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Abstract

Quantitative high-throughput mass spectrometry has become an established tool to measure rel-
ative gene expression proteome-wide. The output of such an experiment usually consists of a list
of expression ratios (fold changes) for several thousand proteins between two conditions. However,
there are situations that are far more complex and simple protein fold changes are not able to account
for these complexities: We observed that in several cases individual peptide fold changes show a
significantly different behavior than other peptides from the same protein and that these differences
cannot be explained by imprecise measurements.

Such outlier peptides can be the consequence of several technical (misidentifications, misquantifi-
cations) or biological (post-translational modifications, differential isoform usage) reasons. In order
to unravel those, we developed a method to detect outlier peptides in mass spectrometry data. Our
method is able to delineate imprecise measurements from real outlier peptides with high accuracy
when the true difference is as small as 0.5 fold on logs scale.

We applied it on experimental data and investigated the different technical and biological effects
that may lead to outlier peptides. Our method will assist future research to reduce technical errors and
bias and also provides a way to find differential isoform usage on proteome level in a high throughput
manner.

1 Introduction

Mass spectrometry (MS) based proteomics has become a common tool for a wide range of biological
research areas [27, 28, 1, 9, 15]. In a shotgun experiment, proteins from a complex sample are digested
into peptides (e.g. using Trypsin) whose mass-to-charge ratios are then measured in a first round of
MS after ionization. Metabolically (e.g. SILAC) or chemically (e.g. iCAT) introduced heavy amino
acids can be used as labels to distinguish peptides in a mixture of samples in the same MS run [24].
Measurement intensities are related to peptide abundances and can therefore be used for quantification.
These MS spectra alone do not provide a reliable way to identify peptide sequences in a complex sample
since mass alone is not a reliable discriminator for peptides [5]. Therefore, tandem mass spectrometers
are able to select one or several peaks per MS scan for further fragmentation followed by a second round
of MS (MS? spectra). The most abundant fragments produced are b and y ions, which are the result
of fragmentation between the amino and hydroxy groups of two consecutive amino acids and are thus
prefixes and suffixes of the original peptide. It has been shown that these MS? spectra provide enough
information to identify peptide sequences.

Primary data analysis is usually done by integrated analysis pipelines, e.g. TPP [17], TOPP [2] or
MaxQuant [10]. In modern high-resolution LC-MS/MS settings, data analysis generally consists of the
two crucial steps peptide identification and quantification.
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For peptide identification, experimental MS? spectra are compared to theoretically computed spectra
derived from all matching peptides from a protein sequence database. Several methods to score experi-
mental to theoretical spectra have been developed and are available either as commercial software such
as Mascot [26] or Sequest [30] or as open source tools such as X!Tandem [12] or Andromeda [11]. Such
methods typically report a candidate list of possible sequences for each MS? spectrum with one or several
associated scores. False discovery rates (FDR) can be calculated using a decoy database approach: For
each protein in the database, a (pseudo-) reversed protein is created and also used for database search.
For a given score cutoff, the FDR then is equal to the fraction of decoy identifications above this cutoff
[14, 16].

Generally, there are two flavors of quantification: For an absolute quantification, the concentrations
of all proteins within a single sample must be determined, whereas for relative quantification the fold
change between two or more samples samples is the quantity of interest. We concentrate on the relative
case here, since it is deemed much more accurate than absolute quantification [24]. The most widely
used relative quantification techniques rely on the intensities in the MS spectra. This can either be done
within a single MS run after samples have been labeled or across runs in a label-free experiment and
involves finding intensities that belong to the same peptide in the two samples, a proper way to compute
the ratio of all corresponding intensities and normalization. After peptide fold changes are available,
they are assembled into protein quantifications. This is usually done for protein groups that contain
proteins from the database that share the majority of their peptides [22]. The output of such workflows
therefore consists of a list of protein groups together with identification statistics and a summarized
relative quantification.

When looking at individual peptide fold changes of typical high-throughput mass spectrometry ex-
periments, it becomes clear that in several cases, peptides seem to exhibit a different fold change than
other peptides from the same protein (see for instance Figure 1). There are several possible explanations
for such situations, including:

1. Measurement imprecision: Repeated independent measurements of the same quantity (i.e. peptide
fold change) are subject to noise. The variance of the seven independent measurements of the red
peptide in Figure 1 for instance are most likely the effect of noise.

