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Abstract

We present a simple and universal method that detects condition-specific interactions between transcription
factors from a single genome-wide mRNA expression experiment. Based on a transcription factor-target gene
annotation of reasonable quality, our method uses a simple linear regression model to assess from a single
intervention experiment whether the common targets of two arbitrary transcription factors behave differently
than expected from the genes that are targeted by only one of them. When applied to osmotic stress data in
S.cerevisiae, One Hand Clapping produces consistent results across three types of expression measurements:
Gene expression microarray data, RNA Polymerase II ChIP-on-chip binding data, and measurements of nascent
mRNA. Of the predicted 8 novel, condition-specific interactions, we validated the interaction between Gendp
and Arrlp experimentally.

1 Introduction

In classical genetic interaction studies such as quantitative epistasis analysis using epistatic miniarray profiles [1]
or synthetic genetic arrays (SGAs [2]), an interaction between two gene products is predicted from the comparison
of the phenotypic effects of the single gene knockouts with the effect of the double knockout. Three interventions
(two single and one double gene knockout) are needed to detect a genetic interaction from a single phenotypic
readout (cell growth or other fitness measure [3]). In this work we revert this approach and analyze the effects of a
single, albeit global intervention on a high dimensional phenotype (genome-wide gene expression measurements)
to predict interactions of transcription factor (TF) pairs. The requirement of only one intervention gave rise to the
name of our method, “One Hand Clapping” (OHC).

The principle at the core of this method is that, given two TFs we expect the genes targeted by both regulators
to behave significantly different than the genes targeted by either TF alone. The behaviour of the genes can be
measured through mRNA expression or other means quantifying gene activity such as factor occupancies from
ChIP-chip experiments or RNA-Seq measurements [4, 5]. This principle should hold especially under experimen-
tal interventions that leads to cooperative behaviour of the selected TF pair.

2 Results

2.1 OHC accurately predicts pairwise TF interactions

We first applied our method to mRNA expression data from the total fraction of Miller e al. [6] (data set D1,
expression folds after 36 minutes of osmotic stress) using the filtered YEASTRACT database as TF-target anno-
tation (see Methods section 4.1). The resulting interaction matrix is shown as heatmap (Supplemental Figure 2 ).
The rows of the matrix were clustered and predictions made as described in the Methods section. We predict 59
pairwise interactions between TFs, 43 single TFs are left without interactions. Validation of the predictions is done
through the BioGRID [7] database. It contains physical and genetic interactions from high and low throughput
experiments in the literature for many yeast proteins. The sub graph of BioGRID corresponding to interactions
between TFs present in the TF-target graph is shown in Supplemental Figure 1. We validate 13 interactions in
this way (22.03% positive predictive value), which are highlighted in Figure 1A. A complete list of predicted and
validated pairs is given as Supplemental Materials. Wilcoxon’s test on the correlation distances between validated
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Figure 1: Excerpt from clustering dendrogram showing predicted interacting TF pairs along with the interaction
profiles. Colors range from blue (strong negative interaction) to yellow (strong positive interaction term). A: 12
predictions validated by the BioGRID database B: 8 novel predictions across several data sets (see text).
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Figure 2: Validation of OHC predictions A: ROC curve using BioGRID interactions as gold standard B: Table of
overlap between predicted and validated pairs for different data sets. ’total” refers to the number of pairs predicted
resp. validated by the respective data set taken alone. D1: total mRNA fraction D2: labeled mRNA fraction D3:
total mRNA fraction from Mitchell et al. D4: Pol2 ChIP-chip occupancy measurements C: pairwise comparison
of expression values and occupancy values for all genes

and unvalidated predictions is significant at the 0.05 significance level (p-value 0.0036). This shows that interact-
ing TF pairs are more closely related (considering our interaction measure and distance function) than unvalidated
predictions. This is further investigated through a ROC plot (Figure 2A). The area under the curve (76%) shows a
strong deviation from random predictions (diagonal).

