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Abstract

Tissue-speci�c gene expression is generally regulated by combinatorial interactions among
transcription factors (TFs) which bind to the DNA. Despite this known fact, previous dis-
coveries of the mechanism that controls gene expressions usually consider only a single TF.
Here, we provide a prediction of interacting TFs in 30 human tissues based on their DNA
binding a�nity in promoter regions. We analyzed all possible pairs of 130 vertebrate TFs
from JASPAR database. First, all human promoter regions were scanned for single TF-DNA
binding a�nities with TRAP and for each TF, a rank list of all promoters ordered by the
binding a�nity was created. We then studied the similarity of the rank lists and detected
candidates for TF-TF interaction by applying a conditional independence test for multiway
contingency tables. Our candidates are validated by both known protein-protein interactions
(PPIs) and known gene regulation mechanism in the selected tissue. We �nd that the known
PPIs are signi�cantly enriched in the group of our predicted TF-TF interactions (2-21 times
of random expectation). In addition, the predicted interacting TFs for a speci�c tissue are
supported in literature to be active regulators or expressed in the studied tissue.

Introduction

Transcriptional regulatory networks determine a
spatial and temporal gene expression which en-
ables the tissue-speci�city of the cell (Naef and
Huelsken, 2005). Regulatory networks include
groups of control proteins, such as transcrip-
tion factors (TFs) binding to short DNA motifs,
called transcription factor binding sites (TFBS).
Each TF can be connected to a set of its target
genes - genes on whose promoters the TF binds
in order to activate or repress them (Tan et al.,
2008). In mammalian tissues, TFs do not usu-
ally act alone but form complexes with other
TFs and cofactor proteins, which bind together
to the DNA to a�ect synergistically the tran-
scription of the target genes (Fedorova and Zink,
2008). This combinatorial regulation increase
the speci�city and �exibility of genes in con-
trolling tissue development and di�erentiation.
Therefore, detection of interacting TFs can sig-
ni�cantly increase our understanding how tissue
speci�city is determined.

In previous years, a variety of experimental ap-
proaches was introduced to detect TF interac-
tions controlling tissue gene expression, such
as genomic microarrays (Rada-Iglesias et al.,
2005) or chromatin immunoprecipitation fol-
lowed by microarrays or high-throughput se-
quencing (Odom et al., 2004; Johnson et al.,
2007). However, these studies are able to de-

tect TF interactions on a limited scale since they
basically treat each TF separately. A novel two-
hybrid screening method which can detect phys-
ical protein-protein interactions was applied in
mouse and human (Suzuki et al., 2001; Ravasi
et al., 2010). Thus, such technology is able to
detect just a part (25%) of all possible TF in-
teractions.

To overcome the experimental limitation, sev-
eral computational models were built to pre-
dict tissue-speci�c interacting TFs. Some of
these models combine gene expression informa-
tion with promoter sequence features (Klein and
Vingron, 2007; Smith et al., 2007; Yu et al.,
2006b) or integrate the evolutionary conserva-
tion of tissue-speci�c genes and TFs controlling
their expression (Hu and Gallo, 2010). How-
ever, the results of these studies can be biased
by pairs of cooperating TFs with similar mo-
tifs, as discussed in (Pape et al., 2009). While
comparing all these methods just a small frac-
tion of predicted TFs interactions can be found
in more then one study. This fact demonstrates
that di�erent methods are able to identify inter-
acting TFs from di�erent perspective and that
the mechanism regulating the tissue di�erentia-
tion and development is still not completely un-
derstood.

With our study we try to create the next com-
ponent in understanding the transcriptional net-
works in human tissues. To identify interacting
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TFs, we combine the information of predicted
binding a�nity of single TF on its target genes
while investigating all possible pairs of studied
TFs. Further, we include the information about
a tissue speci�city of the target genes and ap-
ply a 3-way contingency table test to determine
the signi�cance of the overlap of tissue-speci�c
top-ranked target genes for 2 di�erent TFs.

