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Abstract: The classification of protein-protein interactions into permanent, transient and crystal artifacts is still 

an unsolved problem. Current methods are often either too inaccurate or more complicated than necessary. Due 

to this we have calculated several descriptors concerning the characteristics of protein-protein interactions and 

analyzed diverse variations with a support vector machine. Using only two descriptors – the hydrophobicity of 

the interface and the proportion of the interface ratios – we achieved an accuracy of 92.5 % in our training 

dataset. Applying our generated model on an independent test set we obtained an accuracy of 77.1 %.  

Analyzing the composition of available datasets, it becomes clear, that they are often biased by large portions of 

permanent binding homodimers. The real challenge, however, is the discrimination of permanent from transient 

heterodimers. Due to this, we have constructed a dataset containing only permanent and transient heterodimers 

and applied our most promising descriptors. The usage of interface hydrophobicity as the only descriptor for the 

discrimination revealed the best accuracy of 80.2 %. 

 

 

Introduction 
 

Protein-Protein interactions play a significant role in all biochemical pathways and signaling cascades. 

It is important to differentiate between biological complexes (permanent and transient) and crystal 

artifacts. In addition, it is of great interest to discriminate between permanent and transient protein-

protein complexes since latter are potential drug targets [1]. Consequently, it is of particular 

importance to comprehend the mechanisms of these interactions. One aspect of these protein-protein 

complexes is their kind of interaction. Analyzing a single X-ray structure, they can be divided into 

permanent and transient complexes as well as crystal artifacts. Permanent protein-protein complexes, 

also called folding complexes or two-state complexes, are characterized by their high stability, since 

they cannot exist in their monomeric state [2 - 3]. In contrary, transient complexes, also called 

recognition complexes or three-state complexes, are stable in their monomeric form and able to fulfill 

biological functions in this state as well as in the dimeric state [1 – 3]. The third interaction type, 

crystal artifacts, are artificially formed upon crystallization [4, 5]. 

These three different types of protein-protein complexes have been investigated theoretically for years. 

Several characteristics have been determined for the diverse complex types. The amino acid 

composition of the protein-protein interface displays one characteristic. Transient interactions have a 

high percentage of polar amino acids, permanent complexes are in contrast more hydrophobic whereas 

crystal artifacts have a great contribution of charged residues [6 - 9]. Permanent protein-protein 

interactions appear in homomers as well as in heteromers while only a few transient interactions are 

known to be homodimeric [10, 11]. The interface of permanent interactions is often large and highly 

interfering, whereas transient interactions are generally smaller and more planar [3, 10]. Crystal 

contact interfaces tend to be smaller and less tightly packed than the former interactions [4, 5].  

During the last years many computational methods have been evolved for the classification of 

permanent, transient and crystal protein-protein interactions. The first method was developed by 

Ponstingl et al. [12] and differentiated monomers from homodimers. The usage of the solvent 

accessible surface area as a descriptor resulted in a correct classification of 85 % of the 96 monomeric 

and 76 homodimeric structures, whereas the atom pair potential, a measurement of intermolecular 

contacts in the crystal, reached an accuracy of 87.5 %. Another classification method for the 

differentiation of monomers and homodimers as well as transient and permanent complexes was 

developed by Mintseris and Weng [13]. They used a kernel discriminant analysis with an atomic 

contact vector containing 171 types of atom pairs for the classification. An accuracy of 93 % was 
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achieved on the data set constructed by Ponstingl et al. [12]. Zhu et al. [14] trained a support vector 

machine (SVM), using a test set of 243 permanent and transient complexes as well as crystal artifacts. 

As descriptors they used the interface area, interface area ratio and amino acid composition and 

achieved a total classification accuracy of 91.8 %. They obtained an accuracy of 80 % for the 

discrimination of biological and crystal complexes on a test set, consisting of 380 complexes taken 

from Bahadur et al. [15]. Kottha and Schroeder [16] achieved a very high accuracy of 97 % for the 

differentiation of permanent and transient protein-protein interactions. Their test set consists of 403 

permanent and transient protein-protein complexes. They used four descriptors, the molecular weight, 

the accessible surface area, hydrophobic contacts and the number of crystallographically determined 

water molecules within the interface. The usage of the molecular weight as the only descriptor 

achieved an accuracy of 80 %, without the need of crystal structures. Additionally they have analyzed 

the performance of their method for discriminating permanent and transient heterodimeric interactions. 

Here, they obtained an accuracy of 73 % using only the molecular weight. Table 1 contains a 

comparison of additional classification methods.  