2. Ambiguous peptides: The sequence of the red peptide may not be unique to this protein and its
true fold change in the sample should be intermediate between all matching proteins.

3. Wrong identification: An MS? spectrum may erroneously be assigned to a given peptide and the
measured fold change therefore belongs to a peptide from a different protein.

4. Wrong quantification: There may be certain properties of peptides that introduce bias into quan-
tification and the normalization of the quantification algorithm may not have accounted for that.
For instance, if a peptide of an abundant protein can be ionized easily, saturation effects may lead
to underestimated fold changes.

5. Differential post-translational modifications (PTMs): It is known that post-translational modifica-
tions such as phosphorylations are highly regulated and may be differential in the conditions under
consideration. In such a case, the modification-less version of the peptide will show a fold change
different from the gene fold change.

6. Differential isoform usage: Most eukaryotic genes can give rise to multiple isoforms, either by al-
ternative splicing, alternative transcription start sites or combinations of that. Alternative peptides,
i.e. peptides that are not part of all isoforms of a gene are expected to show different fold changes,
if respective isoforms are differentially regulated.

Depending on the summarization strategy the protein fold change for the gene in Figure 1 would
either be around 2-fold down regulated or not regulated (when using the median of all measurements or
the median of all peptide medians, respectively). In either case, defining a protein fold change may not
be appropriate since the situation is obviously more complex. Thus, a method to detect such situations
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Figure 1: Shown are quantitative mass spectrometry measurements for the gene HN1 in a SILAC ex-
periment as produced by MaxQuant using standard parameters. On the top, logs fold changes of all
quantification events for this gene are shown. For each event, a dot is draw on top of the respective pep-
tide and multiple measurements for the same peptide are shown in increasing order. For the red peptide
that spans an exon-exon junction, its seven measurements are shown twice (above both exons). On the
bottom the gene structure according to Ensembl is shown. Coding parts of the transcripts are shown in
dark gray and for clarity, exons are shown in scale whereas introns are shrunken to a fixed size. All
peptide sequences are unique to these locations.

would be of great benefit and would allow to investigate such situations further. In this paper, we propose
such a method and test it rigorously on in-silico data. We furthermore applied it to experimental data and
reveal and discuss several reasons for these differing fold changes.

2 Materials and methods

2.1 Data processing

Experimental data taken from [10] has been downloaded from ProteomeCommons Tranche, where EGF
stimulated HeLa cells were compared to control cells using SILAC. Data has been analyzed using
MaxQuant [10] version 1.2.0.18 against all proteins downloaded from Ensembl v60. Default param-
eters have been used: Oxidatation (M) and Acetylation (N-term) as variable modifications and Car-
bamidomethylation(C) as fixed modification, reverse peptides as decoy database, matching between runs
in a 2min rt window. For all further analyses, we use all unique peptides from evidence.txt (produced
by MaxQuant) that contains quantification events of all identified (and matched) SILAC pairs at a FDR
of 1% (according to a decoy database approach). To determine uniquely matching peptides, peptide
sequences from evidence.txt have been mapped to the human genome using position information ob-
tained via Ensembl Biomart, and only uniquely matching peptides have been retained. Gene definitions
also have been taken from Ensembl, with the modification that overlapping genes have been clustered to
gene clusters using single linkage (i.e. a peptide mapped to the genome always belongs to a single gene
cluster). We will refer to these gene clusters as genes in the following. In order to perform statistical



test on quantifications, we discard furthermore all peptides if less than 3 independent measurements are
available.

2.2 In-silico data generation

In order to be as close to real data as possible, we use experimental data (see Data processing) to estimate
model parameters. We consider each Ensembl gene with at least two isoforms. First we draw the number
of measured peptides for a gene and distribute these peptides across all isoforms. We discard these
peptides and repeat this step if there is no specific peptide, i.e. a peptide that is not present in at least
one isoform. Then we set the isoform logs fold changes fy and fi; depending on if we want to generate
positive or negative examples. For positive examples, we set fo = 0 and f; > 0, for negative ones we
set fo = f1 = 0. Then, for each peptide p, we draw the number of measurements n and the variance o2
based on the empirical distributions obtained from the experimental data. n logs fold changes for p are
drawn according to N (u, 0?), where j1 = % where I; is an indicator variable for peptide p to
be contained in isoform z.

