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Protein interaction networks are important for the understanding of regulatory
mechanisms, the prediction of protein complexes and functions. Since most interac-
tion data is available for model organisms, the transfer of interactions to organisms
of interest using ortholog relations is a common practice.

In this work, we propose to use a wide range of features to train a Random Forest in
order to distinguish between correctly and incorrectly transferred interactions. The
performance of our method is estimated with interaction data from S. cerevisiae
which is currently the most complete eukaryotic protein interaction network. We
show that the precision of a direct transfer of interactions from other eukaryotic
interaction networks to S. cerevisiae is only 0.24. With our additionally introduced
filter step using a rich set of features from the target and source network and the
ortholog annotations we could increase the average precision to 0.76. Using a final
predictor with a reduced feature set to take the sparse annotation information for
other species into account we were able to increase the interactome of 97 species
from currently 343,704 known interactions to 1,348,092 pair-wise interactions with
an expected overall precision of 0.55.

These interaction networks can be used to study conserved functional groups,
to explain experimental data, to predict conserved protein complexes, or to assist
biologists with the discovery of protein interactions.

1 Introduction

Due to high-throughput screening techniques like yeast two hybrid screens, mass spectrometry
and protein microarrays more and more protein interaction data is made publicly available in
different databases. Such interaction data can be used to study regulatory networks, to identify
protein complexes or to predict the functions of proteins (Zhang, 2009). But still the identifi-
cation of interactions is a time consuming and expensive process. Therefore, most experiments
focus on model organisms like S. cerevisiae, E. coli and H. sapiens and the interaction networks
for other species are still sparse (see Table 1). To enrich these networks, interactions can be
transferred using orthologs. However, as it was shown, the overlap of transferred interactions
and known interactions is small (Gandhi et al., 2006).

Furthermore, false positive rates up to 50 % are reported for yeast two hybrid screens (Rhodes
et al., 2005). That makes it necessary to repeat the experiments several times in order to
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Species Common
name

Number of
proteins

Number of
interactions

Average
node degree

Number of
connected

components
S. cerevisiae Baker’s yeast 6,067 174,320 57.46 1
H. sapiens Human 13,695 91,742 13.39 44
D. melanogaster Fruit fly 9,557 36,965 7.73 68
S. pombe Fission yeast 1,996 12,404 12.42 21
C. elegans Nematode 5,238 11,492 4.38 77
A. thaliana Mouse-ear

cress
2,953 6,285 4.25 116

M. musculus Mouse 4,065 6,104 3.00 227
P. falciparum - 1,134 2,219 3.91 22
R. norvegicus Rat 1,279 1,636 2.56 97
D. rerio Zebrafish 139 197 2.83 26

Table 1: Protein interaction network overview for the 10 eukaryotic species with the largest number
of physical and genetic interactions (after interactions were mapped to UniProt) from the integrated
interaction database iRefIndex. For each species the number of proteins, interactions, the average node
degree and the number of connected components is given.

identify the true interaction partners. A second issue when working with interaction data is
the way how this data is made publicly available. Since there is no common format or central
repository, integrating interaction data is commonly performed when inferring information from
protein interaction networks as seen in Kim and Tan (2010); Jaeger et al. (2010); Reiss et al.
(2006). Nevertheless the integration of these databases is a challenging task since the databases
have a heterogeneous structure so that the format, the description and the data structure differ
among the databases (Zhang, 2009). Furthermore interactions extracted from the same PubMed
abstracts can be represented differently in the databases with respect to the format and protein
annotations of the involved interaction partners. These issues result in a small overlap between
the interaction sets of the different databases (Turinsky et al., 2010). Finally, the current view
on protein interaction networks is static, so that neither spatial nor temporal conditions are
considered (Buchanan et al., 2010).

In this work, we show how the quality of a protein interaction transfer can be improved
using a wide range of features derived from the interaction partners in the source network, the
interaction partners in the target network and the ortholog proteins involved in the transfer. For
this purpose a Random Forest (Breiman, 2001) was trained to classify correctly and incorrectly
transferred interactions. Furthermore, an integrated protein interaction database was used to
have the advantage that interaction data from multiple species is available and that the total
set of interactions is larger compared to the individual databases.

Finally, a predictor was used to transfer interactions to 97 eukaryotic species for which or-
tholog mappings were available.

