
tt-analyze and tt-generate: Tools to Analyze and
Generate Sequences with Trained Statistical Properties

Andre Dau and Johannes Krugel

Technische Universität München, Germany
{dau,krugel}@in.tum.de

Abstract. Algorithms working on sequences are influenced by the statistical properties of the sequences. Algo-
rithms for fragment assembly for example usually produce a worse result if there are many repetitions. Also the
space usage and running time of many data structures and algorithms depend on the statistical properties of the
underlying text.
We implemented tt-analyze, a tool to analyze sequences for certain statistical properties, among others the en-
tropy, the number and distribution of different substrings, and the repeat structure. Besides, we also designed and
implemented tt-generate, a tool to generate synthetic sequences with certain predefined properties, using models
such as a Markov process, a discrete autoregressive process, and a repeat model. In bioinformatics these models
have primarily been used to analyze given sequences, whereas here, we use them to also generate synthetic ones.
The respective parameters of the models can be defined manually or be learned from given training data.
The combination of both tools allows to generate sequences that are similar to real world sequences with respect to
certain properties. This will allow to investigate the performance of algorithms under to some extent realistic, yet
controlled conditions, and to determine the degree of dependence from parameters of the underlying sequence.
Both tools have an extensible design which allows the integration of new modules for other statistical properties or
generating models with the same programming interface.

Keywords: models, genome analysis, efficient sequence analysis, efficient algorithms, machine learning, Markov
process

1 Introduction

Analyzing the statistical properties of sequences plays an important role in bioinformatics as well as in other areas
such as automatic translation, text compression, etc. Sequences of interest in these applications are for example DNA
or protein sequences, natural language texts, or binary sequences. The wide range of properties that are analyzed
include for instance the character distribution, different measures of entropy, the number of different substrings, and
the number of repeats. This statistical analysis can then lead to biological or linguistic conclusions and can also help
to understand the performance of algorithms and data structures.

Another general goal is to build theoretical models for the underlying generating process of the sequences. These
models are often stochastic processes such as Markov chains, but can also be based on formal grammars or yet com-
pletely different approaches. Often these models are based on a set of parameters and these parameters can in some
cases be learned from given real world data. With the resulting fully determined model it is then possible to generate
new, artificial sequences which resemble certain modeled properties of real sequences.

Motivation Synthetically generated sequences can be used as test instances in bioinformatics, for example to evaluate
the performance of genome sequencing methods. The benefit of artificial sequences is that complete knowledge about
the correct solution is available. This is opposed to the sequencing of a real genome, where the correct solution is

unknown. Furthermore, a generator for artificial sequences allows to study in isolation the impact of one parameter on
the quality of the solution.

Another motivation is to enable a systematic comparison of data structures and algorithms on strings. The space
consumption and the running time of index structures and algorithms for pattern matching often depend on the sta-
tistical properties of the underlying text. The size of a q-gram index, a suffix tree, and a compressed index structure
depends for example on the number of different q-grams, the number of repetitions and the entropy of the text, respec-
tively (these dependencies will be explained in more detail below). If the statistical properties of given sequences can
be determined and if it is even possible to generate artificial sequences with predefined properties, one can measure the
impact of these properties on the performance of the algorithms and data structures. By learning the properties from
real world data, it is possible to examine this dependency under controlled but realistic conditions. The goal is to make
statements characterizing which algorithmic approach works well under which circumstances.

Contribution We built two tools: tt-analyze to analyze sequences for various statistical properties and
tt-generate to generate artificial sequences based on different models. Both tools are implemented extensible and
provide a uniform interface for the different statistical properties and generating models, respectively. The tools as
well as the test data are available online.1

The generator uses methods that were previously used in bioinformatics mainly to analyze sequences, but not to
generate them. This includes a Markov process, a discrete autoregressive process [JL83], and an approximate repeats
model [AED98], where we extend the underlying generating model from a 0-order Markov process to a higher order
Markov process. The parameters of the models can either be defined manually or learned from given training data.
We studied the quality of this learning process by comparing the generated sequences to the original sequences and
observed that some statistical properties are modeled well by the respective generating processes, whereas others are
not.