2.3 Detecting outlier peptides

The goal of our method is to distinguish measurement noise from other reasons that lead to peptide fold
changes that are different from other measurements from the same gene. The most basic algorithm first
computes all peptide and gene fold changes p; and g; by taking the mean or median of all corresponding
measured fold changes. Then, genes are ranked by their maximal absolute peptide-from-gene deviation
d; = max{|g; — pi| | peptide ¢ uniquely belongs to gene j }.

Unfortunately, there are two caveats in such a procedure: First, it is difficult to determine a reasonable
cutoff without performing permutation tests and second, it inherently assumes that variance due to noise
is equal for all peptides in the dataset. This is certainly not true, since the signal-to-noise ratio depends
on the expression level of a gene.

Therefore, we also adapted a classical ANOVA procedure: For each gene, we fit the linar model
Fij = g + p; + € to all logs fold changes of a given gene, where Fj; is the jth logs fold change of the

ith peptide of the gene, g is the gene fold change, p; is the peptide fold change and ¢;; is the noise in

measurement 4, j. Genes can then be ranked using the p-value of an F test or by > = g—gz (where S5,

is the within peptide sum-of-squares and S'S, is the within gene sum-of-squares), a classical measure for
effect size [8].

The ANOVA model estimates noise gene-by-gene, and therefore deals with different signal-to-noise
ratios across genes. Unfortunately, the signal-to-noise ratio could not only depend on expression levels
of genes, but also on properties specific to peptides (e.g. ionization efficiency). The ANOVA model
however assumes equal variance across peptides. We therefore also adapted the heteroscedastic ANOVA
from [18], which does not require this assumption.

Thus, we propose five methods to rank genes: Mean distance and Median distance corresponding to
ranking by the maximal peptide-from-gene deviation, ANOVA p-value and ANOVA n? using the classical
ANOVA approach and the heteroscedastic ANOVA p-value. For further analyses, we define the outlier
peptide of a significant gene as the peptide that has the greatest absolute difference between its logs fold
change median and the logy fold change median of the gene.

3 Results and Discussion

In a typical high-throughput quantitative mass spectrometry experiment, hundreds of thousands of pre-
cursor ion measurements can be used for peptide quantification. Usually, a single peptide is detected
and quantified multiple times either due to biological or technical replicates or to repeated measurements
within a single replicate in different charge states, different gel slices etc. (see Figure 2). Since peptides
are the product of tryptic digestion of proteins, one should expect that all peptides coming from the same
protein show an equal fold change. However, as introduced above, there are several reasons that may
lead to differing measurements.
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Figure 2: Histogram of number of measurements per peptide in our dataset (see Materials and Meth-
ods). For clarity, all counts > 100 have been set to 100. Shown are only unique peptides with > 3
measurements corresponding to 265k from originally 344k measurements.

If we assume a complete protein database, excluding ambiguous peptides is straight-forward (see
Methods). And even if the database is not complete, the likelihood that an outlier peptide also occurs in
another unknown protein, which must furthermore also be expressed, is negligible. Thus, the main focus
of our algorithm is to distinguish noise from other reasons for outlier peptides. In order to rigorously test
the proposed methods, we applied them on in-silico generated data that provided us the truth to evaluate
against. This allowed us to circumvent the problem of a missing gold standard. We furthermore applied
our algorithm to real data in order to delineate which reasons other than noise can lead to outlier peptides.

3.1 Test on in-silico generated data

We performed evaluations on models generated for several true fold changes f (see Methods) and for
all methods proposed. We evaluated these runs using ROC curves and the AUROC (see Figure 3).
According to the AUROC scores in Figure 3(a), all methods seem to behave very similar across the
whole range of true fold changes. When looking at individual ROC curves however, we note that their
performance at different stringencies is quite different: Gene-wise variance estimation seems to perform
much better at high specificity score cutoffs, whereas experiment-wide variance estimation has higher
sensitivity at lower cutoffs. For all further analyses, high specificity is important, and we will therefore
use an ANOVA procedure in the following, which also allows us to compute a statistically sound cutoff.
Furthermore, since the heteroscedastic ANOVA is superior to the standard ANOVA approaches, we can
conclude that the signal-to-noise ratio is indeed different across peptides, even within the same gene.

