profiling as a diagnostic tool has
become more and more attractive along with the development of simplified, accelerated
and cost-efficient high-throughput data technology. DNA methylation is widely-known as
the addition of a methyl group to the position 5 of at genomic cytosines. Hence, the mod-
ification leaves the DNA sequence unaltered but changes chromatin features and gene ex-
pression. DNA methylation is detected by bisulfite conversion [FMM+92] which converts
un-methylated cytosines (C) to uracil, after PCR to thymines (T), while the methylated
cytosines are not affected. With the advent of the next-generation sequencing technol-
ogy, the so-called bisulfite deep sequencing (BS-Seq) technology [LOTF+08] has recently
been developed to obtain high resolution DNA methylation maps. To obtain the map, the
BS-Seq short reads (thereafter referred to as reads) are mapped to the reference genome.
Then, the methylation profile for every genomic cytosine is generated: C-T mismatches
indicate genomic unmethylated Cs whereas C-C matches indicate methylated genomic Cs
in absence of sequencing error. Thus, one can characterize the methylation state for every
cytosine at single-bp resolution (so-called whole-genome methylation profiles or methy-
lomes). This is referred to as methylation profiles thereafter.



Current sequencing technologies use DNA samples prepared from a mixture of cells with
potentially heterogenous DNA methylation profiles [Lai10, PE10]. This leads to average
measurements across DNA molecules but inaccurate estimation of DNA methylation lev-
els for single sites as the frequency of cell types in the mixture is typically not determined
[Lai10]. This has raised a challenge in both computational and biological aspects, although
each read in the BS-Seq approach provides a discrete DNA methylation pattern for a single
genomic DNA molecule. Thereby, inferring the distinct cell type-specific profiles in DNA
mixtures is important for uncovering the heterogeneity of DNA methylation.

Here we suggest a computational approach, called MethColor, to differentiate the methy-
lation profiles across cells in the DNA mixture when given a mapped read library. First,
the mapped read library is transformed into a graph in which each node represents one read
and an edge is formed if the reads overlap on the reference genome but display a different
methylation patterns (i.e incompatible reads). Then, we propose an optimization problem
of finding the minimal number of distinct methylation profiles as a graph coloring prob-
lem in computer science [CLR90]. The read nodes that have the same color constitute a
methylation profile. Different colors imply distinct profiles in the cell population, and the
minimal number of profiles provides the most parsimonious explanation of the observed
methylation state from the mapped reads. In addition, we use a simple heuristic based on
the empirical methylation frequency at a single locus estimated from the mapped reads
to obtain the final methylation profiles. To demonstrate the efficiency of our approach,
we use simulated data and evaluate both the minimal number of inferred profiles and the
similarity between the inferred profiles and the original. The results offer a promising
perspective for the proposed approach in understanding DNA methylation heterogeneity.

2 Problem Formulation

2.1 Input data and Optimization problem

The input data is a reference genome consisting of n genomic cytosines and a library of
mapped BS-Seq reads, where upon we only consider reads that map uniquely to the refer-
ence genome without sequencing errors (the sequencing errors can be corrected [EPM+08,
MSKP11]). Each mapped read r is represented by a so-called location vector p(r) =
(p1(r), . . . , pk(r)), p1(r) < . . . < pk(r) which indicates the positions of the cytosines in
the reference genome where k is the number of genomic cytosines mapped by read r. We
use pi instead of pi(r) for short. Each mapped read has an associated methylation string
of length k, S(r) = s1 . . . sk where

si =

{
1 the cytosine at the genomic position pi is methylated
0 otherwise

(1)

The goal is to find the minimal set of methylation profiles G = {G1, . . . , Gγ}, where
Gi = gi1, . . . gin with gij ∈ {0, 1}, j = 1 . . . n indicates the methylation state of the
cytosine at position j, such that the methylation string of every read is the substring of



at least one profile in G. In other words, one needs to find a minimal number of distinct
DNA methylation profiles of the whole genome, such that the methylation pattern of every
read is contained in at least one profile. This problem is classified as a NP-hard problem
([PS10] and references therein).