2.2 OHC is stable and reproducible across independent experiments

To test the stability of our method we applied it to the mRNA expression data of the labeled fraction from the same
osmotic stress experiment used previously (termed data set D2, see Methods). Both data sets are similar (Pearson’s
r=0.85, Figure 2C) and we expect similar results. On this data set we predict 60 pairwise interactions, 11 validated
by the BioGRID database (18.33% prediction accuracy; predicted pairs: Nrglp-Nrg2p Fhllp-Ithlp Stplp-Stp2p
Msn2p-Msn4p Mbp1p-Swidp Ecm22p-Upc2p Cbflp-Met28p Ndt80p-Sum1p Arg80p-Arg81p Hap3p-HapSp and
Mga2p-Spt23p). The validated interactions highly agree between both data sets, 8 pairs being validated by both
runs (Figure 2B). The interactions Ace2p-SwiSp Ecm22p-Mot3p Pdrlp-Pdr3p Mbplp-Skn7p and Flo8p-Phd1p
found in the first data set are lost in the second, the interactions Mbp1p-Swidp Ecm22p-Upc2p and Cbflp-Met28p
in the second are not present in the first data set. Comparison of all predicted interactions (Figure 2B) features an
overlap of 23 pairwise interactions (38.66%).

Reproducibility was tested by running the method on another osmotic stress data set from [8](total mRNA
measurement 30 minutes after addition of NaCl) termed D3 (Pearson’s r=0.88, Figure 2C). The method predicts
60 pairwise interactions and 14 validated interactions (23.33%). The overlap with the previous two data sets is 26
and 23 pairs for data sets D1 and D2 respectively. Validated interactions agree more strongly; they overlap at 12
and 8 validated interactions for D1 and D2 respectively (Figure 2B). 8 validated interactions are found in all three
data sets (Figure 1B shows the interaction profiles). It is interesting to notice that the data sets D3/D1 agree more
closely than D3/D2 and D1/D2. This might be due to the fact that D1 and D3 measure the total mRNA at the
extraction timepoint and thus include mRNAs transcribed before the onset of stress and not yet degraded, contrary
to D2 which corresponds to the labeled mRNA fraction and thus contains only mRNAs transcribed after the onset
of stress. Indeed D1/D3 have a higher correlation than D1/D2 and D3/D2 (Fig 2B).

2.3 Validation of novel predictions found by OHC

Eight predictions are found in all three data sets (D1, D2 and D3). They are CinSp-Yap6p, Zap1p-Spt2p, Hasf1p-
Aftlp, Soklp-Sko2p, Cup2p-Yrrlp, Sip2p-Cdc14p, Gendp-Arrlp and Rim101p-Otulp.

Considering the pair CinSp-Yap6p we realized both TF had very similar binding motifs. Indeed a test for
cooccurence of both motifs on all intergenic regions is highly significant (pvalue < 5.44e-12). This can be due to
two causes: Either one factor binds the other prior to binding the DNA sequence and hence ChIP-chip experiments
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Figure 3: Growth assay on YPD and YPD containing 1.2M NaCl after 4 days at 30°C. Ahogl is used as a
negative control for salt stress. Growth phenotype is not affected in YPD medium. Wild type cells have decreased
phenotype under osmotic stress. hogl mutant is not viable under salt stress and arrl mutant shows strong decrease
in growth phenotype, while gcn4 mutant and double mutant do not. This shows the phenotypic rescue of the effect
of the arrl knockout in the double mutant.

would crosslink the same DNA stretches in both cases and leading to similar motifs or, alternatively both factors
bind competitively to the same binding motif. The latter would directly validate this prediction.

Spot dilutions of the single and double knockouts of GCN4 and ARR1 on salt and YPD medium show a
synthetic rescue of the detrimental effect of the ARR1 knockout in the double mutant (Figure 3). This effect is a
strong indicator of an interaction between the gene products and validates our prediction.

2.4 OHC is applicable on a wide range of gene activity data

To show that the method also works on proxies of gene activity other than mRNA expression measurements, we
used the RNA pol2 ChIP-chip data from [6] (termed D4). On this data set the method predicts 57 interactions, 12
of which can be validated (21.05% accuracy). Its performance is thus comparable to the performance on mRNA
expression data. The predictions vary strongly as there are only 12, 10 and 12 predicted interactions shared with
the data sets D1, D2 and D3 respectively (Figure 2B). This is due to a low correlation between the data sets varying
between 0.16 and 0.3 (Pearson’s correlation, see Figure 2C). Despite the low correlation, a core of 8 interaction
is shared between all data sets (including 4 novel predictions) and shows that the method is robust enough to be
adapted to all measures of gene activity.



