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Abstract. In this paper, we assess different variants ofDynamic Time Warping
(DTW ) for the inference of gene regulatory relationships. Apart fromDTW on
continuous time series, we present a novel angle-based discretization approach
and a distance learning method that is combined withDTW to find new gene in-
teractions. A positive influence of the distance optimization on the performance
of the alignments of gene expression profiles could not yet beestablished. How-
ever, our results show that discretization can be importantto the outcome of the
alignments. The discretization is not only able to keep the important features of
the time series, it is also able to perform better than regular DTW on the original
data.
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1 Introduction

The analysis of time series data is still one of the most challenging fields and
occurs in many scientific disciplines. Steady state data canonly give a snap-
shot of the actual dynamics while time series allow to study the processes over
time and to capture the dependencies between the forces and protagonists. In
this study we are focusing on gene expression data and how to infer the inter-
actions and dependencies from it. We propose a slope based discretization of
given microarray data and a new alignment approach, combining the ideas of
Dynamic Time Warping (DTW ) with Stochastic Local Search (SLS). Building
of alignments of discretized profiles is supposed to be robust against noisy data
and to overcome the assumption of strictly linear relationships between two
interacting genes. A basic assumption for the alignment of time series is that
co-regulated genes also show similar expression behavior over time and hence
similar amplitudes which can be aligned with suitable transformations. Testing
and evaluation of the approach has been done with one synthetic data set as well
as four biological data sets.
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2 Method

Dynamic time warping (DTW ) was introduced in the 1960s [2] and has been
intensively used for speech recognition and other fields, like handwriting recog-
nition systems, gesture recognition, signal processing and gene expression time
series clustering [1]. The basic idea of this unsupervised learning approach is
that a suitable distance measure, which is most generally the Euclidean dis-
tance, allows the algorithm to stretch (or compress) the time and expression
rate axis to find the most suitable fit of two given time series.TheDTW algo-
rithm will be described briefly in the following. Consider two given sequences
S = s1, ..., sn andT = t1, ..., tm and a given distance functionδ(si, tj) with
1 ≤ i ≤ n and 1 ≤ j ≤ m, DTW tries then to minimize with the given
δ over all possible warping paths between the two given sequences based on
the cumulative distance for each path. This is solved by a recursive dynamic
programming approach for eachi ∈ [1, ..., n] andj ∈ [1, ...,m]:
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∞ otherwise

(1)

DTW [n,m] is the total distanceDTW (S, T ) and can be calculated in
O(nm). The traceback through the matrixD gives the optimal warping of the
aligned sequences. We use the symmetrical version ofDTW which is supposed
to perform better on equally sampled time series [12].

We present in the following the framework for a discretized sequence align-
ment approach focusing on the analysis of gene expression time series. In con-
trast to other existing methods, the approach deals also with anti-correlated time
series and uses a supervised method to infer a data specific distance matrix for
the alignment. The result is a scoring matrix for the pairwise distances between
the measured genes.

We use four different gene expression time series of different lengths, for the
evaluation. An overview of the networks and data sets will begiven in the next
section. All time series are centered around the x-axis by applying a z-score
transformation to account for scale inconsistencies of themicroarray experi-
ments. We use cubic smoothing splines to interpolate the time series for missing
values and smoothen out smaller fluctuations from experimental or biological
noise.
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The discretization of each time series for each gene is done according to the
steepness of the expression changeδ exp between two consecutive time steps.
This is done by calculating the angle:α= atan δ exp ·

180

π
. The angles are then

discretized into positive and negative (increasing or decreasing) integer values
according to a predefined threshold. Defining the threshold is done by dividing
the largest found angle for increases or decreases for each time series for a gene,
into equally sized subsectors. Consider a maximum found angle of 180 degrees,
which should be split inton subsectors, resulting a range of180

n
degrees each.

Each of this sectors represents a possible range of angles for the increase or
decrease between two consecutive time points and has assigned a discrete value.
Forn sectors the range of these values would be[−n

2
,−n

2
+1, ..., n

2
− 1, n

2
]. To

account for noise in the data, the two sectors which are neighboring the x-axis
(one in the positive and one in the negative direction) are combined into one
sector with the discrete value zero.

A crucial point for the quality of the alignments is the choice of a suitable
distance matrix which defines the distances between the discretized values of
the time series. This motivates our supervised approach to use a set of already
known interacting genesI to infer the distance matrixδ. These gene pairs are
chosen randomly from a given gold standard network along with a further ran-
domly chosen set of not interacting genesN . The size of the latter is set if
possible to twice the size ofI. From this larger setN we resample between
successive iterations of the distance calibration processnew subsets to prevent
accidentally chosen existing interaction partners between I andN genes to dis-
tort the result.

The resultingδ should minimize the distance forI and maximize the dis-
tance forN . SinceDTW is not differentiable, we apply a combination of
Stochastic Local Search (SLS) and simulated annealing for the stepwise im-
provement ofδ. For a more detailed introduction toSLS, we refer to the work
of Hoos and Stützle [4].

We imposed three constraints on the step-wise altering of the distance matrix
δ to reduce the search space and to keep the basic distance structure between
different bins of angles:δ(i, j) = 0 for i = j, δ(i, j) = δ(j, i) andδ(i, j) <

δ(i, j − 1).