 

Table 1: Summary of different methods separating protein-protein interactions 

Study 
Classification 

Criteria 

Number of 

Descriptors 

Method of 

Classification 

Accuracy 

[%] 

Dataset 

size 

Bahadur et al. [15] M - H 22 statistical methods ~ 94 310 

Kottha et al. [16] T - P 4 SVM 97 403 

Bradford et al. [19] T - P 14 SVM ~ 75.5 180 

Ofran et al. [20] 
6 interaction 

types
* 20 statistical methods ~ 77.2 1812 

Zhu et al. [14] T - P - C 22 SVM 91.8 243 

Block et al.  [18] 
B - C 26 

DT + GA 
94.8 

517 
T - P 62 93.6 

Ponstingl et al. [12] M - H 153 pair frequency SF 88.9 172 

Park et al. [21] 
4 interaction 

types
# 157 ARBC 47.6 - 99.9

‡
 147 

Mintseris et al. [13] 
M - H 

171 KDA 
93 

517 
T - P 91 

Liu et al. [17] 
B - C 

213 SVM 
96.7 

243 
T - P 87.9 

Rueda et al. [22] 
M - H 

324 LDR 
88.7 

461 
T - P 80.3 

B - biological complexes DT - decision tree   

P - permanent complexes GA - genetic algorithm   

T - transient complexes KDA - kernel discriminant analysis   

C - crystal complexes SF - scoring function   

H - homodimers LDR - linear dimensionality reduction   

M - monomers ARBC - association rule based classification  

* Interfaces within one structural domain (1), between different domains of one chain (2), between permanently (3), or transiently (4) interacting 

identical chains, between permanently (5) or transiently (6) interacting different chains 
# 

Enzyme inhibitor comnplexes, non enzyme-inhibitors, hetero-oligomers, homo-oligomers 
‡ 

Accuracies for different classification methods DT, Random Forest, K Nearest Neighbor, SVM, Naïve Bayes 

 

In this paper we introduce a new classification model for the three different types of protein-protein 

interactions. Furthermore, a detailed analysis of available datasets used for training of the 

classification methods mentioned above is performed. We have tested several descriptors and 

combinations of them using a SVM to generate a novel classification model. Finally, we achieved a 

total accuracy of 92.5 % for the separation of transient, permanent and crystal protein-protein 
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complexes using only two descriptors, the hydrophobicity and the proportion of the interface ratios. 

The dataset contained 254 complexes, which we have taken from the dataset used in the study of Zhu 

et al. [14]. We obtained an accuracy of 95.3 % for the discrimination of crystal artifacts and biological 

complexes. We classify 89.2 % correct considering the determination of permanent and transient 

interactions. Existing methods already achieved satisfying results considering the separation of 

biological interactions and crystal artifacts [14, 17, 18]. However, the identification of transient and 

permanent complexes is the more severe problem. A detailed analysis of the available data shows that 

the discrimination of heterodimers in permanent and transient interactions is the real challenge in this 

field. 

 

 

Methods 
 

Descriptors for classification 

 

We have calculated several diverse descriptors based on the characteristics described in the theoretical 

studies [3 - 11] of protein-protein interactions as well as descriptors used in former methods [14, 16, 

19]. Our descriptors consider the energetics of the different protein-protein interactions, geometric 

properties of the diverse complexes as well as the amino-acid composition of the interfaces. Most of 

the descriptors were calculated on the interface region (6.5 Å around the atoms comprising the 

interface). All descriptors are calculated using in-house tools and software. 

Energetics 

Concerning the stability of the different interactions, we have calculated the free energy of binding 

(ΔGBinding) using the HYDE scoring function [23] which is developed for the estimation of protein-

ligand complexes. There is no difference in the treatment of protein and ligand atoms in HYDE, 

consequently HYDE is also well suited for estimating the strength of protein-protein interactions.  

HYDE is based on HYdration and DEsolvation terms to estimate the energy of a complex. It describes 

consistently the favorable energy of hydrogen bonds and the hydrophobic effect, as well as 

destabilizing contributions to the binding energy arising from the desolvation of hydrophilic atoms in 

the interface. The descriptors we have calculated using the HYDE scoring function are: the ΔGHYDE 

energy which results upon binding of the protein subunits and the energy emerging only of the 

hydrophobic effect (ΔGHydrophobic) between the two protein subunits.  

Geometry and surface area 

We analyzed the interface geometry of the diverse protein-protein interactions since, as mentioned 

above, planarity and interface size are important characteristics of different interaction types. The 

planarity of the interfaces was calculated as root mean square deviation of the interface Cα-atoms from 

the interface plane. This plane was constructed by performing a principal component analysis of the 

interface Cα-atom coordinates. Using the resulting principal components we are also able to calculate 

the structure tensors of the interface, a measurement which stems from the image processing field 

[24]. These structural tensors allow us to draw conclusions about the shape of the interface.  