Test Sequences The methods can be used with different types of biological sequences, such as DNA or protein se-
quences and we also evaluated the performance for natural language texts. For the presentation we focus here on DNA
sequences. In the evaluation we used the following sequences:

– A fragment of coding DNA of the fruitfly: downloaded from the NCBI2 in April 2010. (Total length: 6333 bp,
FASTA header: >gi|8203|emb|X54251.1| D. melanogaster neurogenic locus mastermind mRNA
for a nuclear protein)

– Human genome: the set of all human chromosomes, downloaded from the NCBI in August 2009. (Total length:
ca. 3 Gbp)

– German: a concatenation of all German texts from the Project Gutenberg3, downloaded in August 2009 (ca.
275 MB)

– French: see above (ca. 800 MB)

Outline The rest of this paper is organized as follows: Section 2 describes related work addressing the analysis and
generation of sequences, in particular in the context of bioinformatics. Section 3 contains motivations and defini-
tions for the statistical properties considered and shows how they are measured by tt-analyze. Section 4 explains
the different models used by tt-generate, describes how to infer their parameters from training data, and shows
experimental results. Section 6 concludes with a discussion and an outlook of other models to be integrated.

1 http://www14.in.tum.de/papi/
2 http://www.ncbi.nlm.nih.gov/
3 http://www.gutenberg.org/

2 Related Work

At the time when the human genome had not yet been fully sequenced, Myers built a dataset generator for shotgun se-
quencing [Mye99]. This tool is called celsim and generates sequences that are similar to real genome DNA sequences
regarding the repeat structures. This is achieved by using a stochastic formal grammar. Experiments comparing the
synthetically generated sequences with real genomic sequences indicate that this model is a good approximation for
the properties of the repeat structures. However, other properties such as the entropy or the distribution of the q-grams
are not modeled. The tool further contains a module to produce other sequences of related individuals or species based
on a given input sequence, by applying simple block deletions, translocations, or single point substitutions. Further-
more it is possible to simulate the shotgun sequencing process by extracting fragments from generated sequences. One
important reason for building celsim was the lack of available real world data (only 6 % of the human genome had
been sequenced at this time). Nevertheless, even today it is important to have a generator for synthetic, but realistic
sequences to test the influence of the statistical parameters on the performance of algorithms.

Another model for DNA sequences tries to explicitly describe repeated regions, also for the case that the repeat
contains some deviations [AED98]. This model is based on ideas from Lempel and Ziv and would allow to compress
DNA sequences. But the actual goal of this model is to make conclusions about the statistical and thereby biological
properties of the underlying sequence (see also [SACD01] and [DPA+07]). The base sequence is assumed to have been
generated by a zero-order or first-order Markov model and the repeat model is used to generate new sequences. We
will extend this by implementing a generator containing approximate repeats using a higher-order Markov model in
Section 3.4.

In bioinformatics some related tools have been developed. On the one hand, there are tools to simulate the evolution
of a given genome sequence, e. g. sgEvolver of the software package Mauve [DMBP04], Mutagen of the alignment
evaluation suite ThurGood [SMM+04], and the recently developed program Evolver [EABS09]. On the other hand,
there are tools to simulate the extraction of reads from a genome, e. g. MetaSim [ROA+08] and Mason [Hol10]. Both
kinds of tools can be used very well together with a sequence simulator like celsim or the generator described in this
paper.

In the context of index structures for pattern matching there is a text generator gentext available as part of the
Pizza&Chili Corpus4, a benchmark for compressed index structures [FGNV09]. It produces texts following a uniform
distribution over an alphabet of adjustable size. Additionally there are also texts with artificially introduced repeats
available for download, but their generator is not available online and presumably is not able to learn the parameters
from given training data.

In bioinformatics and computer science there are countless other models trying to describe the generation of
character sequences. One recent approach is the Sequence Memoizer [WGA+11] which tries to extend Markov
models so that also long-range dependencies and power-law properties can be modeled, while staying computationally
feasible. The applications are language modeling, a good prediction of the next character in the sequence, and text
compression, but in this work the model is not used to generate sequences.

3 Sequence Analysis

In order to analyze statistical properties of sequences it is necessary to make an assumption about the underlying
model that generates the sequences. Within this work a sequence over an alphabet Σ is regarded as an instance of a
stationary ergodic discrete stochastic process (Xt)t∈N with Xt : Ω → Σ. (In general the assumption of stationarity
of DNA sequences is controversial, since for example chromosomes exhibit higher level structures. However, the
properties analyzed here are not affected significantly by small deviations of stationarity [DHH03].) The simplifying

4 http://pizzachili.dcc.uchile.cl/, http://pizzachili.di.unipi.it/

assumption of stationarity and ergodicity allows to use one finite sample of the generating process and to link the
relative frequencies in the sequence with the probabilities of the process.

