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Abstract 
Background: Several enrichment tests are available to detect the enrichment of differential 
expression in gene sets. Such tests were originally proposed for analyzing gene sets associated with 
biological processes. The objective evaluation of tests on real measurements has not been possible as 
it is difficult to decide a priori, which processes will be affected in given experiments.  
Results: For the rigorous assessment of enrichment tests we define gene sets based on the known 
targets of given regulators such as transcription factors (TFs) and microRNAs (miRNAs). In contrast 
to processes, TFs and miRNAs are amenable to direct manipulations, e.g. regulator over-expression or 
deletion. We assessed the ability of 12 different tests to predict the manipulations from expression 
measurements in E. coli, S. cerevisiae and human. We also analyzed how performance depends on the 
quality and comprehensiveness of the known regulator targets via an additional permutation approach. 
Overall, we find that ANOVA and Wilcoxons test consistently performed better than for instance 
Kolmogorov-Smirnov and hypergeometric tests. For novel scenarios where the optimal test is not 
known we suggest to combine all evaluated tests into an unweighted consensus. 
Conclusion: We present a first large study to rigorously assess and compare the performance of gene 
set enrichment tests. Our results provide a guide for the selection of existing tests as well as a basis for 
the development and assessment of novel tests.  
 
Introduction 
The interpretation of gene expression studies reporting mRNA levels for a high number of genes or 
other expressed sequences is difficult. Instead of individual genes, it has been proposed to analyze 
gene sets corresponding to biological processes. The Gene Ontology (GO, Harris et al., 2004) is an 
example source for biological process definitions and process associated gene sets. The analysis of 
expression data in the context of such gene sets can be performed by many different enrichment or 
over-representation tests (see section related work). These tests aim to detect gene sets exhibiting 
significant levels of differential expression. However, it is difficult to decide a priori which biological 
processes will be affected in a given gene expression experiment. This lack of a dependable standard 
of truth has prevented an objective selection and evaluation of enrichment tests on real data.  
Targets of gene expression regulators such as transcription factors (TFs) and microRNAs (miRNAs) 
can also be treated as gene sets. TFs are regulatory proteins that bind to the promoter regions of target 
genes to regulate their levels of expression (Chen et al., 2007; Hobert et al., 2008; Martinez et al., 
2009). miRNAs are small (~22-nucleotides) non-coding RNAs that are incorporated into the RNA-
induced silencing complex (RISC) to regulate the stability and translation of messenger RNA 
(mRNA) transcripts (Bartel, 2009; Naeem et al., 2010).  
The activity of such regulators is not directly visible on the mRNA level: TFs are frequently 
modulated at the post-transcriptional level (Boorsma et al., 2008) and miRNAs are usually not 
profiled. It is thus important to indirectly determine the activity of regulators by analyzing their target 
genes (Cheng et al., 2007; Hu et al., 2010). Here, the same tests are employed that were devised for 
analyzing biological processes (Cheng et al., 2009; Naeem et al., 2011). 
We propose TFs and miRNAs and their associated sets of target genes for the rigorous evaluation of 
gene set enrichment tests since their experimental manipulation offers the required standard of truth 
that is not available for biological processes. Given regulator deletion or over-expression experiments, 
we considered the experimentally manipulated and the remaining regulators (along with their 
corresponding sets of target genes) as positives and negatives, respectively. We thus evaluated the 
ability of statistical tests to infer the manipulated regulator from the expression of its target genes.  
The present study thereby conducts the first large comparison and rigorous assessment of 12 statistical 
enrichment tests for analyzing gene sets. We applied start-of-the-art statistical methods such as 



ANOVA, Wilcoxon’s test, Kolmogorov-Smirnov test as well as the hypergeometric test to test the 
null hypothesis, i.e. that expression changes in regulator target sets might be due to noise.  
The following section briefly reviews the field of gene set enrichment tests. Subsequently, we 
describe our approach to rank enrichment tests. 
 
