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Abstract. In this paper, we assess different variant®ghamic Time Warping
(DTW) for the inference of gene regulatory relationships. Apanf DT'W on
continuous time series, we present a novel angle-baserktirstion approach
and a distance learning method that is combined Withi¥” to find new gene in-
teractions. A positive influence of the distance optimmatbn the performance
of the alignments of gene expression profiles could not yetshablished. How-
ever, our results show that discretization can be impottatite outcome of the
alignments. The discretization is not only able to keep thedrtant features of
the time series, itis also able to perform better than regiBIW on the original
data.

Keywords: Time series alignment, gene expression, Dynamic Time \Wgrpi
discretization

1 Introduction

The analysis of time series data is still one of the most ehglhg fields and
occurs in many scientific disciplines. Steady state dataorey give a snap-
shot of the actual dynamics while time series allow to stindygrocesses over
time and to capture the dependencies between the forcesratagjgnists. In
this study we are focusing on gene expression data and havfeiothe inter-
actions and dependencies from it. We propose a slope basewbtifiation of
given microarray data and a new alignment approach, contpitiie ideas of
Dynamic Time Warping (D7W) with Stochastic Local Search (SL.S). Building
of alignments of discretized profiles is supposed to be todg@inst noisy data
and to overcome the assumption of strictly linear relatiqrs between two
interacting genes. A basic assumption for the alignmeninoé tseries is that
co-regulated genes also show similar expression behavéesrtime and hence
similar amplitudes which can be aligned with suitable tfarmations. Testing
and evaluation of the approach has been done with one sintla¢a set as well
as four biological data sets.
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2 Method

Dynamic time warping (DTW) was introduced in the 1960s [2] and has been
intensively used for speech recognition and other fiellds,handwriting recog-
nition systems, gesture recognition, signal processitbgame expression time
series clustering [1]. The basic idea of this unsupervisagning approach is
that a suitable distance measure, which is most generadl\Eticlidean dis-
tance, allows the algorithm to stretch (or compress) the tind expression
rate axis to find the most suitable fit of two given time seridse DT algo-
rithm will be described briefly in the following. Considerdvgiven sequences
S = s1,...,sp andT = tq,...,t,, and a given distance functiafys;, ¢;) with

1 <i<nandl < j < m, DTW tries then to minimize with the given
0 over all possible warping paths between the two given sempsebased on
the cumulative distance for each path. This is solved by arsae dynamic
programming approach for eac¢ke [1,...,n] andj € [1, ..., m]:

0 fori=5=0
DTW;_q j_1+8(si, t;)
DTW (i,§) = { min{ DTW;_1; + d(si, t;) fori,j >0 (1)
DTW; j—1+ 6(si,t5)
00 otherwise

DTW {n,m] is the total distanceDTW (S,T) and can be calculated in
O(nm). The traceback through the mattiXx gives the optimal warping of the
aligned sequences. We use the symmetrical versi@niafi” which is supposed
to perform better on equally sampled time series [12].

We present in the following the framework for a discretizedugence align-
ment approach focusing on the analysis of gene expressimngéries. In con-
trast to other existing methods, the approach deals al$oantt-correlated time
series and uses a supervised method to infer a data spestboc® matrix for
the alignment. The result is a scoring matrix for the paiendgstances between
the measured genes.

We use four different gene expression time series of diftdengths, for the
evaluation. An overview of the networks and data sets wiljiven in the next
section. All time series are centered around the x-axis Iplyam a z-score
transformation to account for scale inconsistencies ofntineroarray experi-
ments. We use cubic smoothing splines to interpolate the sienies for missing
values and smoothen out smaller fluctuations from expeti@hem biological
noise.
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The discretization of each time series for each gene is dorwrding to the
steepness of the expression changsp between two consecutive time steps.
This is done by calculating the angle= atan ¢ exp - % The angles are then
discretized into positive and negative (increasing or elesing) integer values
according to a predefined threshold. Defining the threstsottbne by dividing
the largest found angle for increases or decreases for imaelseries for a gene,
into equally sized subsectors. Consider a maximum fountbarid 80 degrees,
which should be split intax subsectors, resulting a rangeﬁ? degrees each.
Each of this sectors represents a possible range of anglébegfancrease or
decrease between two consecutive time points and has edsigtiscrete value.
Forn sectors the range of these values would-bg, —% +1,..., 5 — 1, §]. To
account for noise in the data, the two sectors which are beigig the x-axis
(one in the positive and one in the negative direction) aralsoed into one
sector with the discrete value zero.

A crucial point for the quality of the alignments is the cl®if a suitable
distance matrix which defines the distances between theetied values of
the time series. This motivates our supervised approackdaiset of already
known interacting genes to infer the distance matri&. These gene pairs are
chosen randomly from a given gold standard network alonf witurther ran-
domly chosen set of not interacting gen&'s The size of the latter is set if
possible to twice the size df. From this larger sefV we resample between
successive iterations of the distance calibration pronesssubsets to prevent
accidentally chosen existing interaction partners betwesnd N genes to dis-
tort the result.

The resultingd should minimize the distance fdrand maximize the dis-
tance for N. Since DTW is not differentiable, we apply a combination of
Stochastic Local Search (SLS) and simulated annealing for the stepwise im-
provement off. For a more detailed introduction %L.S, we refer to the work
of Hoos and Stutzle [4].