3 Discussion

OHC finds cis and trans TF interactions We distinguish between two main types of combinatorial TF interac-
tions: cis regulatory interactions and trans regulatory interactions [9]. Cis interactions are mediated by a specific
TF binding site configuration at the cis regulatory region of a gene, possibly resulting in cooperative or compet-
itive binding of TFs. Competitive binding occurs when two TFs share a common or overlapping binding motif.
Cooperative binding of TFs occurs if two TFs are required to bind simultaneously to be functional, or if the bind-
ing of the second TF is enhanced by the binding of the first TF, which e.g. is the case for nucleosome-mediated
cooperativity [10]. Nucleosome mediated cooperativity has gained much attention in the last years [11]. It can
happen in several ways: the binding of one TF (often the one with stronger DNA binding affinity) evicts (part of)
a nucleosome occupying the binding site of a second TF, whose binding to the promoter then becomes possible .
Alternatively the first TF can recruit chromatin remodellers to the promoter which will evict nucleosomes blocking
access to the DNA to other TFs .

Trans interactions are defined as direct protein-protein interaction of both TFs prior to DNA binding, either by
forming a protein complex or by complex formation with other co-factors involved in polymerase recruitment and
transcription initiation .

We investigated which type of interaction OHC detects. TFs pairs predicted by our method and validated
by BioGRID include the following types of interaction: Ace2p-Swi5Sp [12] and Suml1p-Ndt80p [13] undergo
competitive cis regulatory interactions, the first two TFs having identical binding sites, the latter two TFs over-
lapping binding sites. Mot3p-Ecm22p [14], Mbplp-Skn7p [15], Arg80p-Arg81p [16], Hap3p-Hap5p [17] and
Pdr1p-Pdr3p [18] are all examples of trans regulatory protein interactions forming prior to DNA binding. Ifthlp-
Fhllp are also frans acting but Fhllp is already bound to the promoter of ribosomal protein genes and it is the
phosphorylation of Ith1p that enables the protein interaction [19].

We found a third category of predicted TF pairs, corresponding to homologous or functionally redundant
proteins. Msn2p-Msndp [20], Mga2p-Spt23p [21] and Stp1-Stp2p [22] belong to this category. They are found
by our method due to their highly similar target gene sets. Nrglp-Nrg2p is also found due to the target gene set
overlap, as the target gene set for Nrg2p is a subset of the Nrglp target set (as defined by YEASTRACT) although
we did not find any evidence for a direct interaction. This is also the case of the pair Flo8p-Phd1p, both proteins
are involved in parallel pathways regulating the FLO11 gene [23].

The TF annotation play an important role in OHC One cornerstone of the assumption that interacting TFs
can be found by looking at commonly regulated target genes is the availability of a correct mapping of TFs to a set
of target genes. Such a mapping is rarely available, especially for different growth conditions. This is a limitation
of the method that will hopefully be alleviated with the advent of ChIP-seq data sets of TFs in many organism
(this data begins to arrive to the ENCODE and modENCODE projects [24, 25, 26]). .

For the yeast Saccharomyces cerevisiae there are fortunately several options for a mapping between TF and
target genes. An experimentally derived data set is provided by Maclsaac ef al. [27] who reanalyzed ChIP-chip
data for 128 TFs under standard conditions and a few selected stress conditions from [28]. Computationally
derived TF-target graphs can be obtained using the method from [29] or by mapping TF motifs from databases
([30, 31]) to promoter regions in the genome. Finally TF-target relations mined from a manually curated literature
repository can be found in the YEASTRACT database [32]. The latter is used in this paper as it is to our knowledge
the most likely to contain associations from many different environmental conditions.

The predictions made by OHC are different from predictions based on target genes set alone. Indeed, Fisher’s
test for overlap does not correlate with the interaction scores from the linear model (Supplemental Figure 11).
Also the method can predict interactions between TFs that have no overlap in target genes and thus no interaction
score. This is possible because we predict interactions based on profile similarity which takes into account the
interaction scores with all TFs. We found three interactions where this is the case: Kar4p-Stb1p, RDS1p-YJL206C
and Cbflp-Mig2p. We suspect these interaction to be physical interactions between the proteins

We have observed that TF pairs with small overlap get high interaction scores because they are more likely to
behave uniformly and thus assigned a strong coefficient by the linear regression. Single TFs with large target sets
have profiles that are very homogeneous with low interaction scores. They will rarely be similar to profiles of TFs
with small single sets as these have often sparse profiles with few strong interaction scores. Efforts to adapt the
distance measure used for the clustering did not improve the performance (data not shown).