Related work: Gene set analyses. A microarray experiment typically results in a long list of 
differentially expressed genes (DEGs) that is the starting point to gain insights into biological 
mechanisms (Gatti et al., 2010). Several statistical methods for the analysis of sets of DEGs have 
been proposed (Goeman et al., 2007, Rivals et al., 2007). Most test for the over-representation of 
predefined sets of genes (e.g., Gene ontology (GO), KEGG pathways) in the list of DEGs (Hosack et 
al., 2003; Zeeberg et al., 2003; Zhang et al., 2004; Martin et al., 2004; Al-Shahrour et al., 2004, 
Beissbarth et al., 2004; Lee et al., 2005; Pehkonen et al., 2005; Khatri et al., 2005; Yi et al., 2006).  
Pavlidis et al. (2004) use the geometric mean to calculate the significance of the genes in the gene set. 
Gene Set Enrichment (GSE) analysis, proposed by Mootha et al., (2003) and improved by 
Subramanian et al., (2005) uses an enrichment score based on a Kolmogorov-Smirnov test statistic. 
GSEA has been extended (Barry et al., 2005; Huang et al., 2009) to cover multiclass, continuous and 
survival phenotypes, and more test statistics.   
More recently, GSE tests have also been applied to gene sets representing TF or miRNA target genes. 
Sohler et al., (2005), Liu et al., (2010) and Essaghir et al., (2010) identified the activity of TFs by 
analyzing whether the TF target gene sets are enriched among a list of DEGs using a hypergeometric 
test. GSE tests were also applied to detect expression changes of miRNAs based on the expression of 
their target gene set (Farh et al., 2005; Sood et al., 2006; Arora et al., 2008; Tu et al., 2009; Volinia et 
al., 2010; Ott et al., 2011). Recently Cheng et al., 2009 proposed a test statistic based on difference of 
average ranks between the miRNA’s non-targets and targets. None of these studies provide a 
comprehensive comparative analysis of the tests evaluated against real data. 
  
Methods 
Assessment of TF and miRNA activity 
To determine activity changes of TFs and miRNAs we apply several gene set enrichment approaches 
to test the null hypothesis (Ho) whether the expression levels of regulator downstream targets could be 
sampled from the background distribution of the remaining (i.e. non-target) genes. Our approach to 
assess gene set enrichment tests is depicted in Figure 1. In the following, we describe how the 
standard of truth is derived and how sign annotations are used to treat the up- and down-regulation of 
target genes. The applied enrichment approaches are described in Appendix 2. 
 
Standard of truth. In the proposed assessment scenario, we evaluate the ability of statistical tests to 
infer the experimentally manipulated (i.e. deleted or over-expressed) regulators from the expression of 
its target genes (see Appendix 1). Thus, the identity of the manipulated regulators represents the 
standard of truth. It is compiled into a label matrix that assigns 1 if the given regulator is manipulated 
(deleted or over-expressed) in the given measurement or 0 otherwise (Figure 1).  
Some TFs are excluded from the assessment. We exclude manipulated TFs that exhibit fold-changes 
smaller than a predefined threshold: here, it is unclear whether the manipulation was effective. We 
also exclude TFs that exhibit large fold-changes but have not been directly manipulated: they could be 
direct or indirect targets of a manipulated TF. By varying fold-change thresholds, the performance 
dependency on the definition of positives can be explored. Since the expression levels of miRNAs 
have not been measured, all miRNAs are used to determine the performance of tests. 
 
Pre-processing of the data matrix 
Before applying enrichment tests, the given gene expression measurements need to be pre-processed, 
either utilizing or neglecting interaction signs, i.e. that a TF activates (+) or inhibits (-) a given target.  
 
Absolute-one-sided (Ho

abs). In this scenario, interaction signs are ignored. Enrichment tests are applied 
to absolute log fold changes, i.e. we evaluate the degree of differential expression in the target genes 
regardless of up- and down-regulation (Figure 2, left). 