Methods

Similarity of ranked lists of target

genes measured by the hypergeo-

metric test

In our model, we use a simple assumption that
two interacting TFs should share a signi�cant
number of identical target genes. In other
words, if two di�erent TFs bind on the same
promoter regions they would very likely act to-
gether to direct the expression of their target
genes. To evaluate the signi�cance of the shared
genes, we apply the hypergeometric test for
ranked lists of TF's target genes.
To create the ranked list of target genes
we �rst scan all human promoter regions
(−500-0bp transcription start site (TSS),
from genome.ucsc.edu, GRCh37/hg19 assem-
bly) with TRAP (Roider et al., 2007), which
predicts the binding strength of a given TF to
the sequence based on a physical model. The
binding a�nity of all 130 TFs, represented by
position weight matrices (PWMs), in the JAS-
PAR CORE Vertebrata database (Bryne et al.,
2008) to all human promoters is calculated. Sep-
arately for each TF, we rank the promoter re-
gions by their binding a�nity in a decreasing
order, such that the genes with high binding
a�nity are placed on the top of the list. We
measure the similarity of these rank lists for all
possible (130 ∗ 129/2 = 8385) pairs of TFs such
that we calculate the signi�cance of the shared
target genes among the top-L1 (for the �rst TF)
and the top-L2 (for the second TF) ranked genes
with the hypergeometric test (Fisher, 1922).
This problem corresponds to a simple 2-way
contingency table with random variables X and
Y indicating genes ranked among the top-L1 in
the list of the �rst TF and and genes ranked
among the top-L2 in the list of the second TF,
respectively.
To ensure an independence of the hypergeomet-
ric test statistic from the thresholds L1 and

L2 we repeat the testing procedure for vary-
ing values of both cuto� points: L1, L2 =
10, 20, . . . , 990, 1000 (together 104 combina-
tions). We assume that the smallest obtained p-
value of the hypergeometric test corresponds to
the highest similarity between the two rank lists
of target genes. Similar technique was applied in
(Roider et al., 2009) to identify signi�cant asso-
ciation of tissue speci�c genes and target genes
of transcription factors.

Confounding factor: motif similar-

ity

When two TFs have very similar motifs (repre-
sented by PWMs), with high probability their
rank lists of target genes will be very similar
(Pape et al., 2009). To exclude the choice of false
positive candidates which would share a signi�-
cant number of the identical genes in the top of
the lists due to their similar matrices, we include
a confounding factor into the analysis. For all
pairs of TFs, we calculate their motif similarity
using MOSTA Smax similarity measure (Pape
et al., 2007) which is based on the log-odds ratio
of the overlap probability and the independent
probability of 2 motifs on both strands of a DNA
sequence.
The similarity measure for all TF pairs ranges
from -1.12 to 8.58. To avoid the presence of
false positives in our prediction, we concentrate
on TF pairs with motif similarity < 4.

Similarity of ranked lists of target

genes in a tissue measured by test-

ing in 3-way contingency tables

By de�nition, a 2-way contingency table depicts
the association of 2 variables. In our case, the 2
variables come from 2 TFs. In order to stratify
by tissue, we need to introduce a third dimen-
sion, thus arriving at a 3-way contingency table.
We introduce variable Zt, an indicator function
of genes speci�c in the tissue t:

Zt(i) =

{
1 gene i in tissue t
0 otherwise .

As in previous section, random variables X and
Y indicate genes ranked among the top-L1 and
top-L2 in the list of the �rst and second TF,
respectively. A graphic illustration of this situ-
ation is shown in Figure 1. All human genes are
shown as dots, blue ones indicate tissue speci�c
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genes (where Z(i) = 1). The green set high-
lights the top-ranked target genes of the �rst
TF (X(i) = 1), red set highlights the top-ranked
target genes of the second TF (Y (i) = 1). To
test whether the number of the genes in the
intersect of all 3 variables, e.g.

∑
i

(X(i) =

1, Y (i) = 1, Z(i) = 1), is larger than expected
by random, 3-way contingency table test is ap-
plied (Gokhale and Kullback, 1978). We assume
that the number of tissue-speci�c genes is �xed
and test the null hypothesis of conditional inde-
pendence of the two variables X and Y given Z,
denoted as: H0 : (XY |Z). The corresponding
2× 2× 2 contingency table is shown in Table 1,
color coding of the random variables is identical
with the coding in Figure 1.
The test statistic for the null hypothesis of
conditional independence (XY |Z) is the log-
likelihood ratio of observed (µxyz) and expected
frequencies (µ̂xyz) in the groups of variables
X,Y and Z (Gokhale and Kullback, 1978):

2I(µ : µ̂) = 2

2∑
xyz=1

µxyz log

(
µxyz

µ̂xyz

)
∼ χ2

df .

df denotes the degrees of freedom of the χ2 dis-
tribution and equals 2 for this particular test
(one degree of freedom for each variable which
expected frequencies has to be estimated). Un-
der H0, the xz- and yz- two-way marginals are
identical with the observed one:

µ̂x+z = µx+z; µ̂+yz = µ+yz ;x, y, z = 1, 2 .