This section gives an overview of the statistical properties implemented in the tool tt-analyze so far. For each
property we will motivate why it is interesting (especially in the context of bioinformatics) and describe how to
measure it. In the implementation, the properties are realized as different modules with a uniform interface, allowing
an integration of new modules.

3.1 q-gram Frequencies

A q-gram of a string is simply a substring of length q.5 (The number of different 1-grams for example equals the size
of the actually used alphabet.)

In the field of bioinformatics there is active research regarding the distribution of q-grams, for example in exam-
ining their frequency distribution in different species [CHG+09]. Another well known application of q-gram analysis
is the difference of the CpG content in coding and non-coding regions respectively [FPJ+05,CHG+09]. In natural
language texts, q-grams can for example be used to identify the language of a given text [Dun94].

Furthermore, the performance of some data structures for strings (like the q-gram index [NBY98]) depends on
the number and the distribution of the q-grams. To evaluate the performance of q-gram based index structures one
can therefore analyze texts for their q-gram distribution, perform experiments with the index structure, and then make
statements relating the statistics of the text with the performance of the data structure.
tt-analyze calculates for a given sequence and a given value q the number of different q-grams and for each

q-gram the number of occurrences. In the implementation, memory is saved by storing the q-grams not explicitly but
solely the position within the sequence. Therefore it is possible to also handle sequences containing many different
q-grams (e. g. like in natural language texts).

We used tt-analyze for example to analyze the 2-gram frequencies of the coding subsequence of Drosophila
melanogaster (see Section 1) with human chromosome 22. The output of the tool facilitates to analyze the difference
in the distributions of the 2-grams, for example the difference in the CpG content of both sequences.

3.2 Entropy

The Shannon entropy H is a well known measure for the degree of randomness (or equivalently the information)
within a sequence [SPS48].6 In information theory the entropy is a lower bound for the optimal compression rate. The
entropy H of one random variable Xt is formally defined as H(Xt) := −

∑
w∈Σ p(Xt = w) log p(Xt = w) and represents

the uncertainty about the value of the random variable Xt. It can canonically be extended to multiple random variables
by using tuples of random variables. The conditional entropy of order n is denoted by H(Xt | Xt−n, . . . , Xt−1) and
represents the remaining uncertainty about the value of the random variable Xt given that the values of the random
variables Xt−n, . . . , Xt−1 are known.

Under the assumption that a stochastic process is stationary and ergodic, it is possible to estimate its entropy and
conditional entropy of order n by analyzing one sequence generated by the process. The block entropy of order n of a
stochastic process (Xt)t∈N can then be defined as Hn := H(X1, . . . , Xn).

In biological applications the entropy can be used to draw conclusions about biological sequences. In some species
it is observed to be lower in non-coding regions, whereas in other species it lower in coding regions: An analysis of the
genome of Escherichia coli revealed for example that the entropy in coding regions is slightly lower than in non-coding
regions, and the entropy of triplets of nucleotides in the correct reading frame is significantly lower than in the wrong

5 In other contexts q-grams are sometimes also called n-gram and k-mer.
6 From here on we simply use the term entropy to denote the Shannon entropy.

reading frame [LIHL92]. Opposed to this, another study on the entropy of 37 eukaryotic sequences from GenBank (in
the year 1994) observed a lower entropy in the non-coding regions [MBG+94]. In any case, depending on the species,
the analysis of the entropy of a DNA sequence can possibly give an indication when searching for coding regions of
previously unidentified genes.

The entropy also plays an important role in the analysis of data structures for strings, since many compressed index
data structures (like the different versions of the compressed suffix arrays, the FM-index or Ziv-Lempel based index
structures [NM07]) have the related measure empirical entropy [Man01] of the sequence as a factor in their space
usage. The index structures therefore need less space if the text has a low entropy, which fortunately often is the case
for real world instances.
tt-analyze measures the block entropy and the conditional entropy for a given order n by using relative n + 1-

gram and n-gram frequencies as estimates. However, this estimation is biased resulting in too small values for the
entropy, since relative frequencies are used instead of actual probabilities of the (unknown) underlying stochastic
process [SG96]. There are several possibilities to accommodate for this effect. tt-analyze uses a correction term
which is based on a Taylor series of order 1 as described in [SG96].

Using techniques from [HES94,HD06] we tried to verify some of their results with tt-analyze. We calculated
the conditional entropies for the first n orders and used the output from tt-analyze to create diagrams similar to the
ones in [HES94,HD06]. It is possible to see the “increasing decline” (negative second derivative) of the conditional
entropy in Figure 1 (right). When using tt-analyze to calculate the conditional entropy of natural language texts, we
found that with higher orders it decreases fast (as expected) since of all possible q-grams only a small subsets occurs
in natural language. This can be interpreted that the distribution of one character is mainly determined by very few
characters preceding it.