The performance of OHC is strongly influenced by the assignment of target genes to TFs. When we run
the method using the annotation from Maclsaacs et al. [27] containing 118 TFs, we predict 38 interactions, 6
validated by BioGRID (15.79% prediction accuracy). This performance difference is due to different annotated
genes. While the annotation from Maclsaacs, based on Chip-chip data is of high quality, it does not suit our ap-
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Figure 4: A: mRNA expression folds (data set D1) of genes coding for all TF from YEASTRACT. Strong differ-
entially expressed genes are nor necessarily involved in the osmotic stress response pathway suggesting that TF
activity is regulated post-transcriptionally. B: 3D plot of coefficients i, B, and 31, from the interaction model. 3
is in the x-direction, increasing to the left, B3, is in the y-direction increasing upwards and B, in the z-direction.
The coefficients of interactions involving Gis1p, Gat4p, Hot1p and Sps18p are highlighted in orange, brown, cyan
and yellow respectively. There is no apparent correlation between the single effects and the interaction effect. C:
mean expression folds in data set D1 of the target sets of each TF in YEASTRACT. The target sets of Gislp,
Gatdp, Hotlp and Sps18p (highlighted in green) show a strong (> log2(1.5) fold) differential expression.

plication. This might be due to the fact that it contains assignments made under standard experimental conditions
while YEASTRACT contains many TF-target gene assignment under different stress and knockout conditions.
It should be noted that YEASTRACT is a superset of Maclsaacs annotation and we hypothesize that, while the
YEASTRACT graph probably contains many edges that are irrelevant under salt stress, this is accounted for and
in a certain way beneficial to our model.

4 Materials and Methods

4.1 TF annotation

YEASTRACT is a manually curated repository of regulatory interactions between TF and genes. It can be visual-
ized as a bipartite graph with edges between TF and genes representing a regulatory interaction (i.e TF A regulates
gene B). This graph is filtered, removing TF with less than 10 annotated target genes. This leaves 165 TF with
167 annotated genes as median value across all TF. Size distribution of the annotated gene groups is shown as
Supplemental Figure 12.

Figure 4A shows a box plot of expression folds of the TFs from YEASTRACT. Prominent differentially
expressed TFs are explicitly shown (XBP1, MAGI1, SIP4, CINS, NRGI, CUP2, TEC1, ASHI and BAS1). Most
of these outliers are not directly involved in the salt stress or general stress response pathways, showing that TF
activity is not regulated at the transcriptional level.

When looking at the coefficients B, 8, and B, from the regression model of all TF pairs in the YEASTRACT
database there is no apparent structure (Figure 4B). Closer investigation finds that extreme values are due to
pairwise interactions with a small set of four TFs (Hotlp, Sps18p, Gislp, Gat4p colored points in Figure 4C).
Indeed these TFs have target genes which are substantially differentially expressed, thus giving rise to a high 1,
coefficient to every TF having a considerable overlap with one of those 4 TFs. The mean expression of all target
genes is above that of all other TFs (Figure 4C). A Gene Ontology analysis revealed that they are stress responder
genes involved in response to various stimuli and heat (Supplemental Table 1). We removed these four outlier TFs
from the TF-target graph, leaving us with a final annotation containing 161 TFs.

4.2 Interaction model

The main idea of our method can be formalised thru a logistic linear regression. Given two TFs with target gene
sets 71 and 7> as well as gene activity measurements e, for all genes g € G we fit the following model:

eg~Po+PillgeT)+Bl(ge D)+ Pil(ge TiND)



I(g € T;) is a binary indicator function, taking value 1 if gene g belongs to the target set of TF 7; and O else.
Bo is the term for all genes that are not targets of either TF and represent the background in this model. B; and
B, are the single terms for each TF while B, is the interaction term. It should be noted that if the measurements
e, are differential mRNA expression measurements then fo, 81, 8> and B, can be interpreted as expression folds
as well. The regression is performed for each TF pair separately as fitting many different TF pairs together would
over fit the model.

After running the regression in an all-against-all fashion for a set of TFs T we are left with a symmetric
interaction matrix M/71*I7 containing all interaction terms [312(see Supplemental Figures 2, 4-6). We noticed that
the interaction terms alone are not strong predictors of interaction (data not shown ). We attribute this to the fact
that the definition of the target sets 77 and 75 is imperfect as well as the possibility of higher order interactions
between TFs.