Here, µx+z denotes the sum over all groups
of variable y, e.g.: µx+z = µx1z + µx2z for
x, z = {1, 2}. The expected frequencies in the
contingency table are calculated with the follow-
ing formula:

µ̂x,y,z =
µx+zµ+yz

µ++z

In the same way, µ++z = µ11z + µ12z + µ21z +
µ22z, z = {1, 2}; denotes one-way marginals in
the 2× 2× 2 contingency table. The test statis-
tic can be simply calculated using the loglinear
representation (Gokhale and Kullback, 1978).

Figure 1: Venn diagram of the setting for independence test in 3-way contingency tables. Grey
dots indicate all human genes, blue dots are genes known to be speci�c for a selected tissue. Green
and red sets denote the top-ranked target genes of the �rst and second TF, respectively.

Table 1: 2× 2× 2 contingency table for shared genes among the top-L1 and top-L2 ranked target
genes of two di�erent TFs and tissue-speci�c genes.

tissue speci�c not tissue speci�c
genes with . . . rank ≤ L2 rank > L2 rank ≤ L2 rank > L2 sum
rank ≤ L1 µ111 µ121 µ112 µ122 µ1++

rank > L1 µ211 µ221 µ212 µ222 µ2++

sum µ+11 µ+21 µ+12 µ+22 µ+++
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Results

Hypergeometric test

To assess the association between the similar-
ity of rank lists and the similarity of PWMs,
we study the relation between the smallest p-
values obtained from the hypergeometric test
and the similarity measure Smax (smoothed
density scatterplot in Figure 2). As expected,
TF pairs with very similar motifs (Smax ∈
[6; 8]) correspond to highly signi�cant p-values
(data cloud in lower right corner). We iden-
tify already known protein-protein interactions
(PPIs) and those TF pairs which have a joint
already known co-factor (trios) found in Stark
et al. (2011); Ravasi et al. (2010), (red dots
and orange triangles in Figure 2). However,
the majority of these known interactions corre-
sponds to TF pairs with relative low signi�cance
(p ∈ [10−3; 100]).
We de�ne the candidates for TFs interactions
as TF pairs with p-value ≤ 10−20, shown in
Figure 4. The network consists of 76 inter-
actions, 15.8% (7 fold enrichment, Figure 3)
were found as already known PPIs (denoted
as red edges). 22.4% are known trios, high-
lighted by orange color. For the prediction
of TF interactions, we focused on 13 interac-
tions between TF pairs with low motif similar-
ity (Smax < 4) which are represented by solid
lines. 3 TF pairs have one or more already de-
scribed common co-factors (EN1:TBP interacts
with AP1 and PAX6; SP1:TFAP2A with TP53
and HOXA5:NR3C1 with PBX) which are in-
dicated as grey nodes with corresponding grey
edges. The evidence of a common co-factor in-
crease the probability that these TFs can inter-
act on the promoter. Manke et al. (2003) showed
that the TFs build networks mostly with length
of 2-4 molecules. Further, we �nd an experimen-
tal con�rmation of our predictions in literature
for these two interactions: SP1:TFAP2A (Pena
et al., 1999; Perkins et al., 2001; Tellez and Bar-
Eli, 2003) and GATA2:GATA3 (Minami et al.,
2004).

Prediction of tissue-speci�c interac-

tions

Before applying the new statistical test, tissue-
speci�c genes have to be de�ned. For our anal-
ysis we use the data from Yu et al. (2006a)
which are based on expression enrichment values

calculated for 30 human tissues for ESTs clus-
ters. The number of tissue-speci�c genes varies
from 58 (uterus) to 860 (testis) which is a small
number in comparison with the total number
of promoters (42380, source: genome.ucsc.edu,
GRCh37/hg19 assembly).
To achieve possible signi�cance of the test statis-
tic and to use the most relevant biological infor-
mation, we �x the length of top-ranked target
genes to 1000 for all TFs and do not repeat the
testing procedures with various cut-o� point as
in the 2-way contingency tables. In this case,
the expected number of shared top-ranked genes
for 2 di�erent TFs which are speci�c for a tis-
sue is less or equal one. Thus, from now on,
we concentrate only on those TF pairs which
share at least one common tissue-speci�c top-
ranked gene. The exact criterium for predicting
the interactions for TF pairs is set as follows:
take pairs with tissue-speci�c p-value ≤ 10−5

and the intersect of the 3 groups µ111 ≥ 99%-
quantile of the empiricial distribution of µ111