We note that the fold changes reported in Figure 3(a) already accounts for the fact that the fold change
difference between a specific peptide and a constitutive peptide is expected to be smaller than the isoform
fold change, so the peptide fold change that is enough to detect significant differences between peptides
is actually even lower than 0.5 on logy scale.

We acknowledge that testing a method on in-silico generated data can lead to overoptimistic con-
clusions: If the model that generates the data is oversimplified, an oversimplified method’s performance
would be overestimated. The main goal of our model is to test for influence of in-gene heteroscedasticity
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Figure 3: ROC curves have been generated for several true fold changes f. Shown in 3(a) is the area
under curve for all computed ROC curves and all proposed methods. In 3(b) the ROC curve for f = 0.5
is shown.
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Figure 4: Heteroscedastic ANOVA applied to the experimental data. Shown is the distribution of all
p-values in 4(a) and in 4(b) the logs distribution of all significant peptides. For clarity, in 4(b), all values
> 1 have been set to 1.

of quantifications. Since our model generates unequal variances in a realistic way by using the vari-
ance distribution obtained by real data, our generated data is affected by heteroscedasticity to the same
extend as experimental data. We observe that a test that respects possible unequal variances performs
better than tests that assumes homoscedasticity and thus we can conclude that it is beneficial to use our
heteroscedastic ANOVA for real data. We furthermore observe, that we are able to detect differential
isoform usage if their fold change is as small as ~1.4 fold (i.e. the logy fold change is 0.5), as long as
we observe at least one specific peptide (i.e. a peptide that is not part of one of the differential isoforms).

3.2 Outlier peptides in real data

We applied our method based on the heteroscedastic ANOVA on experimental data taken from [10]. As
can be seen in Figure 4, there are several genes that have significantly different peptides and their fold
change distribution is as expected by our in-silico data analysis: The majority of genes shows a > 0.3
logs fold change which matches the performance measured by our ROC analysis (see Figure 3).
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Figure 5: Evidence for misidentifications in outlier peptides. 5(a) shows the distributions of the fraction
of spectra that have multiple candidates for outlier and background peptides whereas in 5(b) the distri-
butions of the fraction of second to best candidate score for outlier and background peptides is shown.
See text for details.

We next made an attempt to reveal why these peptides show a fold change that is different from the
gene fold change. For the following analyses, we used an (uncorrected) p-value cutoff of 1% in order to
get a reasonable large set of peptides that is still enriched with real differential peptides. By setting this
cutoff, from the 3314 genes, we extracted 257 peptides (we will refer to them as outlier peptides). We
extracted a background set of 1850 peptides from genes with a p-value of > 0.5.

First, we checked whether there is an indication of misidentifications within our outlier peptides.
To this end, we checked whether there was a second best candidate in the list of identifications for
the corresponding MS? spectrum and extracted its score if another candidate peptide was found. This
revealed that the outlier peptides have statistically significantly more additional candidate peptides than
expected by our background peptides (p = 0.0073, Fisher’s exact test on the number of peptides that have
only single candidate spectra; p = 0.0018, Kolmogorov-Smirnov test on the fraction of quantification
events for a peptide having additional candidates; see also Figure 5(a)).

This means that even if all these peptides have been independently identified multiple times, there
is evidence that in several cases, all these independent quantifications erroneously are assigned to the
same peptide. A reason for that could be that some peptides in the proteome are very similar to each
other, either directly in their sequence or with respect to additional unknown properties that lead to a
similar fragmentation pattern. This is also directly reflected in the scores of the peptide candidates: An
Andromeda score is — log;((p) of a p-value p testing the Null hypothesis that a peptide does not belong
to a given MS? spectrum. There are several cases where multiple candidates have a score > 10, and
therefore all but one of these scores are overestimated, given a spectrum only is produced by a single
peptide. The reason for that is that these tests are not independent due to the aforementioned similarities
of peptides and it is not a-priori clear, if the top candidate necessarily is always the correct one.