3.3 Mutual Information

The mutual information I is an entropy-based measure for the correlation between two random variables:
I(X,Y) := H(X) − H(X | Y) = H(Y) − H(Y | X) [SPS48,Li90]. When used with a stochastic process it can mea-
sure the correlation a random variable at two points in time: I(k) := I(Xt, Xt+k). The mutual information function can
model only simple kinds of dependencies but is relatively fast to compute even for larger ranges of the parameter k.

A biological application is the detection of short-range and long-range correlations in DNA sequences
[LK92,HG95,HGB+03,GHBS00]. For example Grosse et al. claim that the mutual information function can be used
to differentiate coding and non-coding regions without prior training or knowledge of the exact species [GHBS00]. In
many cases the codon structure inside a coding region is visible through the mutual information function [HG95].

To measure the mutual information, tt-analyze estimates the pairwise conditional probabilities between two
symbols of distance k by using relative frequencies. Since this can be done fast, it is possible to evaluate the function
for many values of k allowing the analysis of its development with growing k.

Using tt-analyze we could expose the codon structure in the Drosophila melanogaster neurogenic locus mas-
termind mRNA as can be seen in Figure 1 (left). We could also observe in accordance with the results of [LK92]
that the value of the function always stayed above the expected value for a random sequence also for higher orders k,
indicating long-range correlations. Additionally we used tt-analyze to analyze natural language texts and observed
that the mutual information function takes high values for small values of k (k in the order of a small word), but then
decreases rapidly. (Our analysis of both German and French texts showed similar characteristics.)

3.4 Approximate Repeats

Repetitive structures are very common in DNA as well as in natural language texts. They influence the performance
of algorithms and data structures, such as suffix trees where the internal nodes correspond to the substrings occurring

0
0.001
0.002
0.003
0.004
0.005
0.006

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I(
k)

k

Chromosome Y DAR (100) Markov Process (7)

1.7
1.75
1.8

1.85
1.9

1.95
2

1 2 3 4 5 6 7 8 9 10

C
on

di
tio

na
l E

nt
ro

py

Order n

Chromosome 22 DAR (100) Markov Process (7)

Fig. 1. Mutual Information Function (left): Comparison of the mutual information of the human chromosome Y, a sequence gener-
ated by a discrete autoregressive process (order 100), and a Markov process (order 7), both trained on the chromosome sequence.
The copying mechanism of the discrete autoregressive process can reproduces the correlation structure well. The Markov process
models the function well up to its order n and then drops rapidly, failing to model the mutual information for higher orders. (See
also Section 3.3, Section 4.1, and Section 4.2.)
Conditional Entropy (right): Comparison of the conditional entropy of the human chromosome 22, a sequence generated by a
discrete autoregressive process (order 100), and a Markov process (order 7), both trained on the chromosome sequence. It turns
out that the rather simple discrete autoregressive process is not able to reproduce the correlations as measured by the entropy. The
trained Markov process can model the properties of the original sequence up to order n + 1 after which the entropy remains almost
constant. (See also Section 3.2, and Section 4.1.)

more than once [Gus97]. Repeats also have an influence on biological algorithms: fragment assembly in the shotgun
sequencing process for example works best if there are few and short repeats. Detecting and modeling repeats in DNA
is not trivial if one also wants to allow approximate repeats, i. e. repeats containing a certain number of deviations.

The model by Allison et al. [AED98] is based on a Markov process combined with ideas of Lempel and Ziv.
Besides generating characters according to the Markov model, there is an additional possibility to start a repeat.
Within a repeat there are four operations: copy, change, insert and delete.

Given a sequence, the goal is to extract the parameters of the underlying (unknown) model, that generated the
sequence. The resulting parameters allow to make general statements about the frequency of the approximate repeats
and the degree to which the repeats differ from each other within this sequence. This can for example help to determine
if a given sequence contains a lot of small repeats or a few long repeats [AED98]. Other applications of the same model
are [SACD01] and [DPA+07].

The estimation procedure works by defining a repeat graph (see [AED98] for an illustration) which represents
possible explanations of how the training sequence might have been generated. The likelihood that the sequence was
generated by this model is improved iteratively by an expectation-maximization (EM) algorithm. The algorithm has
per iteration a running time quadratic in the length of the sequence and needs linear space. It is possible to speedup
the process by only inspecting the most relevant parts of the graph around exact repeats of minimum length [AED98].