 
 
Figure 1: Overview. The data matrix consists of |chips| columns and |genes| rows where cells in the matrix represent mRNA 
levels. Chips are annotated by the treatment, e.g. the manipulation (Δ=deletion or ↑=over-expression) of expression 
regulators, here exemplified by TFs. This annotation is compiled (a) into a label matrix to represent the standard of truth. 
Manipulation of a regulator is expected to result in up- (red) or down-regulation (blue) of its target genes. After processing 
(b) the data matrix as shown in Figure 2, gene set enrichment (GSE) tests are applied (c) to determine the activity of 
regulators based on the differential expression of their target genes (see Appendix 1). This results in a score matrix 
containing the test results. For evaluation, the label matrix is compared to the score matrix to compute (d) an area under the 
receiver-operator characteristic (AUROC) curve.  
 

 
Figure 2: Preprocessing of the data matrix. Two null hypotheses, the absolute (H0

abs, left) and the signed two-sided 
(H0

sign, right) null hypotheses, can be tested after pre-processing the data matrix accordingly. For H0
abs, expression profiles 

are transformed into absolute log fold changes. For E.coli, where interactions are annotated as ‘+’ for activation and ‘-’ for 
inhibition, we also test H0

sign. Here, we negate fold changes for target genes that are inhibited by the regulator. Two-sided 
tests detect positive or negative fold-changes corresponding to an increase or decrease, respectively, in regulator activity.  
 
 
Signed-two-sided (Ho

sign). This scenario can only be applied to E. coli since only RegulonDB provides 
sign annotations for gene regulatory interactions. We negate fold changes for target genes that are 
inhibited by the given regulator.  Thus, all target genes of a regulator should either exhibit enrichment 
of positive or negative fold changes in case of increased or decreased, respectively, regulator activity. 
Enrichment at either tail of the distribution is then determined by two-sided tests (Figure 2, right). 
 
Performance assessment  
Statistical tests as described in Appendix 2 are applied to the processed data matrix (Fig. 2). Test 
predictions are then evaluated against the standard of truth via the area under the receiver-operating 
characteristic (AUROC) as discussed in (Prill et al., 2010). The AUROC compares continuous test 
scores (Fig. 1: score matrix) against discrete regulator states (1=active, 0=inactive, compare Fig. 1: 
label matrix). Thus, AUROC is a summary measure of the test’s ability to consistently assign higher 
scores to active regulators and lower scores to non-active regulators based on given chip 
measurements. AUROC’s of 1 or 0.5 represent a perfect or random test, respectively. 
 
Randomized testing. In addition to applying the tests to the data matrix, we also progressively 
randomized the set of regulator target genes to evaluate how much the performance of statistical 



methods depends on the quality of gold standards. We generate new target sets that are randomized by 
x% (where x=25, 50, 75…), i.e. by randomly selecting x% of the interactions in the gold standard and 
exchanging the true target gene in such an interaction by a random non-target gene. An average 
AUROC is determined by applying GSE tests on 100 partially randomized networks for each x.  
	  

Results 
Detection of TF activity without sign annotations. We first evaluated the ability of the applied 
enrichment tests to predict TFs that have been deleted or over-expressed. At this point, sign 
annotations are ignored, i.e. we test H0

abs. Manipulations were only considered effective if the TFs 
exhibit a fold change of at least two or less than 0.5. Conversely, substantial fold-changes in non-
manipulated (secondary) TFs could be due to a direct or indirect effect from the manipulated (primary 
TFs). Such cases are also excluded from the evaluation. In case of negative examples, we varied the 
fold-change cutoff to explore its influence on the performance of the enrichment tests (Figure 3). At a 
higher cutoff, more negative examples are included in the analysis, which leads to a slightly decreased 
performance but hardly influences the ranking of enrichment tests. The resulting AUROC values at a 
cutoff of 0.5 are shown in Table 1. 
In addition, we also combined all individual tests into a consensus. The scores in the individual score 
matrices (Figure 1) are transformed into ranks and averaged. Although some of the constituent tests 
hardly perform better than random, the consensus shows consistently good results arcoss all scenarios. 
 