2 Recent work

Numerous computational approaches have been developed to assist the protein interaction iden-
tification process. Since Matthews et al. introduced the term interlog in 2001, many approaches
have been developed to transfer interaction data using orthologs (Gandhi et al., 2006; Bork et al.,
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2004; De Bodt et al., 2009; Michaut et al., 2008; Yu et al., 2004). In addition to ortholog relations
De Bodt et al. (2009) and Michaut et al. (2008) used further features to increase the reliability
of an interaction transfer. They compared random protein pairs with known protein interaction
partners to define thresholds for example for the similarity of Gene Ontology (Ashburner et al.,
2000) (GO) terms, the domain similarity or the gene expression similarity. With these thresh-
olds low confident transferred interactions from different source networks were filtered out. A
further common practice is to require a certain sequence similarity between orthologs in order
to transfer an interaction. For example Yu et al. (2004) found out that protein interactions can
be safely transferred if the joint sequence similarity between the ortholog proteins involved in
the transfer is >80 %. Besides that, many different approaches try to predict interactions us-
ing structural properties (Ogmen et al., 2005), network topology information (Pao-Yang Chen,
2008), or protein domain information (Luo et al., 2011).

3 Material and methods

3.1 Used databases

We used the protein interaction repository iRefIndex (Razick et al., 2008) as source database,
which provides interaction data from multiple protein interaction databases in a common format.
From this database physical as well as genetic interactions were transferred using publicly
available ortholog mappings. In this work, orthologs from the Orthologs Matrix Project (OMA)
(Schneider et al., 2007), InParanoid (Remm et al., 2001) and HomoloGene1 were used. These
databases were used due to their good evaluation results (Altenhoff and Dessimoz, 2009) and
the huge coverage of ortholog mappings for different eukaryotic species.

The interaction partners and orthologs were mapped to UniProt (Consortium, 2011) to have
on the one hand a common representation of the protein set and on the other hand a rich
annotation set including GO terms, synonyms and mappings to external databases like KEGG
(Kanehisa et al., 2010).

3.2 Methods

Protein interaction networks were modeled as weighted graph PPI = (P, I, Φ) consisting of a set
of proteins (P ), interactions ( I ⊆ P × P ) and edge weights Φ (which assigns a weight to each
edge Φ(i) → N, i ∈ I). In our case, edges were weighted with confidence values representing
the number of publications that support the interaction.

Given an interaction network PPIi = (Pi, Ii, Φi), a target protein set Pj and an ortholog
mapping O ⊆ Pi × Pj between Pi and Pj , a transferred interaction network consists of PPIj =
(Pj , Ij , Φ) with (pj,k, pj,c) ∈ Ij ⇐⇒ (pi,v, pi,l) ∈ Ii, (pj,k, pi,v) ∈ O, (pj,c, pi,l) ∈ O.

A protein pi,h = (ti,h, gi,h, fi,h) from a protein set Pi (for example representing the set
of proteins for a species) consists of a set of function terms (ti,h = {ti,h,1, . . .}), GO terms
(gi,h = {gi,h,1, . . .}) and family memberships (fi,h = {fi,h,1, . . .}). Function terms were derived
from protein synonyms by tokenizing, stemming and filtering stop words and to general words
resulting in a set of tokens which were most descriptive for the protein.

For the classification of correctly and incorrectly transferred interactions a Random Forest
(Breiman, 2001) from the WEKA (Hall et al., 2009) machine learning framework was trained
which predicts the outcome class of an instance by using a voting procedure on multiple learned
decision trees with different feature sets. Random Forests have shown good evaluation results

1http://www.ncbi.nlm.nih.gov/homologene
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Figure 1: Schematic diagram of the protein interaction classification. Interactions are transferred from a
source network to a target network. In order to distinguish between correctly and incorrectly transferred
interactions a Random Forest is used for the classification which uses features from the interacting partner
in the source network, the interaction partners in the target network and the ortholog proteins.

on similar learning tasks (Caruana and Mizil, 2006) and are more robust against noise than
other ensemble machine learning methods (Breiman, 2001).

To assess the quality of the learned model the

Precision =
True positives

True positives + False positives
, Recall =

True positives
True positives + False negatives

,

(1)
and

F1 = 2 · Precision · Recall
Precision + Recall

(2)

scores were computed to evaluate the quality of the learned predictor.