In tt-analyze we implemented this model and the parameter estimation procedure (including the speedup). In
the original proposal a Markov chain of order 0 or 1 is used with two kinds of repeats, namely forward and reverse-
complementary repeats. We extended this by using a higher order Markov chain and additionally reverse repeats.

We focused on evaluating the parameter estimation algorithm rather than analyzing biological sequences for their
repeat structure (like it is done in [SACD01] and [DPA+07]). The conclusions regarding the parameter estimation are
described together with the generating process in Section 4.3.

4 Sequence Generation

The tool tt-generate generates sequences based on a chosen model. The model’s parameters can either be defined
manually or trained from real sequences using tt-analyze. tt-generate has a modular framework facilitating the
integration of new models. In this section we will give a brief overview of the models implemented so far.

For each model, we give a description together with a motivation and discuss the advantages and limitations. Each
model was tested in the following way: A training sequence was analyzed and used for parameter estimation. Next,
artificial sequences were generated with the trained model and analyzed again, using the methods described in the
previous section. The results were then compared to the original sequence to evaluate the parameter estimation.

4.1 Markov Process

Markov processes have been studied in many areas and are also very popular in bioinformatics. Of special interest are
time-homogeneous Markov processes where the transition probabilities do not depend on t. They can be defined by
a starting distribution for the first n symbols and a single transition probability distribution for all Xt with t > n. The
defining property of a Markov process of order n is that the outcome of a random variable Xt only depends on the
outcome of the previous n variables. In the context of sequences this means that the distribution at a certain position
only depends on the n preceding characters.

Markov processes allow to accurately model short-range correlations between positions within a distance of at
most n. In the analysis of mammalian and non-mammalian DNA sequences it has for example also been observed that
lower order Markov processes can also model complex q-gram distributions well [CHG+09].

In order to train a Markov process from a given sequence we assume that the underlying Markov process is time-
homogeneous, irreducible, and stationary. Time-homogeneity allows us to estimate transition probabilities by relative
transition frequencies. Stationarity ensures that the starting distribution is a stationary distribution. Irreducibility en-
sures that this stationary distribution can be estimated by n-gram frequencies. Both transition frequency and relative
n-gram frequency can be calculated in a single run counting n + 1-grams. To ensure the resulting Markov process is
irreducible as well, we decided to append the first n-gram to the end of the training sequence. If the sequence is long
compared to n this modification will not change the distributions significantly.

We found that a trained Markov process of order n models almost exactly the q-gram distribution of the original
sequence for q ≤ n + 1. This is no coincidence since the trained Markov process is irreducible and therefore the
relative frequencies in a generated text will be roughly equal to the stationary distribution. Since the stationary distri-
bution of the trained process is approximately the relative frequency distribution in the original sequence, the q-gram
distributions will be similar in original and generated sequences. As a consequence, both the entropy and the mutual
information function of the generated and the original sequence are very similar up to order n or n+1 for block entropy
respectively. Our experiments verify this theoretical result as can be seen in Figure 1 (left and right).

4.2 Discrete Autoregressive Process

Markov processes are very flexible but require an exponential amount of memory (since there are |Σ |n many distinct
n-grams). A discrete autoregressive process of order n is a simplified Markov process [JL83]. It can be represented
very compactly (with n + |Σ |+ 1 parameters) and can therefore be used also with higher orders. The behavior is similar
to a Markov chain of order zero but additionally has a certain probability to copy one of the n preceding characters
according to a given distribution. A discrete autoregressive process models simple correlations up to order n.

In bioinformatics discrete autoregressive processes can model short-range correlations and can help to filter out
long-range correlations [DHH03]. Discrete autoregressive processes are good in capturing the mutual information
function of DNA sequences. Despite their simplicity they are accurate enough to allow the distinction between species
[DPHH05]. An introduction to discrete autoregressive processes for DNA sequences can be found in [HD06].

tt-analyze estimates the parameters for the model using a method described in [JL83,DHH03] based on the
autocorrelation coefficients of a discrete autoregressive process. (Note that these autocorrelation coefficients can also
be used to analyze sequences as shown in [DPHH05,HD06]).