Figure 1a shows an input of 9 reads across 5 genomic cytosines. The methylation strings
derived from the corresponding reads are displayed in Figure 1b. For this example, three
profiles G1 = 11000, G2 = 00011, G3 = 10101 are the unique optimal solution to explain
the data. Specifically, the reads {R1, R4, R7} are generated by G1, {R2, R5, R8} by G2
and the rest by G3.

2.2 Graph coloring problem
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Figure 1: An illustrative example where the reference genome has 5 cytosines (n = 5): (a) 9 reads
derived from 3 cells with different DNA methylation patterns indicated by 3 colors: grey (G1), white
(G2), and black (G3); the subscripts indicate the mapped positions at cytosines enumerated by the
order of their relative positions in the reference genome; (b) the corresponding methylation pattern
of 9 reads; (c) the graph with 9 nodes built from the input data, three colors are assigned to the reads
according to their cell of origins.

We reformulate the above optimization problem as a graph coloring problem. Each read
is represented as a node, two nodes are connected by an edge if the mapped regions in the
reference genome corresponding to the two reads r and r′ overlap. It means ∃(pi, . . . , pj)
such that min(p(r), p(r′)) ≤ pi ≤ pj ≤ max(p(r), p(r′)) and if the two methylation
patterns in the overlap are different. That is, an edge indicates that the methylation patterns



of the two reads are different although both reads map at least partially to the same genomic
region. We solve the minimal number of methylation profile problem by assigning colors
to the nodes such that any two nodes connected by an edge must have different colors.
Figure 1c illustrates the graph for the data in Figure 1a. The nodes are colored by 3 colors
corresponding to the 3 distinct profiles G1, G2, G3 mentioned above.

3 MethColor method

3.1 Graph coloring to estimate the minimal number of methylation profiles

We suggest a greedy algorithm as a quick approximation to find the minimal number of
colors to color the nodes of the read graph. The greedy idea is similar to the McColor
algorithm presented in [LM05]. However, we apply it to arbitrary graphs and use a heap
data structure for efficiency in choosing the coloring nodes.

Given M nodes, C = {1, . . . ,M} is the set containing the maximal number of colors. For
each node x, nbCol(x) denotes the set containing the colors of its colored neighbors and
color(x) denotes the color of a node x, color(x) = 0 if x is not yet colored. Our algorithm
(see pseudo code: Algorithm 1) works as follows: we start with color 1 assigned to a
random node. At each step, we select from the set of yet uncolored nodes (color(x) = 0)
the node x for which |nbCol(x)| is maximal; and the color assigned to x is color(x) =
min{C\nbCol(x)}. For every uncolored y connected by an edge with x, nbCol(y) is then
updated. The process is repeated until all nodes are colored. For efficient implementation,
we use the heap data structure [CLR90] as a binary tree where each node x of the heap H
has the key value key(x) = |nbCol(x)|. Thus, the root of the heap is always the uncolored
node x with the largest |nbCol(x)|.

Algorithm 1: Pseudo code of graph coloring algorithm
Data: A mapped read library.
Output: An assignment of colors for every node.

begin
Building graph G = (V,E) corresponding to the mapped read library;
Initialization: ∀x : nbCol(x) = ∅; color(x) = 0; push(x,H);
foreach i = 1..|V | do

x = pop(H) ;
color(x) = min{C \ nbCol(x)};
forall y : (x, y) ∈ E and color(y) = 0 do

nbCol(y) = nbCol(y) ∪ color(x) ;
update H: key(y) = |nbCol(y)| ;

end

The graph coloring algorithm has the worst complexity of O(|E| log |V |) where |V | is the
number of nodes, i.e the number of reads and |E| is the number of edges. Generating the



graph has O(|E| ∗ kmax) complexity where kmax is length of the longest location vector.