We also noted that sometimes there were extreme outliers within the independent quantification
events of a peptide as judged by an interquartile range (IQR) distance of > 1.5. When we performed
similar tests on these IQR outliers compared to all quantifications within the IQR, we also observe sta-
tistically significant more additional candidates than expected by background (p < 1026, Fisher’s exact
test on the number of quantification events that have additional candidates; p < 107!, Kolmogorov-
Smirnov test on the ratio of second score to the best score, see also Figure 5(b)).

Then, we tested whether there is bias with respect to several physico-chemical properties. These
properties have been taken from [20], where they have been used to predict proteotypic peptides. Each
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Figure 6: Evidence for misquantifications in outlier peptides. Shown is an histogram of the p-values
of all physico-chemical properties tested in 6(a) and the cumulative distributions of retention times for
outlier peptides and background peptides in 6(b). See text for details.

of these properties allows to compute a score for a given peptide sequence. For each property, we
computed scores for all outlier peptides and all background peptides and compared the score distributions
by a Wilcoxon-Mann-Whitney test. The p-value distribution of these tests shown in Figure 6 clearly
shows that most of these physico-chemical properties are significantly different between outlier peptides
and background peptides. This means that the normalization used by MaxQuant is not able to correct
for bias introduced by these properties. It should however be noted, that several of these properties
are not independent, for instance there are several properties that try to measure hydrophobicity. One
interesting example (which is directly related to hydrophobicity) is the striking difference in retention
times (p < 10, Wilcoxon test). This analysis shows that outlier peptides have a shorter retention time
than background peptides, which is probably only due to technical bias that should be removed in further
normalization.

Another source for misquantification could be saturation where for extremely abundant peptides,
reported intensities may be underestimated. When, for instance, two peptides from the same protein
have differing ionization efficiencies, computed fold changes may be different due to this saturation
effect. And indeed, outlier peptides have higher intensities than expected by background (p < 1073,
Kolmogorov-Smirnov test), which indicates that saturation is another effect that should be removed by
proper normalization.

We also made the attempt to test for differential post-translational modifications. Allowing phos-
phorylation as a variable modification during peptide identification in Andromeda yielded only very few
results and the correctness of these identifications should be doubted (data not shown). This however was
expected since in the dataset we used, phosphopeptides have not been enriched experimentally. However,
the absence of reliably identifiable phosphopeptides does not prove their absence in the sample: If with-
out enrichment the phosphopeptides abundance in the mass spectrometer is lower than the unmodified
peptide, it will not be selected for fragmentation and MS?. Thus, we downloaded known phosphopep-
tides from a publicly available database [3] and tested whether there is an overlap of these peptides with
our outlier peptides. Even if there was only a small number of phosphopeptides detected in our experi-
ment and it is not clear of they are also phosphorylated here, there was a weak but statistically significant
overlap (p = 0.034, Fisher’s exact test). This means that differential PTMs indeed seem to be present in
our dataset and that they can be detected using our method.

Finally, we tried to find evidence for differential isoform usage in our dataset. To this end, we clas-
sified each peptide location as alternative or constitutive location. Due to the sparseness of the identified
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peptides, it is impossible to infer which isoforms are expressed in our data and therefore we cannot re-
strict the transcripts to expressed transcripts. Thus, we classify depending on if all Ensembl transcripts of
the corresponding gene contain this peptide (constitutive) or if there is at least on transcript that does not
contain the peptide (alternative). Surprisingly, we found a small but statistically significant enrichment
of outlier peptides among constitutive locations (p = 0.0086, Fisher’s exact test), which supposedly
suggests that background and not outlier peptides are parts of differentially regulated isoforms. How-
ever, we noted that the exon length (defined as the number of nucleotides in a gene, that is part of at
least one Ensembl exon) is significantly larger for our outlier peptides than for our background peptides
(p < 10715, Kolmogorov-Smirnov test). Thus, we removed this bias from the analysis by sampling pep-
tides from our background set according to the exon length distribution of our outlier peptides. When we
apply the same test as without sampling, outlier peptides are now enriched among alternative location.
This enrichment is however not statistically significant (p = 0.3, Fisher’s exact test), which is either a
consequence of the small numbers or indeed true: Probably in our dataset, differential isoform usage is
not as widespread as all the other effects, in which case a statistic over the whole set of outliers is not
expected to yield significant results.