In our experiments we observed in accordance with [DHH03,HD06] that a trained discrete autoregressive process
can model the mutual information of DNA to a certain extent because some of the correlation in DNA stems from
duplications within the sequence (see Figure 1 left). The entropy of a generated sequence differs substantially from the
training sequence, because the simple copying mechanism does not reflect more complex dependencies. The correla-
tions in natural language texts are not based on the copying of a previous character, but on more complex structures.
Therefore the discrete autoregressive model performs rather poorly on natural language texts.

4.3 Approximate Repeats Model

We implemented the approximate repeats model from section Section 3.4 in tt-generate. The parameters can be
estimated by tt-analyze.

First, we analyzed the impact of the repeats on the entropy and mutual information function in sequences gen-
erated by this model. It turned out that the approximate repeats destroyed short-range correlations. Compared to a
Markov process without repeats, the mutual information function was too low. For higher values, the function has
small fluctuations preventing it from converging to zero.

Second, we tested the parameter estimation process. Similar to [AED98] we generated several sequences of length
500 and 1500 for several sets of predefined parameters. During the generation we used all three repeat types simulta-
neously together with a Markov process of order 4. We then tried to recover the known parameters from the generated
sequences. Due to high fluctuations, we used the median of the parameter for the generated sequences in order to get
acceptable results [AED98]. As expected, for sequences of length 1500 the algorithm performed better. If the initial
values were too far away from the actual value, many iterations were needed. The time for one iteration is significantly
higher for 1500 and at the moment it is impossible to analyze whole chromosomes due to the quadratic runtime. The
heuristic speeds up the process, but quickly leads to a strong underestimation of repeat starts.

4.4 Other Models

Apart from the models mentioned above we also implemented two other more simple generators. The first generator
outputs sequences according to a simple uniform distribution of characters over a given alphabet. The alphabet can be
manually defined, but the user can also chose from predefined alphabets such as dna or amino. The other generator
outputs Fibonacci words of a given length [Lot97]. Fibonacci words are especially interesting when analyzing algo-
rithms or data structures working on texts (such as construction algorithms for suffix trees or suffix arrays [GKS03])
due to their repetitive structure.

5 Program Interface

Both tt-analyze and tt-generate are implemented in C++ as command line tools. The implementation is modular,
allowing new modules for statistical properties and generators to be integrated into the framework.

The parameters for tt-analyze can be specified in a file or via command line. There are also a number of presets
which reduce the number of parameters one has to specify. Options for tt-analyze include skipping of the first line
(for FASTA files), unifying whitespace, ignoring certain characters (such as “N” in DNA sequences) and ignoring
case. The output is given in the CSV (comma separated value) format.
tt-generate generates a sequence with specified length using the selected model and parameters. Parameter

estimation results from tt-analyze can be piped directly to tt-generate.

6 Discussion

One motivation for the sequence generator was to be able to generate sequences similar to biological sequences. When
the focus is on short-range correlations, this works fairly well by using the Markov process. However, long-range
correlations, such as the complex repeat structure of a genome, can not be modeled due to the exponential growth of
the number of parameters. The approximate repeat model has also some restrictions limiting its usability as simulator of
genome-like sequences. Currently, the probability for a repeat start and end is constant, leading to uniformly distributed
repeats of geometrically distributed lengths. This is not very realistic and can be extended to arbitrary distributions as
formulated in [AED98]. Another suggested improvement is the incorporation of more advanced edit operations using
gap costs. The main disadvantage of this model is its quadratic runtime which makes it infeasible for longer sequences
such as whole chromosomes even when using the speedup heuristic. Unfortunately, the parameter estimation works
the better the longer the training sequence is.

For using tt-generate also as a simulator for genome-like sequences we are currently integrating the idea of the
celsim generator of Myers [Mye99] to use a stochastic grammar. This will allow to better simulate the repeat structure
of genomes. Another possibility for generating genome-like sequences is to use for example a Markov process (which
models short-range correlations fairly well) and to then apply one of the evolution simulators from Section 2 (which
are able to model the complex repeat structure of a genome).

The other motivation for both tools was to be able to systematically examine the space-usage and running time of al-
gorithms and data structures for strings, subject to statistical properties of the underlying sequence. With tt-analyze
it is possible to measure, among others, the distribution of q-grams and the entropy of different orders for a given real
world sequence. Furthermore, it is also possible to use tt-generate to output texts that have a predefined distribution
of q-grams and entropy. Evaluating the performance of string algorithms and data structures with these sequences will
make it possible, due to the very controlled conditions, to draw conclusions about the dependency on the statistical
parameters.