Detection of TF activity with sign annotations. This section evaluates if test performance can be 
improved by exploiting the annotation provided by RegulonDB. This annotation distinguishes 
whether the TF activates or inhibits a given target gene. H0

abs as applied in the previous section tested 
only for differential expression. By using H0

sign instead, we additionally test whether the fold changes 
observed in TF targets are consistent with the given interaction sign annotations. Neglecting signs 
slightly improves the enrichment tests without significantly changing their ranks (Table 1). 
 
Test performance on E. coli vs. S. cerevisiae. In addition, we also applied the enrichment tests to 
expression compendia in S. cerevisiae. The overall ranking of tests is very consistent between 
prokaryotic and eukaryotic datasets. The performance for S. cerevisiae is somewhat lower than that 
for E. coli. These results might be due to the better quality of gene regulatory networks in E. coli as 
well as the simpler gene regulation in prokaryotes (Narendra et al., 2010). 
 
Detection of miRNA activity. In addition to TF-target relationships we also evaluated miRNA target 
relationships based on miRNA transfection experiments in human cell lines.. Here, a range of 
miRNA-target set definitions has been employed: databases only (AUROC ANOVA 0.63), 
DBs+PICTAR+TargetScan (high precision prediction tools, AUROC ANOVA 0.83) and DBs+PITA 
(high recall prediction tool, AUROC ANOVA 0.84). Although the quality of computational miRNA 
target predictions has been discussed controversially (Ritchie et al. 2009), they are required to 
complement the currently available manual repositories, which appear to be not sufficiently 
comprehensive for such an analysis. Although this setting deviates considerably from the previously 
discussed ones, the overall ranking of methods is again very consistent (see Appendix 3). An 
exception is the hypergeometric test (HG-0.5) with the second best performance after ANOVA. 
 
Randomized testing. To determine how the test performance depends on the quality of the available 
gene regulatory networks, we progressively randomized the regulator target sets. The ability of the 
different tests to infer the activity of TFs is surprisingly stable even if, on average, about 50% of the 
gene regulatory network is randomized (Figure 4, Appendix 3 for miRNAs).  
 
Overall ranking of methods. Average ranks for the examined tests were computed based on their 
performance across different partially randomized expression compendia (E. coli, S. cerevisiae and 
human) and different scenarios (H0

abs vs. H0
sign). Thereby, we derived the following ordering of 

methods: ANOVA > CON > WR > HG-0.5 >FCR > KS > BT > FC > MED > HG-1.0 > HG-1.5 > 
FCRW. ANOVA, CON (consensus) and WR (Wilcoxons rank) performed consistently well across all 



scenarios (average ranks between 1 and 3). While FCR (fold change rank), HG-0.5 (hypergeometric, 
with threshold 0.5), KS (Kolmogorov-Smirnov) and BT (bootstrapping) also deliver usable results 
(average ranks between 5 and 7), the remaining tests performed substantially below average.  
 
 

 

Figure 3: Dependency of AUROC on the set of 
negatives (E.coli). TFs are only considered as 
negatives in the AUROC analysis if they exhibit 
fold-changes of less than a pre-defined cutoff. The 
x-axis shows the sizes of different negative sets (in 
brackets) compiled based on different fold-change 
cutoffs (|log2 (fold change)|). The size of the 
negative sets has only little influence on the 
AUROC (y-axis) or on the relative rank of the 
different enrichment tests. 
 

 
 
Table 1: AUROC for enrichment tests across E.coli and yeast expression compendia. 