We calculated the molecular surface area (Connolly surface) of the complex interfaces and also the 

ratio of the interface area compared to the surface of the minimal subunit. This was done analogous to 

descriptors Zhu et al.[14] used in their study. Additionally, we estimated the ratio of each interface 

area to the surface area of the respective protein subunit to get the exact proportion of the interface 

area. Further, we extracted only the apolar surface area within the interface and compared this to the 

apolar surface area of the protein-protein complex. 
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Amino acid composition 

We investigated the amino acid composition of the interfaces of the different protein-protein 

interactions and calculated this composition for each amino acid type, leading to 20 different 

descriptors (for more details see [14]). In order to get a clearer signal we grouped amino acids with 

similar characteristics together: polar (C, H, N, Q, S, T, W, Y), hydrophobic (A, F, G, I, L, M, P, V) 

and charged (D, E, K, R). The composition of the interface is calculated again using this raw 

classification of amino acids.  

Interface/subunit symmetry  

During our study we observed that the symmetry of the interfaces is also an important characteristic to 

discriminate between the diverse interaction types. Consequently, we developed descriptors which 

exactly consider the symmetry aspect of protein-protein interactions. Firstly, since the HYDE score is 

an atom-based score we were able to calculate the ratio of the hydrophobic effect of one subunit 

compared to the other subunit of the protein-protein interaction. A second symmetry descriptor is the 

quotient of the interface area ratios (IF-quotient) which we have mentioned above. Thirdly, we have 

computed the difference of the molecular weights of each protein subunit. This descriptor was also 

used in the study of Kottha et al. [16], however, they did not mention using this as a description of 

interface/subunit symmetry.  

 

Classification method and validation measures 

 

For the automatic classification of the three different types of protein-protein interactions we 

employed a support vector machine (SVM). We used two types of SVM classifiers: a multi-class 

SVM to discriminate the three interaction types in one step and a two-stage SVM to separate firstly the 

crystal artifacts from the biological meaningful complexes and in a second step the transient from the 

permanent interactions. We trained both with several combinations of the developed descriptors. We 

used the SVM implementation in the R package e1071 [25].  

The discrimination performance of our generated model was evaluated by calculating the accuracy. 

The accuracy is defined as the ratio of correctly predicted complexes divided by the sum of all 

predicted complexes. 

 

Dataset retrieval 

 

We extracted the protein-protein complexes to construct our dataset from several resources [9, 10, 14, 

15, 26, 27] and extracted the structures from the PDB [28]. During the data collection it strikes out that 

some of the protein-protein interactions were annotated as transient in one dataset while they are 

classified as permanent in others. These complexes were excluded from our dataset (< 1 % of all 

complexes). Furthermore, complexes with more than two interacting chains were also removed from 

the dataset. Finally we attained a dataset which consists of 133 permanent, 121 transient and 152 

crystal artifacts. Out of these data we have constructed different smaller datasets for manifold analysis 

purposes. We also inspected our dataset concerning the homo- and heterodimeric nature of the protein-

protein complexes. Here, we used an in-house alignment tool (based on the edit distance algorithm by 

E. Ukkonen [29]) to align the two protein chains of the different interaction types. We calculated the 

alignment considering the whole chains as well as using only the amino acids which comprise the 

interface region. Table 2 gives an overview of the distribution of the different interactions types into 

the homo- and heterodimeric classification. 
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 Whole Chain Interface Region 

 Homodimers Heterodimers Homodimeric Heterodimeric 

Permanent 76 57 73 60 

Transient 5 116 5 116 

Crystal artifact 118 34 22 130 

Sum 199 207 100 306 

  

Table 2: Distribution of heterodimers and homodimers within the dataset. Whole chains were considered as 

homodimers when exceeding a similarity of 96 % otherwise as heterodimers. The interface region is classified as 

homodimeric if the similarity index is above 85 %. 

 

 

Results and Discussion 
 

Evaluation of the descriptors 

 

Diverse combinations of the developed descriptors were tested with the multi-class SVM. Previously, 

we have divided our dataset in two independent sets, one for the training of the SVM and the other for 

external validation of our model. Our training set contained 254 complexes (74 permanent, 60 

transient and 120 crystal artifacts) which we have taken from the dataset used in the study of Zhu et al. 