4.3 Clustering

To strengthen the interaction measure we use a “guilt-by-association” principle. Instead of comparing single
interaction values we compare interaction profiles (the rows of the interaction matrix M) of each TF by their
correlation. More specifically we use 1 — r as distance measure, where r is Pearson’s correlation coefficient.

One possible drawback of using Pearson’s correlation is that it could potentially attribute a low distance to
interaction profiles which have a similar variance yet a different amplitude in their effects. This is because of the
scale invariance of this distance function. We do not observe this pitfall. Rather we find that the distance measure
is dominated by few entries in each profile which agree well. We believe this to be a good sign as TFs probably
interact with only a few partner under any given experimental condition, which is faithfully reproduced by this
distance method.

We apply hierarchical average linkage clustering to the rows of M using the distance measure mentioned
above. This is very similar to nearest neighbour (NN) clustering, which could have also been used, but is more
stringent. In NN clustering each interaction profile is paired with the profile having the smallest distance. Since a
NN can always be found this results in |T'| predicted TF pairs. To exclude some predictions an arbitrary threshold
defining a maximum distance must be used.

The approach taken here differs from NN in that hierarchical clustering merges the closest TFs together into
clusters in a pairwise fashion and will add other TFs that are closest to any of these ’core’ cluster by adding a
branch to the dendrogram under a same common ancestor.

Following the clustering procedure we select these ’core’ cluster as predictions of the method. The algorithm
to extract the ’core’ cluster from the clustering dendrogram is provided as Supplemental Materials and uses a
recursive descent down the dendrogram, collecting TF pairs sharing a common ancestor that is the ancestor only
to this pair of TFs.

This is more stringent than NN as each TF is assigned once to its closest interaction partner, disregarding
the absolute level of the correlation distance. Also this method predicts less interactions and allows TFs to be
excluded from any interaction in the experimental condition studied without the need for an arbitrary distance
cutoff. It should be noted, that using this procedure each TF can only partake in one interaction with another TF.

4.4 Gene activity data

In this paper we use several data sets as input to our method. First we use mRNA expression data from a timecourse
experiment submitting yeast strain BY4741 to osmotic stress by adding 0.8 M NaCl (see [6] for more details).
The paper uses a RNA labeling approach and provides microarray measurements for three fractions: labeled
RNA, unlabeled RNA and total RNA. We use the total mRNA expression data (which corresponds to standard
measurements without the labeling approach) after 36 minutes of osmotic stress. Throughout this paper we will
always mean log expression folds (log quotient of expression under experimental condition against wild-type
expression) when referring to expression data. We will also use the labeled fraction for validation purposes. The
same publication also provides RNA Pol2 ChIP-chip experiments giving Pol2 occupancy data 24 minutes after
addition of salt. We will use the mean occupancy on the gene (between transcription start site and polyadenylation
site) as a proxy for gene activity.

To test the reproducibility of our method we will apply it to data from another publication from another inde-
pendent laboratory: Mitchell ef al. [8] studied anticipation to environmental changes in E. coli and S. cerivisiae
including osmotic and oxidative stress. They use the same yeast strain and microarray platform (Affymetrix Yeast
2.0) as well as a similar protocol to Miller et al. which should render the measurements highly comparable. They
measured mRNA expression (corresponding to the total fraction of Miller et al.) 30 minutes after addition of 0.8M



NaCl to the medium. Microarray data was downloaded as raw files from GEO (accession: GSE15936) and nor-
malized using germa [33] (as implemented in R/Bioconductor ) without quantile normalization (since we expect
global effects of the perturbation on mRNA expression).

All expression values are median centered.

4.5 Yeast strains and growth assays

The Saccharomyces cerevisiae deletion strains hogl A, arrl A, gecn4/A, as well as the wild type strain BY4741
were obtained from Open Biosystems (Huntsville, USA). The double deletion strain arr! A/gcn4/A was generated
by integrating a ClonNat cassette in the ARR1 locus of the gecn4A strain. Correct gene disruptions were verified
by PCR. Spot dilutions were done to assess fitness and growth under salt stress. Equal amounts of freshly grown
yeast cells in YPD were re-suspended in water, 10-fold dilutions were spotted on YPD plates and YPD plates with
1.2 M NaCl, and plates were incubated for 4 days at 30°C.

Supplemental Materials

Supplemental figures, tables and materials can be downloaded from:
http://www.lmb.uni-muenchen.de/tresch/ohc/supp.pdf
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