3.2.1 Features

As features we used the protein annotations of the interacting partners in the source and the
target network and the ortholog proteins from which an interaction was transferred.

GO similarity: The semantic GO term similarity between the interaction partners in the source
and target network and the ortholog proteins (Couto et al., 2007).

Network overlap: The overlap of the neighborhood proteins for a given pair of proteins in the
source and target network. For this purpose the Jaccard index was computed.

Network GO similarity: The average GO similarity between the pair-wise neighbors of the in-
teraction partners in the networks.

Total support: The number of times an interaction was transferred from all other networks to
the target network (as suggested by Mika and Rost (2006) for confidence scoring).

Gene expression correlation coefficient: Given a gene expression time series x = {x1 . . . xn}
and y = {y1 . . . yn} for two genes gx and gy, the Pearson correlation coefficient was com-
puted. The genes were mapped to the respective proteins using the gene expression
annotation files.
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Sequence identity: The sequence identity of the ortholog proteins.

Token similarity: The inverse likelihood that a different pair of proteins have the same synonym
token intersection as the ortholog protein pair.

Domain/Family similarity: Similar to the token similarity the inverse likelihood that two dif-
ferent proteins have the same family and domain annotations in common.

Transitive ortholog: The idea behind this feature is that more conserved orthologs can be traced
from a source species to a target species along a phylogenetic tree. For this purpose a
phylogenetic tree covering all species with ortholog mapping was used. Given such a tree,
a path from a source to a target species was computed by:

1. searching the shortest path between the two species,
2. searching the closest leaf nodes for all inner nodes on the shortest path.

The result is a list of species which are between the target and the source species. An
ortholog is defined as transitive consistent if a direct ortholog between the source and the
target species can also be reached when going along the pair wise ortholog mappings on
the estimated path.

3.3 Experimental settings

The S. cerevisiae network was used as gold standard. The training set consisted of 27,410
transferred interactions from all eukaryotic species considered in this study to S. cerevisiae. A
transferred interaction was assumed to be correct if the interaction could be found in the S.
cerevisiae network from iRefIndex. 6,934 of the transferred interactions could be validated in
the network and the other 20,476 interactions were used as negative set.

The features described in section 3.2.1 were modeled for the protein pairs involved in the
transfer. In total 4 proteins were considered for the transfer (two proteins from the source
network and two proteins from the target network). The features were modeled between the
different protein pairings in the target network, in the source network and between the ortholog
proteins (see Figure 1). In Table 2 the mapping between the features and protein pairings is
given. In total 19 features were modeled where for the features used for the ortholog proteins
one feature for each of the two ortholog protein pairs involved in the transfer was created.
For example for the GO similarity one feature was modeled between the interaction partner
in the source network, one feature was modeled between the interaction partner in the target
network and two features were modeled between the ortholog proteins involved in the transfer.
For the gene expression feature the processed expression intensity values from the experiment
E-GEOD-5376 in ArrayExpress (Parkinson et al., 2009) were used.

Two experimental settings were constructed to train the Random Forest. One setting in
which all features were considered and one setting where only features were used which can be
assumed to be available for most of the species. Hence, features containing information about
the network structure and the gene expression correlation were excluded in the reduced feature
set. The performance of the Random Forest trained with the two feature sets was estimated
using a 10-fold-cross validation.
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Target Network X X X X X
Source Network X X X X
Orthologs X X X X X

Full set X X X X X X X X X X
Reduced set X X X X X X X

Table 2: The table lists the features used for the proteins in the target network, the source network,
and the orthologs, respectively. It also defines the two sets of features used in the analysis (full set and
reduced set).

4 Results and discussion

4.1 Current protein interaction networks

In Table 1 an overview of the protein interaction networks with most interactions is summarized.
This interaction data is time and location independent and comes from many different yeast
two hybrid screens all showing a high false positive rate. With over 170,000 interactions the
most complete eukaryotic interaction network is available for S. cerevisiae.

Especially in comparison with the second largest protein interaction network from H. sapiens
it becomes clear how sparse the networks for the other species still are. The H. sapiens network
has 2.41 times less interactions and 1.84 more proteins in the network.

Furthermore only the S. cerevisiae network consists of exactly one connected component.
Therefore, we assume in the following that the S. cerevisiae network is almost complete and
use this network to evaluate the performance of a protein interaction transfer.