The resulting distance matrix is then used for the calculations of the align-
ments and the score defines the distance between each pair of genes. Additional
alignments are done for each comparison with flipped signs for one of the time
series to find anti-correlated pairs. All calculations weredone in R except for
the alignment matrix calculations, which were done for runtime efficiency in C.
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3 Evaluation

The evaluation is done on five differently sized networks, a synthetic five gene
network of yeast, called IRMA [3], the SOS signaling pathwayin E. coli con-
sisting of eight genes [10], a 11 cell cycle regulating network derived by Liet al.
from the literature [7], and a full set of cell regulating genes, consisting of 1129
genes published by Rowickaet al. [11]. Gold standard and time series for the
IRMA and SOS signaling pathway were taken from the R packageTDARACNE
[14] and consist of 16 and 14 measurements. The 11 cell cycle network by Liet
al. as well as the suggested set of Rowickaet al. are tested with two time series
experiments by Pramilaet al. [9] and Tuet al. [13]. These sets follow several
full cell cycles and include 50 and 36 time points. We left outgenes of the large
scale network which were not found in the experimental sets.This resulted in
gene sets of size 961 and 944 for Pramilaet al. and Tuet al.. As a benchmark
network for the large scale cell cycle analysis, the protein-protein interaction
network from the STRING database (v8.3) [5] is used. STRING calculates for
each interaction a score based on the evidence from various sources like exper-
iments, interaction databases or abstract text mining. We applied a cutoff of 0.8
to select only interactions with high confidence. It is clearthat the PPI network
is only able to cover part of the gene regulatory processes but still, observations
on this level can provide insight into the performance of themethods. STRING
is also considering pairs derived from co-expression analysis and might there-
fore be more suitable than other PPI databases. Self-regulations were excluded
from all data sets

We compare the performance on the data sets to the results with simple
correlation, partial correlation, MRNET (mutual information) [8], DTW and
DDTW (a modification ofDTW which uses for the discretization the first
derivative for each point) [6].DTWdisc applies our discretization method with
different numbers of sectors (n) and calculates the alignments withDTW .
DTWSLS additionally applies the distance calibration before the calculations.
Methods ending withanti also consider anti-correlated time series in the cal-
culations. The evaluation is done based on ROC curves and theAUC. Interac-
tions are undirected and hence only a two class problem considered, interaction
predicted or not.

The results from the small networks in Figure 1 show that MRNET performs
well even on shorter time series. Our methods perform only onthe E.coli data
better but are the second best performer on this task compared to the established
methods. The discretized version performs in all cases, except for the Tuet
al. data, better than guessing and outperformsDTW andDDTW , except for
the Pramilaet al. data, whereDDTW performs equally well. Including anti-
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(a) Pramilaet al. (11 genes - 50tp) (b) Tu et al. (11 genes - 36tp)

(c) E.coli SOS (8 genes - 14tp) (d) Synthetic yeast (5 genes - 16tp)

Fig. 1. Comparison of the performances on three small networks. Thedotted line indicates guess-
ing. The number of sectors ranges from 1 to 8. Knowledge size for calibration was set to 2. MR-
NET performs best on all yeast data sets and only slightly worse than our proposed method on
E.coli. The discretized version ofDTW performs, except for case b), always better than guessing
and best for theE.coli data set. Including anti-correlation improves in all casesthe performance
of DTWdisc. The otherDTW versions perform quite differently on the data sets and in most
cases even worse than guessing, especially in c).

correlation into the calculations improves in all cases of the discretized method
the performance but has no positive effect for the regularDTW andDDTW .
On the large scale network evaluation in Figure 2, the use of only correlated
genes performs significantly better than with anti-correlation.
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(a) Pramilaet al. (961 genes - 50tp) (b) Tuet al. (944 genes - 36tp)

Fig. 2. Comparison of the performances on a large scale network. Thedotted line indicates guess-
ing. Number of sectors ranges from 1 to 8. Knowledge size for calibration was set to 10. Gold
Standard: STRING DB. Our approach performs significantly better in a) and only slightly worse
in b).DDTW andDTW perform best on the Tuet al. set but the influence of the anti-correlation
is only small.DTWdisc performs much better in b) without the anti-correlation.

In general, the differentDTW approaches perform better on the large scale
data sets than correlation or MRNET, except in the case of regular DTW and
DDTW on the Pramilaet al. data. The results ofDTWdisc show that the dis-
cretization keeps the important features and performs welleven with a small
number of sectors. The approach ofDTWSLS seems, to this date, not to be
able to improve the distance measure and achieves slightly smaller AUC values.
The discretization method outperformsDTW andDDTW on the Pramilaet
al. data and performs only slightly worse on the other data set.

4 Conclusion

In the paper, we investigated several variants ofDynamic Time Warping for the
detection of gene regulatory relationships. While the supervised optimization
of the distance matrix did not lead to improvements, a novel discretization ap-
proach seems, even with a small number of defined sectors, able to keep the
main features and appears as a suitable qualitative transformation for time se-
ries alignments. On the biological data sets, our approach seems to be more sta-
ble compared toDTW andDDTW . In contrast to correlation-based methods,
DTW is also able to infer the orientation of the time shift through the trace-
back and hence able to hint at possible causalities. We intend to make use of



Dynamic Time Warping for the Inference of Gene Regulatory Relationships 7

this information and further evaluate the robustness of thediscretization method
compared toDTW andDDTW .
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