These results demonstrate that all effects introduced before may be present in the set of outlier pep-
tides. Our main future goal will be to be able to distinguish between these effects: Errors (misidenti-
fications and misquantifications) could be diminished by improving both identification algorithms and
normalization methods. Detecting outlier peptides can help to do that: For instance, if an identification
algorithm has to choose between multiple candidate peptides for a spectrum, it could use the outlier score
as an additional criterion to do so. It also seems as if the normalization in MaxQuant, that accounts for
intensity, labeled amino acids and different protein load [10], is not able to remove all bias from the data.

PTMs have received increasing interest in recent years [15, 23]. Usually, specific steps during sample
preparation are made to enrich modified peptides such that they can readily be detected and identified.
We have shown that even without these enrichment steps, differential PTMs are in principle detectable
in a standard MS experiment, even if peaks corresponding to the modified version of a peptide are not
selected for fragmentation. Our outlier peptide scores can be used to generate hypotheses for finding
differential PTMs.



Alternative isoforms, which are consequences of alternative transcription start sites, alternative splic-
ing or alternative end-of-transcription sites (or combinations of that), are widespread in higher organisms
[25] and it is known that they are highly regulated in development [6, 4, 19], different tissues [29] and
diseases [7, 13]. Experimental techniques to detect differential isoform usage usually only consider iso-
forms on mRNA level [25, 29]. However, it is known that not all produced transcripts give rise to an
equal number of proteins, so the ultimate test for differential isoform usage must be performed on protein
level.

Finding differential isoform usage is thus probably the most interesting application of our method,
even if we were not able to reliably find cases in the dataset we used. To our knowledge, there is no
established method available that has the ability to detect differential isoforms on proteome level in a
high-throughput manner. Once other effects can be excluded for an outlier peptide, quantitative mass
spectrometry could serve this purpose: The only explanation that remains for outlier peptides then is
indeed differential isoform usage. Furthermore, we can expect that in the future, the number of identified
peptides will increase due to technical progress and due to improved computational methods [10]. Even if
there certainly are peptides that are not detectable in mass spectrometers, the number of peptides that can
nowadays be identifed is orders of magnitude lower than what is actually possible to quantify in modern
mass spectrometers [21]. We therefore expect that in near future, the protein coverage by peptides
will shift from to current sparseness to a more complete picture. This will also help to distinguish
differentially regulated isoforms from the other effects, since then, more than one quantified peptide will
regularly be specific for isoforms.

4 Conclusion

In modern quantitative high throughput mass spectrometry data, the final analysis step is to compute
protein fold changes for all identified proteins. In most cases, this seems to be valid as long as a robust
statistic is used to compute the protein fold change from all the quantification events. However, when
having a closer look at individual peptide quantifications, it becomes evident that protein fold changes
are only half of the truth. In many cases there are peptides belonging to a gene that are significantly dif-
ferent from the other peptides of the same gene. Such a behavior is for instance expected if peptides from
alternative isoforms of a gene are detected and quantified and respective isoforms are differentially regu-
lated in the conditions under consideration. We proposed a method that is able to detect such differential
isoform usage.

However, we found several effects that could confound this in real data: misidentifications, mis-
quantifications and post-translational modifications. Unfortunately, it is a-priori not clear which of these
effects plays a role for each gene. Thus, in order to reliably detect differential isoform usage and dis-
tinguish it from these effects, further data is necessary. If for instance RNA seq data is available for the
same cells used for mass spectrometry, it would be possible to find additional evidence for differential
isoform usage by simply checking for sequencing reads that support these isoforms either qualitatively
or even quantitatively.

This study also revealed that the normalization currently used is not enough to remove all technical
bias. For instance, we have shown that the retention time (either directly or something that is correlated
to it) affects quantification and further normalization is necessary to remove this bias. Our method is
able to provide peptides that are probably affected by such bias which should be able to help in the
development of further normalization steps.

In a modern mass spectrometer, only a limited number of all the peptides detectable in MS spectra
is selected for fragmentation and MS? [21]. In order to find differential isoform usage, it would be
beneficial to increase the number of identified peptides: Usually there is more than one peptide specific
to a single isoform. If multiple specific peptides are detected and measured, all other effects as described
above become less probable. Due to the increasing throughput and decreasing scan times, we expect that
such kind of data will be available soon and our method could the be used to systematically search for
differential isoform usage.
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