Enrichment tests E.coli  Yeast   
(Ho

abs) (Ho
sig) Y1-(Ho

abs) Y2-(Ho
abs) 

ANOVA Two-sample ANOVA≡t-test 0.85 0.80 0.71 0.71 
CON Consensus of all tests 0.81 0.77 0.74 0.68 
WR Wilcoxon’s rank sum 0.83 0.72 0.72 0.68 
KS Kolmogorov-Smirnov 0.81 0.83 0.64 0.63 
BT Bootstrapping 0.72 0.68 0.73 0.67 
HG-0.5 Hypergeometric, cut=0.5 0.79 0.60 0.69 0.60 
FC Average fold change 0.72 0.72 0.75 0.67 
HG-1.0 Hypergeometric, cut=1.0 0.77 0.67 0.68 0.54 
HG-1.5 Hypergeometric, cut=1.5 0.71 0.69 0.72 0.56 
FCR Average gene rank 0.75 0.65 0.71 0.68 
MED Median 0.67 0.67 0.70 0.66 
FCRW Avg. fold change rank weight 0.56 0.54 0.56 0.70 
Appendix 2 describes the used tests. The table is sorted based on the average of the four AUROC’s. 
 
 
 

 

 

 

Figure 4: Progressive randomization of gene regulatory 
networks. The given gene regulatory relationships have 
been randomized in steps of 25% where 100% represents 
fully randomized networks. At each step, the average 
AUROC from 100 (partially) randomized networks is 
shown.  
 



Discussion and Conclusion 
Gene set enrichment tests have been devised to detect an over-representation of differentially 
expressed genes in pre-defined gene sets that correspond to biological processes. A dependable 
standard of truth is not available since it is difficult to decide a priori, which biological processes will 
be affected on the mRNA level. This has previously prevented the objective selection and evaluation 
of enrichment tests on real measurements. Instead, we derived gene sets from the targets of gene 
expression regulators (TFs and miRNAs) whose experimental manipulation directly offers the 
required standard of truth. In this setting, we evaluated the ability of 12 frequently used statistical tests 
(Huang et al., 2009) to detect regulator manipulations.  
The detection of regulator activities is difficult: simple tests based on the rank difference between 
regulator targets and non-targets are not appropriate. We observe that the hypergeometric and 
Kolmogorov-Smirnov tests, which are most frequently used in practice, are significantly 
outperformed by ANOVA and Wilcoxons test. The HG test yielded mixed results depending on 
threshold parameter and setting (TF vs. miRNA). Although the performance of the used tests was 
diverse (AUC between 0.5 and 0.85 for E. coli), an unweighted consensus integrating all approaches 
consistently showed good results.  
Surprisingly, test performance did not improve by utilizing interaction signs (activate vs. inhibit). This 
might be due incomplete sign annotations, e.g. with respect to toggle switches (Morel et al., 2000) 
where a TF can activate or inhibit a target gene depending on the molecular context. 
To ensure the wide applicability of our results, we employed a variety of settings. In terms of 
microarray data, we used TF manipulations in E. coli (one expression compendium) and S. cerevisiae 
(two compendia) to compare results between a prokaryote and a eukaryote model organism. We also 
analyzed a third setting, the transfection of human cell lines with miRNAs. Performance on S. 
cerevisiae and human is lower than that for E. coli, which might be due to the lower quality of the 
available gold standards of TF/miRNA target networks and the more complex regulation in 
eukaryotes (Michoel et al., 2009; Hu et al., 2007; Narendra et al., 2010).  
The performance ranking of the tests is very consistent between each of the examined scenarios, with 
methods such as ANOVA or Wilcoxon’s test always performing substantially better than random 
guessing. We thus expect that the ranking of the 12 tests will be meaningful in novel settings that 
deviate from the ones described here. An example is the application of enrichment tests to biological 
processes, where we expect the consensus approach to yield the most reliable results. 
Via an additional permutation approach, we analyzed how enrichment tests depend on the quality and 
comprehensiveness of the known regulator-target relationships. Most methods show only a moderate 
decrease in performance even after randomizing 50% of the gene regulatory network. We therefore 
conclude that the gene set definitions derived from the known gene regulatory interactions are 
sufficient to enable the comparative assessment of enrichment tests as well as the detection of 
regulator activities in real mRNA expression compendia.   
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Appendix 1: Datasets 
Gene expression compendia 
TF deletion and over-expression studies. To investigate the influence of TFs on downstream target 
genes, we analyze large-scale experiments that in part consist of TF perturbations (knock-out=KO and 
over-expression=OE, Appendix table 1). A compendium of 907 E.coli microarray samples was taken 
from the M3D Database (Faith et al., 2008). Another compendium of 263 S. cerevisiae microarrays 
was obtained from the study of Hu et al., 2007. Hu et al. systematically deleted 263 TFs in yeast, and 
compared each deletion strain with the wild type for genome-wide expression. We also used the 
dataset by Chua et al., (2006) providing microarray expression data resulting from over-expression 
and/or deletion of 55 S. cerevisiae TFs.   
All analyses are based on comparing gene expression levels between deletion/over-expression and 
control via log2 fold-changes. The microarray datasets contain basal gene levels that can be quite 
different between experiments. To compensate for this, we transformed the absolute expression values 
into expression fold changes. Fold changes are computed by mapping each measured condition to one 
or more control conditions from the same experiment (see Küffner et al., (2011) “Inferring gene 
regulatory networks by ANOVA”, submitted to Bioinformatics. 
 