Acknowledgments

This work was partially supported by DFG grant Ma 870/8-1 (SPP 1307: Algorithm Engineering). We thank Knut
Reinert and Manuel Holtgrewe for pointing out some relevant related work, Ernst W. Mayr for discussions, and an
anonymous referee for helpful suggestions.

References

[AED98] Lloyd Allison, Timothy Edgoose, and Trevor I. Dix. Compression of strings with approximate repeats. In Janice I.
Glasgow, Timothy G. Littlejohn, François Major, Richard H. Lathrop, David Sankoff, and Christoph Sensen, editors,
6th International Conference on Intelligent Systems for Molecular Biology (ISMB’98), pages 8–16. AAAI Press, June
1998. https://www.aaai.org/Papers/ISMB/1998/ISMB98-002.pdf.

[CHG+09] Benny Chor, David Horn, Nick Goldman, Yaron Levy, and Tim Massingham. Genomic DNA k-mer spectra: models
and modalities. Genome Biology, 10(10):R108, October 2009, http://dx.doi.org/10.1186/gb-2009-10-10-r108.

[DHH03] Manuel Dehnert, Werner E. Helm, and Marc-Thorsten Hütt. A discrete autoregressive process as a model for short-range
correlations in DNA sequences. Physica A: Statistical Mechanics and its Applications, 327(3–4):535–553, September
2003, http://dx.doi.org/10.1016/S0378-4371(03)00399-6.

[DMBP04] Aaron C.E. Darling, Bob Mau, Frederick R. Blattner, and Nicole T. Perna. Mauve: Multiple align-
ment of conserved genomic sequence with rearrangements. Genome Research, 14(7):1394–1403, 2004,
http://dx.doi.org/10.1101/gr.2289704.

[DPA+07] Trevor I. Dix, David R. Powell, Lloyd Allison, Julie Bernal, Samira Jaeger, and Linda Stern. Comparative analysis
of long DNA sequences by per element information content using different contexts. BMC Bioinformatics, 8(Suppl
2):S10, May 2007, http://dx.doi.org/10.1186/1471-2105-8-S2-S10.

[DPHH05] Manuel Dehnert, Rainer Plaumann, Werner E. Helm, and Marc-Thorsten Hütt. Genome phylogeny based
on short-range correlations in DNA sequences. Journal of Computational Biology, 12(5):545–553, 2005,
http://dx.doi.org/10.1089/cmb.2005.12.545.

[Dun94] Ted Dunning. Statistical identification of language. Technical report, New Mexico State University, Las Cruces, NM,
USA, March 1994.

[EABS09] Robert C. Edgar, George Asimenos, Serafim Batzoglou, and Arend Sidow. Evolver. Website
http://www.drive5.com/evolver, 2009. http://www.drive5.com/evolver.

[FGNV09] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini. Compressed text in-
dexes: from theory to practice. Journal of Experimental Algorithmics, 13:1.12–1.31, February 2009,
http://dx.doi.org/10.1145/1412228.1455268.

[FPJ+05] Mehrnaz Fatemi, Martha M. Pao, Shinwu Jeong, Einav Nili Gal-Yam, Gerda Egger, Daniel J. Weisenberger, and Peter A.
Jones. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at
a single molecule level. Nucleic Acids Research, 33(20):e176, 2005, http://dx.doi.org/10.1093/nar/gni180.

[GHBS00] Ivo Grosse, Hanspeter Herzel, Sergey V. Buldyrev, and H. Eugene Stanley. Species independence of mutual information
in coding and noncoding DNA. Physical Review E, 61(5):5624, 2000, http://dx.doi.org/10.1103/PhysRevE.61.5624.

[GKS03] Robert Giegerich, Stefan Kurtz, and Jens Stoye. Efficient implementation of lazy suffix trees. Software – Practice and
Experience, 33(11):1035–1049, June 2003, http://dx.doi.org/10.1002/spe.535.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge, United Kingdom,
1997.

[HD06] Marc-Thorsten Hütt and Manuel Dehnert. Methoden der Bioinformatik. Springer, Berlin/Heidelberg, Germany, 2006,
http://dx.doi.org/10.1007/3-540-32954-4.

[HES94] Hanspeter Herzel, Werner Ebeling, and Armin O. Schmitt. Entropies of biosequences: The role of repeats. Physical
Review E, 50(6):5061–5071, December 1994, http://dx.doi.org/10.1103/PhysRevE.50.5061.

[HG95] Hanspeter Herzel and Ivo Große. Measuring correlations in symbol sequences. Physica A: Statistical and Theoretical
Physics, 216(4):518–542, 1995, http://dx.doi.org/10.1016/0378-4371(95)00104-F.