for all TF pairs. The 99%-quantile corresponds
to 2 shared target genes (for bone, lung, mam-
mary gland, small intestine, soft tissue, spleen
and thymus) and 3 shared target genes (all other
tissues) which guarantee a choice of highly sig-
ni�cant TF pairs (since the number of shared
genes expected by random chance is 0 or 1).
In total, we identify 352 signi�cant TF pairs,
185 of them were between TFs with nonsimi-
lar motifs (Smax < 4). The most interactions
are found in testis (108), the least in peripheral
nervous system (2). 67 TF pairs are signif-
icant in more than 3 di�erent tissues, just a
minority (19.4%) of these multiple tissue pairs
has low similar motifs. Among these belong:
TFAP2A:MAFB, SP1:MAFB, ETS1:MAFB,
SP1:ZFX, TFAP2A:ELK1, ELK1:MAFB,
TFAP2A:PAX2, NFYA:TBP, ARNT:ARNT-
AHR, TFAP2A:YY1, ETS1:ZFX and
MAFB:ZFX. TF pair SP1:TFAP2A with low
motif similarity is signi�cant in 15 tissues and
was identi�ed also by the 2-dimensional hyper-
geometric test.

Evaluation by known protein-

protein interactions

To further evaluate our predictions, we calculate
the enrichment of known protein-protein inter-
actions in the group of our candidates for each
tissue. The percentage of known interactions is
shown in the barplot in Figure 3. For all tissues,
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the percentage is higher than what we expect by
random chance (2.1%, dashed black line). The
highest ratio is observed in peripheral nervous
system (50%), the lowest ratio is recorded for
bladder (4.2%).
In the next sections we present and validate our
predictions of TF interactions in liver and skele-
tal muscle - 2 well-studied homogenous human
tissues for which enough information is provided
in the literature.

Prediction of interactions in liver

42 interactions are detected in liver by the cri-
terium described above, network shown in Fig-
ure 5(a). Solid edges indicate 12 interactions
between TFs with low motif similarity, remain-
ing edges are between TF pairs with high mo-
tif similarity. 9 (20.5%) TFs in the network
(HNF1A, HNF1B, HNF4A, NR2F1, NFKB1,
NF-KappaB, RELA, PPARG-RORA, NR1H2-
RORA) are supported in the literature to be
transcriptional regulator in liver (Krivan and
Wasserman (2001); Odom et al. (2004); Smith
et al. (2007),TRANSFAC database, IPA Inge-
nuity Systems). 70% of the nodes (light green)
was found to be expressed in liver tissue (source:
TRANSFAC database, Gene Expression Atlas
of EBI www.ebi.ac.uk/gxa/). However, known
PPIs (red edges) are usually interactions be-
tween 2 TFs with very similar motifs and can
be just partly used for validation of predicted
interactions.
Next, we search for enriched GO an-
notation pathways for the predicted
TFs. Among transcriptional regulation
and DNA-binding, regulation of choles-
terol transport (NR1H2,PPARG,NFKB1; Q-
value=1.53 × 10−4), regulation of lipid stor-
age (NR1H2,PPARG,NFKB1; Q-value=3.29 ×
10−4), carbohydrate homeostasis, lipid home-
ostasis (HNF1A, STAT3, PPARG, USF1; Q-
values=4.04 × 10−4, 6.06 × 10−2) and protein
kinase binding (RELA, STAT3, USF1, FOXO3;
Q-value=6.41× 10−2) are found.

Prediction of interactions in skele-

tal muscle

Figure 5(b) shows the network with 37 predicted
interactions in muscle. Here, 6 TFs (MAFB,
MEF2A, SP1, SRF, TBP and USF1) are known
to regulate the gene expression in muscle (Smith
et al., 2007). For 74% of factors evidence

of expression in muscle is found (TRANS-
FAC database, Gene Expression Atlas of EBI
www.ebi.ac.uk/gxa/). Again, known PPIs (red
edges) are between factors with similar motifs.
7 of the predicted interactions are identi�ed as
known trios, which increases the validity of our
predictions. TF pair SP1:TFAP2A discussed
above was found in muscle too. MAFB:ETS1
is another TF pair with low motif similarity
and with already described common co-factor
(AP1). This interaction is found to be signi�-
cant in other 6 tissues (bladder, blood, lymph
node, placenta,thymus, spleen).
Further, several related GO pathways such
as regulation of muscle contraction (SRF; Q-
value=8.13 × 10−2) and organ morphogene-
sis (PAX2, MYC, KLF4, SRF, STAT3; Q-
value=1.68×10−3) are found to be signi�cantly
enriched for the factors in the network (source:
www.genemania.org/).