3.2 Heuristics for determining the DNA methylation profiles

After coloring the read graph, the reads that belong to one color are used to construct
the intermediate profile as the consensus string of those reads’ methylation strings. Ĝ =
{Ĝ1, . . . , Ĝγ} is the set of inferred methylation profiles, in which Ĝi = ĝi1 . . . ĝiN , ĝij ∈
{0, 1, 2}, where 0 indicates un-methylated, 1 methylated and 2, unresolved, i.e there is no
read assigned at genomic cytosine j and profile i. We note that due to the greedy strategy,
some methylation profiles are only comprising very few reads, i.e the profile consists of
many 2 (unresolved states).

Figure 2: Illustration of building the final methylation profiles: (a) the 5 cytosines in the example
from Figure 1 and their empirical methylation level f(C); (b) the columns represent 3 intermediate
patterns with 1: methylated, 0: un-methylated, 2-unresolved and their methylation level f̂(C); (c)
The heuristics move reads from the Ĝ1 to Ĝ2 or Ĝ3 to resolve unresolved positions such that f̂(Ci)
is as close to f(Ci) as possilbe. This leads to the final profile.

To determine unresolved methylation states, we use a heuristic based on the empirical
methylation level f(Ci) at cytosine position i that can be computed from mapped reads as
the ratio of reads with cytosine at that position over the total number of mapped reads at po-
sition i. From the intermediate profiles we compute f̂(Ci) as the preliminary methylation
level computed from the profiles ignoring unresolved states (Figure 2 shows an example).
To minimize the difference between f(Ci) and f̂(Ci) we apply the following heuristic.
A read r is called movable from one profile Ĝ to another Ĝ′ if its methylation pattern is
compatible with the methylation profile of Ĝ′. If we move a read from Ĝ to Ĝ′, we will
recalculate the f̂(Ci) for all cytosines affected by this move. Then, the goal is now to
replace most of the unresolved states in the intermediate profiles and at the same time to
minimize the difference i for which |f(Ci)− f̂(Ci)|. To do this we perform a greedy strat-
egy by starting with genomic position i if the |f(Ci)− f̂(Ci)| are maximal. This process
is repeated until we cannot find any suitable movement. Fig (2c) displays the final result.



4 Simulation Study

4.1 Datasets

We simulated the BS-Seq short reads from 10kbp reference assuming no sequencing
error, a 6% methylation rate (motivated from empirical study [LOTF+08]) and 10 dis-
tinct DNA methylation profiles. Mapped short (72-bp), intermediate (125-bp), and long
(250-bp) reads were randomly generated with sequencing coverage of 5, 10, 15, and 20
after mapping. A coverage of 20 is high compared to the available BS-Seq datasets
[LOTF+08, LPK+11]. Here we simulated equal number of reads for each profile. Hun-
dred datasets were generated for each combination of read length and sequencing fold-
coverage. Thus, we had 1200 datasets in total.

For evaluation, we first computed the empirical distribution of number of inferred methy-
lation profiles for all simulations, i.e how often MethColor estimated exactly the original
number of methylation profiles or under-/overestimated it. Then, we used Hamming dis-
tance to evaluate the similarity between inferred and originally simulated methylation pro-
files. As the assignment of the inferred profile and the original profile is not predictable,
we applied a greedy strategy. First, the pair of predicted and simulated profiles with small-
est Hamming distance was chosen, deleted from the set of unassigned ones and then the
process was repeated until no pair can be selected. Then we tested if the Hamming dis-
tance for each selected pair is significantly smaller in comparison with the distribution of
Hamming distances between random patterns at the same methylation rate.

4.2 Simulation results

Figure 3(a) shows that the ability to predict the correct number of profiles depends on the
read length and the coverage. In case of low coverage (of coverage 5), all the test under-
estimate the number of distinct profiles regardless the read length. Increasing number of
mapped reads leads to more cases in which the algorithm estimates exactly the number of
profiles. In addition, longer reads also improve the coloring results for the case of high
coverage (sequencing fold of 10 and 15). However, when the coverage exceeds 15 the
precision of our algorithm decreases, it tends to overestimate the number of profiles espe-
cially for long read lengths. We speculate that the graph gets to complex due to too many
reads and too many edges. This simulation also provide a hint of how much sequencing is
needed to have an exact estimation of methylation profiles.