Appendix Table 1: E. coli and yeast expression compendia used in this study. 

Dataset TFs Targets KO/OE TFs Targets Chips References 
E.coli (M3D) 167 1377 17 949 907 Faith et al., 2008 
S. cerevisiae (Y1) 114 1934 102 1527 263 Hu et al., 2007 
S. cerevisiae (Y2) 114 1934 48 1094 270 Chua et al., 2006 

 
 
miRNAs transfection studies. Several microarray experiments with over-expression of miRNAs have 
been performed to measure the global changes in the transcriptome or proteome. We obtained 43 gene 
expression profiles of 18 different miRNA transfection studies in different human cell lines. Selbach 
et al. (2008) measured gene expression data in HeLa cells at 8h and 32h after miRNA over-expression 
of miR-155, miR-16 and let-7b. Expression profiles by He et al. (2007) include gene expression 
changes at 24h after miRNA over-expression of miR-34 family (i.e., miR-34a and miR-34b), in six 



different cell lines (e.g., HeLa, A549 H1-term and TOV21G H1-term). Georges et al. (2008) 
measured p53-inducible miRNAs, miR-192 and miR-215, at 10h and 24h after miRNA transfection in 
a human cell line (i.e., HCT116 Dicer -/- #2). Baek et al. (2006) measured the gene expression data in 
HeLa cells at 24h after miR-124, miR-1 and miR-181a transfection. We also use the dataset by 
Grimson et al. (2007) that measured gene expression data in HeLa cells at 12h and 24h after miRNA 
over-expression of miR-7, miR-9, miR-122, miR-128, miR-132, miR-133, miR-142 and miR-181a.  
 
Gene regulatory networks 
TF-gene regulatory interactions.  E.coli TF-gene regulatory interactions were obtained from 
RegulonDB (Gama-Castro et al., 2008). RegulonDB contains 2066 experimentally validated and 
manually curated interactions. Recently, DREAM5 used RegulonDB to validate the predicted E.coli 
interactions (wiki.c2b2.columbia.edu/dream/index.php/D5c4). The Saccharomyces cerevisiae (S. 
cerevisiae) gold-standard network of 3940 interactions was obtained from the study of MacIsaac et 
al., 2006 who re-analyzed the Harbison et al., 2004 ChIP-chip data to determine the binding locations 
of TFs. The E.coli gold standard is considered more reliable than S. cerevisiae as suggested the 
analysis of Narendra et al. (2010).  
 
miRNA-target gene associations.	  Several computational algorithms have been developed to predict 
miRNA-target genes. We obtained putative human miRNA-target pairs predicted by PITA (Kertesz et 
al., 2007), PICTAR (Krek et al., 2005) and TargetScan (Friedman et al., 2009). In addition, several 
databases collect target genes of the miRNAs in different organisms. Human miRNA-gene 
associations were obtained from the curated databases TarBase (Papadopoulos et al., 2009), 
miRecords (Xiao et al., 2009) and miR2Disease (Jiang et al., 2009). From miRSel (Naeem et al., 
2010) we obtained putative miRNA-gene associations and relations extracted from biomedical 
abstracts by text mining (Appendix table 2).  
 