Discussion

Tissue-speci�c gene expression is in general reg-
ulated by interactions of multiple transcription
factors. To better understand how cells in
tissues and developmental states achieve their
speci�city the identi�cation of interacting TFs
regulating together the expression of their tar-
get genes is necessary. Previous computational
studies were based either on common sequence
features of promoters (Klein and Vingron, 2007;
Smith et al., 2007; Yu et al., 2006b) or on func-
tion conservation of interacting TFs (Hu and
Gallo, 2010). Although these studies make plau-
sible predictions, they do not discriminate be-
tween factors with similar and di�erent PWMs.
Moreover, the mechanisms controlling tissue
gene expression are still not fully understood.
In this study, we presented a new method to
detect interacting TFs. We used the predicted
binding a�nity information for single TF and
compared the ranked lists of the target genes
for all pairs of studied TFs. To identify the in-
teracting pairs in a tissue, tissue speci�city in-
formation of the target genes was included. We
applied the statistical testing in 3-way contin-
gency tables to predict TF interactions. The
number of false positives in our prediction was
reduced by focusing on TF pairs with non sim-
ilar motifs. In general, TFs with very similar
motifs can jointly bind to the DNA sequence
and regulate the transcription of the target gene.
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However, our method is not able to distinguish
between joint binding of both TFs and binding
of a single TF for such similar TFBS.

We have shown that already known protein in-
teractions are enriched (2-21 fold) in groups of
selected candidates for all tissues and for candi-
dates without tissue speci�cation. In total, we
have identi�ed 352 signi�cant TF pairs, 185 of
them between TFs with nonsimilar motifs. Only
a minority (19.4%) of TF pairs found in multiple
tissues had nonsimilar motifs.

Networks made out of tissue-speci�c candidates
include TFs which are known to regulate the
gene expression in the studied tissue; such as
HNF1A and HNF1B in liver and MAFB, USF,
and TBP in muscle. Majority (> 70%) of can-
didates in liver and skeletal muscle was found
to be expressed in the studied tissue. These
candidates factors were found just by the se-
lection criterion from the statistical test, with-
out any knowledge of their functions in human
tissues. Further, we have identi�ed 12 and 11
signi�cant interactions among non-similar fac-
tors in liver and muscle, respectively. Some
of our predicted interactions were supported
by similar �ndings in literature (SP1:TFAP2A,
GATA2:GATA4) or by already described com-
mon co-factors (MAFB:ETS1).

Despite of the successful predictions of novel
pairs of interacting TFs, our method could be
improved. Currently, we use a simple de�nition
of promoter regions and tissue-speci�c genes.
We could achieve much higher accuracy by using
open chromatin regions for various cell types.

Further, we have used the groups of genes which
are speci�c for a tissue. In general, many mam-
malian tissues are highly heterogenous and con-
sist of di�erent type of cells which could be reg-
ulated by di�erent combination of TFs. There-
fore, including cell-type speci�c genes would im-
prove the accuracy of predicted interactions. On
the other hand, if the groups include smaller
number of speci�c genes the probability to have
common speci�c genes in the top of the ranked
lists will be even smaller. Next, to de�ne the
signi�cant nonsimilar TF pairs, we use an arbi-
trary chosen threshold of 4 which excludes high
similar PWMs from predicted candidates. This
choice was made by a visual evaluation of bind-
ing motifs and could be improved for example by
an implementation of weighting motif-similarity
function or by a further analysis of binding site
distances on the promoter.
In addition, a future experimental validation
would provide a measure of the speci�city and
sensitivity of our predictions. In summary, our
�ndings have shown that comparing the rank
lists of target genes results in plausible predic-
tions of interacting TFs in human tissues.
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Figure 4: Network of the predicted TF interactions based on the 2-dimensional hypergeometric
test. Red and light green nodes denote TFs known to regulate gene expression in the corresponding
tissue and TFs expressed in the corresponding tissue, respectively. Red and orange edges are known
PPIs and known trios, respectively. Common co-factors which were included in the network but
were not predicted are denoted by grey color.
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(a) Liver

(b) Muscle

Figure 5: (a) Network of predicted TF interactions in liver based on testing in 3-way contingency
tables. (b) Network of predicted TF interactions in muscle based on testing in 3-way contin-
gency tables. Red and light green nodes denote TFs known to regulate gene expression in the
corresponding tissue and TFs expressed in the corresponding tissue, respectively. Red and orange
edges are known PPIs and known trios, respectively. Common co-factors which were included in
the network but were not predicted are denoted by grey color.
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