[14]; the remaining 152 complexes (59 permanent, 61 transient and 32 crystal artifacts) were included 

in our test set. We obtained the best results with the usage of only two descriptors - the hydrophobic 

score and the quotient of the interface ratios. An accuracy of 91.7 % was achieved with the multi-class 

approach in a leave-one-out cross-validation. These two promising descriptors were also used for 

model generation in the two-stage SVM which resulted in a total accuracy of 92.5 % in the leave-one-

out cross-validation. The separation of crystal artifacts and biological complexes reaches an accuracy 

of 95.3 % while the discrimination of permanent and transient complexes achieves an accuracy of 89.7 

% (Table 3a). Additionally, we performed a ten-fold cross-validation for the multi-class SVM as well 

as for the two-stage SVM to test the stability of the generated model. This validation resulted in an 

accuracy of 91.3 % for the multi-class SVM, as well as of 93.7 % for the first step and of 88.8 % for 

the second step of the two-stage SVM. We have applied the generated two-stage SVM model on our 

test set for external validation. Within this dataset we achieved a total accuracy of 77.1 % (Table 3b).  

a) Predicted  

  Permanent Transient Crystal artifact Total 

Permanent 71 1 2 74 

Transient 6 51 3 60 

Crystal artifact 3 4 113 120 

Total 80 56 118 254 

b) Predicted  

 Permanent Transient Crystal artifact Total 

Permanent 41 16 2 59 

Transient 7 47 7 61 

Crystal artifact 3 0 29 32 

Total 51 63 38 152 

 

Table 3: Two-stage SVM results using two descriptors: ΔGHydrophobic and IF-quotient. a) Leave-one-out cross-

validation results on the training set. b) Performance results of the test set. 
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Refinement of the model – using only one descriptor for classification 

 

We further investigated the two promising descriptors mentioned above considering their predictivity. 

Figure 1 shows the distribution of these in the constructed training dataset. It is directly obvious that 

the first descriptor, the ΔGHydrophobic, is perfectly suited to discriminate between crystal artifacts and 

biological complexes. The second descriptor, the quotient of the interface ratios, on the other hand is 

able to distinguish permanent from transient interactions.  

 

    
Figure 1: Distribution of the two descriptors (ΔGHydrophobic, IF-quotient) for the three different types of protein-

protein interactions of the training set; p = permanent, t = transient, c = crystal artifact. 

 

Due to this observation, we performed the two-stage SVM using only one descriptor for each 

separation step. We include the molecular weight difference as an additional descriptor in this 

analysis. This is done to allow a comparison of our “single” descriptor approach to that accomplished 

by Kottha and Schroeder [16]. They achieved an accuracy of 80 % in the discrimination of transient 

and permanent interactions in their dataset using a SVM. Table 4 summarizes our results using these 

three descriptors on the training set as well as on the test set. The separation of biological complexes 

and crystal artifacts works extremely well employing the ΔGHydrophobic as the only descriptor. In both 

datasets we received accuracies of 95.2 % and 91.5 % respectively. On the other hand, using either the 

quotient of interface ratios or the molecular weight difference as the only descriptor shows poor 

performance in the differentiation of biological complexes and crystal artifacts. The quotient of 

interface ratios as well as the molecular weight difference, describe symmetry aspects of protein-

protein interactions. Consequently, permanent and crystal artifacts which have similar homodimeric 

structures cannot be discriminated by these descriptors. However, the differentiation of biological 

relevant and non-relevant complexes also worked with former methods [14, 17, 18]. The more severe 

problem is the correct classification of permanent and transient protein-protein interactions. Herein the 

molecular weight difference and the interface quotient perform better in both datasets. Our descriptor, 

the interface quotient, exceeds the molecular weight difference by 4 – 7 %. An important observation 

in this analysis is the strong dependency of the achieved accuracies on the composition of the datasets. 

This aspect is investigated in the next section of the results.  
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 Training dataset Test dataset 

Descriptors B - C
a
 P - T

b
 B - C P - T 

∆GHydrophobic 95.2 72.4 91.5 73.0 

IF-quotient 64.9 89.5 all classified as B 68.3 

∆MW
c
 70.1 85.8 all classified as B 61.6 

 

Table 4: Two-stage SVM results using a single descriptor in each step. 
a
 Discrimination of biological complexes 

(B) and crystal artifacts (C). 
b
 Discrimination of permanent (P) and transient (T) interaction types. 

c
 Molecular 

weight difference of the subunits compromising the interface. 