[HGB+03] Dirk Holste, Ivo Grosse, Stephan Beirer, Patrick Schieg, and Hanspeter Herzel. Repeats and correlations in human
DNA sequences. Physical Review E, 67(6):061913, 2003, http://dx.doi.org/10.1103/PhysRevE.67.061913.

[Hol10] Manuel Holtgrewe. Mason – A read simulator for second generation sequencing data. Technical Report B-10-06, Freie
Universität Berlin, Berlin, Germany, October 2010. http://www.seqan.de/projects/mason.html.

[JL83] Patricia A. Jacobs and Peter A. W. Lewis. Stationary discrete autoregressive-moving average time series gen-
erated by mixtures. Journal of Time Series Analysis, 4(1):19–36, January 1983, http://dx.doi.org/10.1111/j.1467-
9892.1983.tb00354.x.

[Li90] Wentian Li. Mutual information functions versus correlation functions. Journal of Statistical Physics, 60(5–6):823–837,
1990, http://dx.doi.org/10.1007/BF01025996.

[LIHL92] Gordan Lauc, Igor Ilic, and Marija Heffer-Lauc. Entropies of coding and noncoding sequences of DNA and proteins.
Biophysical Chemistry, 42(1):7–11, 1992, http://dx.doi.org/10.1016/0301-4622(92)80002-M.

[LK92] Wentian Li and Kunihiko Kaneko. Long-range correlation and partial 1/ f α spectrum in a noncoding DNA sequence.
EPL (Europhysics Letters), 17(7):655, 1992, http://dx.doi.org/10.1209/0295-5075/17/7/014.

[Lot97] M. Lothaire. Combinatorics on Words. Cambridge University Press, Cambridge, United Kingdom, 1997.
[Man01] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430, May 2001,

http://dx.doi.org/10.1145/382780.382782.
[MBG+94] R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C. K. Peng, M. Simons, and H. E. Stanley.

Linguistic features of noncoding DNA sequences. Physical Review Letters, 73(23):3169–3172, December 1994,
http://dx.doi.org/10.1103/PhysRevLett.73.3169.

[Mye99] Gene Myers. A dataset generator for whole genome shotgun sequencing. In Thomas Lengauer, Reinhard Schnei-
der, Peer Bork, Douglas L. Brutlag, Janice I. Glasgow, Hans-Werner Mewes, and Ralf Zimmer, editors, 7th Inter-
national Conference on Intelligent Systems for Molecular Biology (ISMB’99), pages 202–210. AAAI, August 1999.
http://www.aaai.org/Papers/ISMB/1999/ISMB99-024.pdf.

[NBY98] Gonzalo Navarro and Ricardo Baeza-Yates. A practical q-gram index for text retrieval allowing errors. CLEI Electronic
Journal, 1(2):31–88, December 1998. http://www.clei.cl/cleiej/paper.php?id=32.

[NM07] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):2, April 2007,
http://dx.doi.org/10.1145/1216370.1216372.

[ROA+08] Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid, and Daniel H. Huson. MetaSim – A sequencing sim-
ulator for genomics and metagenomics. PLoS ONE, 3:e3373, 10 2008, http://dx.doi.org/10.1371/journal.pone.0003373.

[SACD01] Linda Stern, Lloyd Allison, Ross L. Coppel, and Trevor I. Dix. Discovering patterns in plasmodium falciparum genomic
DNA. Molecular and Biochemical Parasitology, 118(2):175–186, December 2001, http://dx.doi.org/10.1016/S0166-
6851(01)00388-7.

[SG96] Thomas Schürmann and Peter Grassberger. Entropy estimation of symbol sequences. CHAOS – An Interdisciplinary
Journal of Nonlinear Science, 6(3):414–427, June 1996, http://dx.doi.org/10.1063/1.166191.

[SMM+04] Hagit Shatkay, Jason Miller, Clark Mobarry, Michael Flanigan, Shibu Yooseph, and Granger Sutton. Thur-
good: Evaluating assembly-to-assembly mapping. Journal of Computational Biology, 11(5):800–811, 2004,
http://dx.doi.org/10.1089/cmb.2004.11.800.

[SPS48] Claude E. Shannon, N. Petigara, and S. Seshasai. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 1948. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

[WGA+11] Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot James, and Yee Whye Teh. The sequence memoizer. Com-
munications of the ACM, 54:91–98, February 2011, http://dx.doi.org/10.1145/1897816.1897842.