We imposed three constraints on the step-wise alteringeadigtance matrix
¢ to reduce the search space and to keep the basic distanceigtrbetween
different bins of anglesé(i,j) = 0 fori = j, 6(i,7) = 6(j,4) andd(i,j) <
6(i,5 —1).

The resulting distance matrix is then used for the calauhatiof the align-
ments and the score defines the distance between each paires.g\dditional
alignments are done for each comparison with flipped signerfe of the time
series to find anti-correlated pairs. All calculations wdogae in R except for
the alignment matrix calculations, which were done for imetefficiency in C.
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3 Evaluation

The evaluation is done on five differently sized networksyratsetic five gene
network of yeast, called IRMA [3], the SOS signaling pathvim¥. coli con-
sisting of eight genes [10], a 11 cell cycle regulating neknderived by Liet al.
from the literature [7], and a full set of cell regulating gsnconsisting of 1129
genes published by Rowiclat al. [11]. Gold standard and time series for the
IRMA and SOS signaling pathway were taken from the R pacK&ysRACNE
[14] and consist of 16 and 14 measurements. The 11 cell cytheank by Liet
al. as well as the suggested set of Rowiekal. are tested with two time series
experiments by Pramilat al. [9] and Tuet al. [13]. These sets follow several
full cell cycles and include 50 and 36 time points. We left gahes of the large
scale network which were not found in the experimental Skigs resulted in
gene sets of size 961 and 944 for Praretlal. and Tuet al.. As a benchmark
network for the large scale cell cycle analysis, the prepetein interaction
network from the STRING database (v8.3) [5] is used. STRIN{Budates for
each interaction a score based on the evidence from variouses like exper-
iments, interaction databases or abstract text mining. péeal a cutoff of 0.8
to select only interactions with high confidence. It is clésat the PPI network
is only able to cover part of the gene regulatory processestitliobservations
on this level can provide insight into the performance ofrtiethods. STRING
is also considering pairs derived from co-expression a&igmlgnd might there-
fore be more suitable than other PPI databases. Self-temdavere excluded
from all data sets

We compare the performance on the data sets to the resultssiniple
correlation, partial correlation, MRNET (mutual inforriaat) [8], DTW and
DDTW (a modification of DTW which uses for the discretization the first
derivative for each point) [6]DTW;,. applies our discretization method with
different numbers of sectors:) and calculates the alignments wifh7 /.
DTWg,s additionally applies the distance calibration before thkewations.
Methods ending withanti also consider anti-correlated time series in the cal-
culations. The evaluation is done based on ROC curves andulie Interac-
tions are undirected and hence only a two class problemaeresl, interaction
predicted or not.

The results from the small networks in Figure 1 show that MRNgErforms
well even on shorter time series. Our methods perform onltherfe.coli data
better but are the second best performer on this task coohpatke established
methods. The discretized version performs in all casespmxor the Tuet
al. data, better than guessing and outperfof8W and DDTW , except for
the Pramilaet al. data, whereD DT'W performs equally well. Including anti-
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Fig. 1. Comparison of the performances on three small networksd®tted line indicates guess-
ing. The number of sectors ranges from 1 to 8. Knowledge sizedlibration was set to 2. MR-
NET performs best on all yeast data sets and only slightlysextihan our proposed method on
E.coli. The discretized version @T'W performs, except for case b), always better than guessing
and best for thé&.coli data set. Including anti-correlation improves in all cathesperformance

of DTW.s.. The otherDTW versions perform quite differently on the data sets and istmo
cases even worse than guessing, especially in c).

correlation into the calculations improves in all caseshefdiscretized method
the performance but has no positive effect for the reglail” and DDTW .
On the large scale network evaluation in Figure 2, the usenbf correlated
genes performs significantly better than with anti-cotrefa
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Fig. 2. Comparison of the performances on a large scale networkddtted line indicates guess-
ing. Number of sectors ranges from 1 to 8. Knowledge size &tibation was set to 10. Gold
Standard: STRING DB. Our approach performs significantlyeoeén a) and only slightly worse
inb). DDTW and DTW perform best on the Tet al. set but the influence of the anti-correlation
is only small. DT W ;.. performs much better in b) without the anti-correlation.

In general, the differenDTTW approaches perform better on the large scale
data sets than correlation or MRNET, except in the case aflae@TW and
DDTW on the Pramilat al. data. The results adbT'W;,. show that the dis-
cretization keeps the important features and performs ewah with a small
number of sectors. The approach BT'Wg; s seems, to this date, not to be
able to improve the distance measure and achieves slighdiler AUC values.
The discretization method outperformisI'W and DDTW on the Pramileet
al. data and performs only slightly worse on the other data set.

4 Conclusion

In the paper, we investigated several variant®wfiamic Time Warping for the
detection of gene regulatory relationships. While the stiped optimization
of the distance matrix did not lead to improvements, a noisgrdtization ap-
proach seems, even with a small number of defined sectors tatieep the
main features and appears as a suitable qualitative tramsfion for time se-
ries alignments. On the biological data sets, our approaems to be more sta-
ble compared tdTW and DDTW . In contrast to correlation-based methods,
DTW is also able to infer the orientation of the time shift throbuge trace-
back and hence able to hint at possible causalities. Wedrtemake use of
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this information and further evaluate the robustness ofltberetization method
compared taADTW and DDTW .
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