Appendix Table 2 – miRNA-target associations from databases (DB) and predictions (PR). 

Source miRNAs Target genes Pairs 
DB: miRSel 486 1969 7604 
DB: TarBase 110 837 1023 
DB: MiRecords 93 614 772 
DB: miR2Disease 176 364 596 
PR: PITA 640 14065 307465 
PR: PICTAR 163 5975 44403 
PR: TargetScan 249 9446 110172 

 
 
Appendix 2: Enrichment tests 
Wilcoxons test. The Wilcoxon nonparametric rank-sum (WR, Mann and Whitney, 1947; Lehmann, 
1975) method is applied to test the null hypothesis, i.e. regulator targets exhibit no significant rank 
differences in comparison to other (non-targets) genes. The ranks were derived by sorting the genes 
based on either their absolute or signed log fold changes (Figure 2). If the rank distributions of targets 
and non-targets of the tested regulator are significantly different the null hypothesis will be rejected. 
We refer to such a TF/miRNA as active regulator for the tested experiment. The results of WR test 
statistic are p-values as a measure of significance of the observed change in means.  
 
Hypergeometric test. Since hypergeometric (HG, Spiegel, 1992) test requires a threshold parameter to 
select regulated genes, we applied the HG test to test the null hypothesis given regulated gene sets of 
different sizes compiled based on absolute log fold changes, e.g. greater than 0.5, 1.0 or 1.5. For a 
given regulator i the p-value is computed according to the cumulative hypergeometric formula: 
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where N is the population size or number of DEGs in a given chip measurement; m is the number of 
success in population or a set of DEGs filtered based on a given regulated gene threshold value; k is 
the the number of regulator target genes, and x is the number of common DEGs between m and k. 
	  
Kolmogorov-Smirnov test. The results of Kolmogorov-Smirnov test (KS, Nikiforov, 1994; Siegel, 
1956) statistic are p-values as measure of differences between the empirical distribution (cumulative 
distribution) functions of a regulator targets and non-targets. 
 
ANOVA. The results for ANOVA test are p-values that are calculated using F statistic/distribution. In 
a given setting two sample-ANOVA is equivalent to the two-sample t-test (Miller, 1997).  
	  
Bootstrap sampling. The significance probability of the bootstrap test (BT, Efron et al., 1993) 
calculates the statistic for bootstrap two samples (such as regulator targets and non-targets gene set) 
drawn in some way (randomly) from the original data, and then calculates the proportion of these that 
are less than or equal to lower tail, greater than or equal to upper tail, or either (two tail). Bootstrap 
results in p-values as a measure of significance to the difference in means using ANOVA/t-test. 
 
Average Fold Change. The Average Fold change (FC-score) of a regulator activity is defined as the 
difference of the average mean expression levels between its targets and non-targets. A positive FC 
score indicates that the target genes of a regulator are expressed at higher levels than non-target genes. 
The higher the FC score, the stronger the effect of a regulator on its targets (Cheng et al., 2009). 
 
Average gene rank. The average gene rank (FCR-score) of a regulator activity is defined as the 
difference of the average rank between its targets (Travg) and non-targets (nTravg). The genes ranks 
(FCR) were derived by sorting them based on their absolute or signed fold changes. 
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where n and j represent the number of a given regulator targets and non-targets. And ti and tj represent 
the ranks of regulator targets and non-targets.   
 
Average fold change rank weight. The average fold change rank weight (FCRW-score) of a regulator 
activity is defined as the difference of the combined average rank and expression levels between its 
targets and non targets. The ranks of genes are derived by sorting them based on their absolute or 
signed fold changes (Figure 2).  
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where wi and wj are the ranks and ti and tj are the fold changes of targets and non-targets, respectively. 
 