Selecting the S. cerevisiae network as gold standard has the disadvantage that protein inter-
actions for higher evolved species are might only be studied because of the prior knowledge that
an interlog in S. cerevisiae exist. This bias may results in higher accuracies for the interaction
transfer from distance species. Nevertheless the S. cerevisiae network was used as gold standard
because of the high number of available interactions and the availability of curated annotations
for most of the proteins.

4.2 Direct protein interaction transfer

The direct transfer achieves only a low precision. Figure 2 shows the precision of the interaction
transfers from the interaction networks of Table 1 to S. cerevisiae and H. sapiens. The overall
precision of an interaction transfer to S. cerevisiae is 0.24 where most of the interactions were
transferred from H. sapiens as the second largest interaction network. For a transfer to H.
sapiens only 8 % of the transferred interactions could be validated.

Given complete interaction data it can be expected that the highest precision can be achieved
with a transfer from the phylogenetic closest species. But since the interaction data is sparse and
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Figure 2: Precision of a direct interaction transfer from 9 eukaryotic species with interaction data to
S. cerevisiae and H. sapiens. The precision ranges between 0.56 and 0 for the two species. The average
weighted precision for the transfer to S. cerevisiae is 0.24, whereas the average precision for a transfer
to H. sapiens is 0.08.

interlogs of S. cerevisiae were might be used as prior knowledge for the interaction discovery
a different order could be observed. Most notable is the performance of a transfer from M.
musculus to S. cerevisiae with an unusually high precision of 0.56. A GO overrepresentation
analysis (DAVID, Huang et al. (2009)) showed that some highly conserved processes like DNA-
dependent DNA replication, pre-replicative complex assembly, DNA replication initiation and
chromosome organization are involved, which might explain the high precision of the interaction
transfer.

4.3 Protein interaction filter

Using the features described in Section 3.2.1, a Random Forest with full feature set and one
with reduced feature set was trained to distinguish between correctly and incorrectly transferred
interactions. A recall of 1 is defined in the case that all correctly transferable interactions were
predicted as correct interaction. Thus with a direct transfer a precision of 0.24 and a recall of
1 can be reached, resulting in a F1 score of 0.39.

In Figure 3 the performance of the two Random Forests is shown by using a 10-fold-cross
validation on the entire training set. Combining all features a F1 score of 0.66 can be reached
with a precision for a correct transfer of 0.76 and a recall of 0.58.

The strongest feature is the GO similarity between the interaction partners in the target net-
work with an information gain (Mitchell, 1997) of 0.17. But also the network overlap feature in
the target network, which was excluded in the reduced feature set, has a comparable informa-
tion gain of 0.15. Therefore the F1 score for the Random Forest with reduced feature set drops
to 0.62 with a precision of 0.7 and a recall of 0.56. Compared to the model trained with the full
feature set mostly the precision decreases. With a recall of 0.58 and 0.56, respectively, almost
half of the correctly transferred interactions with an unfiltered transfer got classified as incor-
rectly transferred and thus rejected for the transfer. To increase the recall the score threshold
for the Random Forest for predicting an interaction as correctly transferred was reduced to 0.3.
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Figure 3: a.) Precision and recall for the Random Forests trained with the full and the reduced feature
set. b.) Information gain of the different features. The letter T after the feature name stands for the
protein pair in the target network, the letter S for the protein pair in the source network and O for
the ortholog proteins. For ortholog protein features the average information gain of the two ortholog
partners is shown. The features colored in red are exluced in the reduced set. c.) Precision-Recall curve
for the Random Forests trained with the two feature sets. The black points visualize the score threshold
of the Random Forests for predicting an interaction as correctly transferred.

With such a score threshold the precision decreases for the Random Forest with reduced feature
set from 0.7 to 0.55, but the recall increases to 0.72 (see Precision-Recall curve in Figure 3).

To assess the quality of the trained predictor, the one with reduced feature set was applied
to the transfer using the H. sapiens network as gold standard. When transferring interactions
directly to H. sapiens a precision of 0.08 could be reached (from the 143,378 transferred in-
teractions 11,358 could be validated in the network). With the trained model the precision
could be improved to 0.14 (from 52,296 interaction after the filtering, 7,504 could be found in
the network). This huge drop in precision was expected compared to the S. cerevisiae network
transfer, since the H. sapiens network is still incomplete as indicated by the number of con-
nected components and the average node degree compared to S. cerevisiae. Therefore, the test
scenario using the H. sapiens network as gold standard is not very meaningful to estimate the
absolute precision, but may it is illustrative to access the relative performance in comparison
to the direct transfer.