 

Analysis of the composition of the datasets concerning homodimers and heterodimers 

 

Having a closer look at the composition of the datasets it becomes clear that most datasets are biased 

with respect to the distribution of homo- and heterodimeric structures (Table 5 and datasets used in 

[14, 16, 18, 22]). Within the training dataset we found no transient homodimers at all and within the 

test set only five were included. The training dataset Kottha and Schroeder used for their classification 

also contained only 13 transient homodimers (3.2 %). Their first differentiation method, using only the 

molecular weight difference, did not perform well for permanent heterodimers; only 52 % of those 

were classified correctly. Due to this result and our observations the separation of permanent and 

transient heterodimers seems to be the toughest problem related to the classification of protein-protein 

interactions. To our knowledge this problem is not been formulated yet and is probably overlooked 

due to the bias in the dataset. Consequently, most classification methods rely rather on the 

differentiation of homodimers and heterodimers than on the true classification of permanent and 

transient complexes. 

 

  Type Permanent Transient Crystal artifact Sum 

Training set Homodimers 53 0 92 145 

 Heterodimers 21 60 28 109 

Test set Homodimers 23 5 26 54 

 Heterodimers 36 56 6 98 

Sum   133 121 152 406 

 

Table 5: Composition of the datasets concerning homodimers and heterodimers. The classification of homo- or 

heterodimer is based a sequence identity of the whole protein chains. Protein complexes achieving a chain 

identity of more than 96 % were classified as homodimers. 

 

To circumvent this problem, we have constructed a new dataset containing only heterodimeric 

complexes (57 permanent and 116 transient). Again, we analyzed the performance of the hydrophobic 

score, the quotient of the interface area ratios and the molecular weight difference. Table 6 includes 

the results of this analysis. The analysis shows that the classification of permanent and transient 

interactions using the molecular weight difference as only descriptor is impossible. In this case, all 

complexes are classified as transient interactions. In contrast, ΔGHydrophobic as well as the quotient of the 

interface area ratios perform reasonably well, whereas ΔGHydrophobic used as the only descriptor 

achieves the best results in the leave-one-out and in the 10-fold cross-validation, with 80.3 % and  

80.2 % respectively. The combination of both descriptors obtains an even higher accuracy of 83.8 % 

in the leave-one-out cross-validation and 81.8 % in the ten-fold cross-validation. The classification of 

transient interactions works remarkably well, with no more than 10 out of 116 false classified 

complexes. Contrarily, the permanent heterodimers show higher false positive rates. A possible reason 

might be the often used, but dubious criterion for the selection of permanent complexes: a complex is 
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termed permanent, if the separate crystal structures for the subunits of the complex are not available 

[9, 20]. However, the crystallization of the individual subunits might not be possible yet, although they 

may exist in vivo. 

 

Descriptor 
Accuracy [%] Interaction 

type 

Predicted 

LOOCV 10-fold CV P
a
 T

b
 

IF-quotient 75.1 73.3 
P 24 33 

T 10 106 

∆GHydrophobic 80.3 80.2 
P 24 33 

T 1 115 

∆MW all classified as T 67.4 
P 0 57 

T 0 116 

IF-quotient + 

∆GHydrophobic 
83.8 81.4 

P 32 25 

T 3 113 

 

Table 6: Performance of the classification of permanent and transient heterodimers employing the second step of 

the two-stage SVM with different descriptors. Results of a leave-one-out (LOOCV) and ten-fold cross-validation 

(10-fold CV) are shown. 
a 
P = permanent. 

b 
T = transient. 

 

 

Conclusion 
 

In this study we have analyzed the performance of diverse descriptors for the discrimination of three 

different protein-protein interactions: permanent, transient and crystal artifacts. We achieved an 

accuracy of 92.5 % using two descriptors – the hydrophobicity (ΔGHydrophobic) and the quotient of the 

interface area ratios. An important observation we made was the fact that the performance of the 

methods is highly dependent of the constitution of the datasets. We found a bias in the available 

datasets towards a composition of predominantly heterodimeric transient interactions and 

homodimeric permanent interactions. Consequently, the rearrangement of the datasets reveals the real 

challenge in this field: the correct discrimination of transient and permanent heterodimers. Many 

former methods may only differentiate between homodimers and heterodimers since most of the 

methods used these biased datasets for the training of their models. In our new constructed dataset 

which only consists of permanent and transient heterodimers we achieved a classification accuracy of 

80.2 % in a 10-fold cross-validation using the hydrophobicity as the only descriptor. An even higher 

accuracy of 81.4 % can be obtained including the quotient of the interface ratios. 

For further research it would be interesting to shed more light on the existence and ratio of 

homodimeric transient protein-protein complexes in nature. 

 

 

Web server for classification of protein-protein interactions 

A web server for the usage of our method is currently in progress and will be finished until September 

this year.  
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