Median. The median (MED-score) of a regulator activity is defined as the difference of the median 
expression levels between its targets and non-targets.  
	  
Consensus prediction. A number of tests have been applied to a TF in a given experiment to test for 
over-representation of its targets among the DEGs. For each test, ranks of the regulators are 
determined by sorting them based on their scores. We define a consensus score (CON) to measure the 
regulator activity changes: the unweighted average of the ranks of a regulator determined by other 
statistical methods/tests as described above. This approach is called Borda count voting (Borda, 
1781). For a given regulator j, the consensus score is calculated as: 

CON =
1
n

Rjii=1

n
!  

where n represents the number of tests applied to calculate the significance of a regulator j in a given 
experiment. Thus, Rji represents the rank of a regulator j for a given statistical test i.   



Appendix 3: Additional results for miRNAs 
 

 

Appendix Figure 1:  Progressive randomization of 
miRNA-target gene regulatory networks. The 
regulatory relationships from databases and 
computational predictions (TargetScan and PicTar) have 
been randomized in steps of 25% where 100% 
represents fully randomized networks. At each step, the 
average AUROC from 100 (partially) randomized 
networks is shown. 43 single miRNA transfection 
experiments have been performed (43 positives), based 
18 unique miRNAs. Thus, the negative set contains (18-
1)*43=731 samples. 
	  

 
 
 
Appendix Table 3: AUROC for enrichment tests for human miRNA-target gene sets from databases and predictions. 

Statistical Methods/ 
Tests 

Human miRNAs 
(Ho

abs) – 
Databases  
(P1) 

(Ho
abs) –  

P1 + PICTAR+ 
TargetScan (P2) 

(Ho
abs)  

P2+PITA(-20) (P3) 
Average  
AUROC 

ANOVA 0.63 0.83 0.84 0.77 
HG-0.5 0.61 0.83 0.81 0.75 
CON 0.61 0.82 0.80 0.74 
FCR 0.61 0.82 0.75 0.73 
WR 0.60 0.80 0.77 0.72 
KS 0.60 0.78 0.76 0.71 
HG-1.0 0.61 0.77 0.72 0.70 
MED 0.61 0.73 0.68 0.67 
BT 0.62 0.62 0.66 0.63 
HG-1.5 0.59 0.57 0.50 0.55 
FC 0.51 0.51 0.51 0.51 
FCRW 0.50 0.51 0.50 0.50 

Statistical methods are applied to test the null hypothesis (Ho
abs) given miRNA-target gene set derived from databases 

(miRSel, TarBase, miRecords) and computational prediction programs (PICTAR, TargetScan and PITA) following different 
test settings as described in method section. In total 50 (P1), 260 (P2) and 649 (P3) miRNAs have been evaluated in all 
miRNA transfection experiments. For AUROC analysis, the positive set includes those miRNAs that are used for 
transfection in a given experiment and contain more than 20 targets (which are 26 and 43 in case of databases and 
computational prediction methods).  
 
 
 
Appendix Table 4: Performance-based ranking of enrichment tests. 
  Ranking based on ≥10% 

permutation results 
Avg. of 4 test cases 
(E.coli Ho

abs+ 2xYeast 
Ho

abs+E. coli Ho
sign) 

Ranking without 
permutation 
Avg. of 4 test cases 
(E.coli Ho

abs+ 2xYeast 
Ho

abs+E. coli Ho
sign) 

Ranking without 
permutation Avg. of 
3 test cases (human 
miRNAs: P1, P2, P3) 

Ranking based on 
25% permutation 
Avg. of 3 test cases 
(miRNAs: P1, P2, 
P3) 

ANOVA 2 2 1 1 
CON 1 1 3 2 
WR 3 3 4 3 
HG-0.5 8 9 2 4 
FCR 6 7 6 5 
KS 9 4 5 6 
BT 4 6 9 9 
FC 5 5 11 11 
MED 10 8 8 8 
HG-1.0 11 11 7 7 
HG-1.5 7 10 10 10 
FCRW 12 12 12 12 
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