Finally, not only the precise number of different profiles is estimated but also the accuracy
of individual methylation state of each profile. Figure 3(b) presents the average Hamming
distance of 10 inferred-original pairs indexing from the closest pair to the most distant
one. Here we only show two examples from simulated datasets (the short and the long
read case with the sequencing coverage of 20), that provide the best fit to the simulated
profiles (small Hamming distance, lower curve) and the worst fit (large Hamming distance,
upper curve). The results demonstrate that MethColor can estimate well the methylation
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Figure 3: Performance of MethColor with diverse sequencing coverages and read lengths: (a)
solid/dash lines indicates number of exactly/under-estimated number of cell-types, (b) The aver-
age Hamming distance of the inferred patterns and original ones for the worst and the best cases
that corresponds to the short and long read length at 20-fold coverage. The horizontal dashed-line
indicates the 5% lower bound of Hamming distance between two random profiles.

patterns of up to 8 out of 10 cell-types as the Hamming distance is ranging from 0.06
to 0.1. The average Hamming distance is then significantly smaller than the analytical
lower bound from the distribution of distance between random patterns given the same
methylation rate (dotted horizontal line in figure 3(b)), assuming a p-value 0.05.

We also did the experiments with non-uniform distribution of cell-type frequency, and the
results are similar. Taking all together, the simulation results prove the potential Meth-
Color to be applied for experimental biological data.

5 Discussion

We formulated a computational problem aiming to understand the heterogeneity of DNA
methylation based on the mapping profiles from deep sequencing data after bisulfite con-
version. Our approach, MethColor, efficiently estimates the number of distinct cell-types
as well as their methylation profiles. Despite a rough estimation, this can provide valu-
able information for research and diagnosis and help to understand the diversity of DNA
methylation patterns.

In addition, the cell-type frequency can be estimated based on the inferred patterns by the
Expectation Maximization approach used in haplotype construction problem [EPM+08].
Due to the page limitation, we do not show the results here. Our approach can also be
generalized to the haplotype reconstruction, for instance, in the viral population according



to [EPM+08]. Our approach can also work in context of pooled sequencing of different in-
dividual or ecotypes, in presence of one available reference genome, e.g. help to assemble
short-reads mapped to common reference genome [PS10].

Future works will address: (i) incorporating sequencing errors, (ii) applying the MethColor
to analyze available biological datasets, for example the recent diverse set of methylome
data from human embryonic stem cells [LPK+11]. In dealing with sequencing error, we
can either do error correction before or incorporate the non C-T mismatches as the weights
of the read graph.
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[LM05] Benjamin Lévêque and Frédéric Maffray. Coloring Meyniel graphs in linear time. Elec-
tronic Notes in Discrete Mathematics, 22:25 – 28, 2005. 7th International Colloquium
on Graph Theory.

[LOTF+08] Ryan Lister, Ronan C O’Malley, Julian Tonti-Filippini, Brian D Gregory, Charles C
Berry, A Harvey Millar, and Joseph R Ecker. Highly integrated single-base resolution
maps of the epigenome in Arabidopsis. Cell, 133(3):523–36, May 2008.

[LPK+11] R. Lister, M. Pelizzola, Y. S. Kida, R. D. Hawkins, J. R. Nery, G. Hon, J. Antosiewicz-
Bourget, R. O’Malley, R. Castanon, S. Klugman, M. Downes, R. Yu, R. Stewart,
B. Ren, J. A. Thomson, R. M. Evans, and J. R. Ecker. Hotspots of aberrant epige-
nomic reprogramming in human induced pluripotent stem cells. Nature, 471:68–73,
Mar 2011.

[MSKP11] P. Medvedev, E. Scott, B. Kakaradov, and P. Pevzner. Error correction of high-
throughput sequencing datasets with non-uniform coverage. Bioinformatics, 27:i137–
i141, Jul 2011.

[PE10] Mattia Pelizzola and Joseph R. Ecker. The DNA methylome. FEBS Letters, In Press,
Corrected Proof:–, 2010.

[PS10] Qian Peng and Andrew D. Smith. Multiple Sequence Assembly from Reads Alignable
to a Common Reference Genome. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 99(RapidPosts), 2010.