4.4 Comparison with other interaction transfer methods

Comparing the transfer quality against other methods is difficult because of the lack of gold
standards and because different publicly available data sets provide transferred interactions
for different target species. Nevertheless in Figure 4 the intersections of predicted protein
interactions from different data sets and a set of experimentally discovered physical protein
interactions from D. melanogaster are shown. D. melanogaster was chosen since most method
predicted interlogs for this species and some experimentally data is available. As dataset Yu
et al. (2004)2 predicted interactions with a joint E-Value threshold of < 10−70, all predicted

2http://interolog.gersteinlab.org/
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Figure 4: Venn-Diagram of predicted and experimentally discovered physical protein interactions from
iRefIndex, Yu et al. (2004), Michaut et al. (2008) and the presented approach using a Random Forest
to distinguish between correctly and incorrectly transferred interactions. Proteins were mapped to gene
identifier in order to have a common representation of the entities in the different data sources.

physical interactions from Michaut et al. (2008)3 and all predicted interactions from the method
presented here with a threshold of ≥ 0.3 were used.

In general the intersections between the sets are small. The highest precision of 0.03 between
the predicted interaction sets and the experimentally discovered set can be reached with the
method presented here (from 21.223 interaction 723 could be validated). Between the predicted
sets the highest precision can again be reached between the method presented here and the
method of Michaut et al. (2008). These low agreements can partly be explained with the fact
that different source species were used for the transfer, different ortholog identification methods
were applied and that the experimentally discovered data is sparse.

4.5 Enriched protein interaction networks

Using the trained predictor with reduced feature set, interactions were transferred and classified
for all eukaryotic species with available ortholog mappings. With a direct interaction transfer
the interactome of these 97 species could be increased from currently 343,699 interactions to
4,327,054 interactions. With the additional filter step still 1,348,092 pair-wise interaction are
left. Estimated from the transfer to S. cerevisiae a precision of 0.55 for this interaction transfer
can be expected.

The resulting interactome is shown in Figure 5 for 40 species. The transfer relies on the
1.) availability of ortholog relations 2.) mappings of the orthologs to UniProt entries and 3.)
annotations of the UniProt entries. These requirements imply that for some species only few
interactions could be transferred. On the other side the interaction networks of M. musculus,
D. rerio and B. taurus could be enriched with over 50,000 additional interactions.

5 Conclusion

Using publicly available ortholog and protein interaction data the protein networks of 97 eukary-
otic species could be enriched. Transferring interactions directly from one species to another

3http://biodev.extra.cea.fr/interoporc/
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Figure 5: Enriched protein interactome for 40 species using the trained Random Forest with reduced
feature set to distinguish between correctly and incorrectly transferred interactions. The color schema
indicates the number of interactions in each interaction network after the transfer. According to the
estimated precision for the transfer to S. cerevisiae a precision of 0.55 can be expected.

results in a low consistency as measured with the interaction transfer to S. cerevisiae which
is the most complete eukaryotic interaction network. Therefore, to increase the precision of a
transfer, a Random Forest was trained to distinguish between correctly and incorrectly trans-
ferred interactions. The model was trained with a rich feature set covering features from the
interacting partners in the source and target network and the orthologs from which an inter-
action was transferred. With this additional classifier the average precision of a transfer to S.
cerevisiae could be improved from 0.24 to 0.76. Since rich protein annotations are not available
from all species, a final predictor with reduced feature set was trained. This classifier was used
to enrich the interaction networks of 97 eukaryotic species with an expected precision of 0.55.
The so created networks can be used to study conserved functional groups, to explain exper-
imental data, to predict conserved protein complexes, or to assist biologists with the protein
interaction discovery.

Due to the increasing speed of protein annotations added to UniProt and the increased usage
of yeast two hybrid screens for other species, it can be expected that these networks can be
even further enriched in the future and that more features can be used for the transfer so that
a higher transfer precision can be achieved.

The transferred networks will be made publicly available via a web service including query
and visualization capabilities.
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