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Abstract

Outcome in critically ill patients is thought to be dependent upon multiple parame-
ters that interact in a complex manner. Experienced critical care doctors are capable of
making reasonably accurate prognoses however variation between prognoses is very high.
Objective risk estimation procedures help to overcome these differences. With advances
in automated patient surveillance there is increasing potential for more rapid and accurate
prognostication by means of computational models. We show that state-of-the-art machine
learning techniques employed on real world intensive care unit data are on par with con-
ventional risk estimation models developed on pristine research data sets. We set up a
rigorous validation environment to estimate objective performance values of both conven-
tional and novel risk and mortality models. Our results showthat multiple performance
measures must be taken into account when assessing the valueof a model. With regard to
application into routine medical practice, no single classifier is superior. Careful definition
of the model characteristics most desirable to health care providers are essential before
choosing one risk model over another.

1 Introduction

Highly accurate patient-specific prediction of outcome would revolutionise practice in crit-
ical care medicine. Since the early 1980s numerous computational methods have achieved
varying degrees of success regarding incorporation into routine practice in intensive care units
(ICUs). The most widely used methods are regression-based risk stratifiers (RS) that are based
on physiological variables. Examples include the Acute Physiology and Chronic Health Evalu-
ation (APACHE) model [19], the Mortality Prediction Model (MPM, [23]), and the Simplified
Acute Physiology Score (SAPS, [22]). The development and testing of these models has firmly
established a connection between prognosis and physiology-based variables in ICU patients.

Risk stratifiers have been shown to be of real value in the following areas: improving the
quality of care being provided to patients [33], controlling for variations in severity of illness
between ICUs and hospitals when performing audit or allocating resources [14], and when
selecting subjects for participation in clinical trials.

There is broad consensus supporting the use of risk stratification for these purposes however
using them as a basis for clinical decision making on an individual patient basis is not appropri-
ate. In this work we investigate state-of-the-art machine learning methods as risk stratifiers. In
particular we apply support vector machines, decision trees and random forest approaches. A
novel database (MIMICII, [36]) is used as the data source enabling our models to integrate time
series markers. We incorporate information generated during the first 48 hours of admission
and so our models can be said to be learning from the clinical development of a patient over
time.

2 Related Work

To date all the widely used risk stratification models (RS) inintensive care medicine are based
on logistic regression. To faciliate usage by health care providers these quite complex models
are generally further reduced to simpler scoring schemes.

Examples of risk stratifiers are the Mortality Prediction Model (MPM, [23]) and the Sim-
plified Acute Physiology Score (SAPS, SAPSII – [22]). The Acute Physiology and Chronic
Health Evaluation scores are the most widely used and their history serves to illustrate some
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Table 1: AUROC values of mortality models. This table shows an overview of several studies that comparethe most widely used mortality
prediction models in intensive care medicine. The studies show overall good discrimination (as represented by areas under the ROC curves) but
often poor calibration, specifically overprediction of mortality [38]. MPM0:=Mortality Probability Model, MPM/-II24:= Mortality Prediction
Model-24 hours, SAPS:=Simplified Acute Physiology Score, AP:=Acute Physiology and Chronic Health Evaluation II, (a=full set, b=validation
set).

Author AP-II MPM0 MPM24 SAPS AP-III SAPS-II MPM-II0 MPM-II24
Castella [5] 0.867 0.865 - - - - - -
Rowan [34] 0.83 0.74 - - - - - -
Wilairatana [43] 0.723 - - 0.71 0.694 - - -
Del Bufalo [2] 0.808 - - - - 0.735 - -
Castella (a) [4] 0.852 0.773 0.825 0.798 0.866 - - -
Castella (b) [4] 0.857 0.778 0.815 0.799 - 0.855 0.815 0.833
Moreno [29] - - - - - 0.822 0.785 -
Nouira [31] 0.82 - - - - 0.84 0.85 0.882
Tan [38] 0.88 - - - - 0.87 - -
Patel [32] 0.702 - - - - 0.672 - 0.695
Vassar [40] 0.87 - - - 0.89 - - -
Katsaragakis [18] 0.839 - - - - 0.87 - -
Livingston [26] 0.763 - - - 0.795 0.784 0.741 0.791
Capuzzo [3] 0.805 - - - - 0.816 - -
Markgraf [28] 0.832 - - - 0.846 0.846 - -
Beck [1] 0.835 - - - 0.867 0.852 - -
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Figure 1: Heatmap of standardized values showing a patient clustering of all64 parameters.
The last column represents mortality.

of the problems in this field. The original APACHE score was the first risk model based on
physiological variables and was developed in 1981 [21]. Thephysiological parameters (the
independent variables in the logistic regression) were selected by an expert panel of doctors.
The follow-up APACHE II model was published in 1985 [20] and had a reported AUC of 0.86
on an evaluation set. APACHE III never became widely used because the authors decided to
make the system proprietary.

Although there are examples of risk stratifiers being controversially used to aid clinical
decisions such as whether admission to the ICU is futile or whether to end therapy [8, 16] there
is very broad consensus that currently available risk stratifiers are at best useful for controlling
for variations in severity of illness of patients between ICUs and between hospitals [33]. It is
accepted that their capacity to predict outcome on an individual patient basis is very limited.
This is due to problems of both calibration and discrimination. The predictive logistic models
are usually calibrated to fit observed risks for, for instance, a specific ward or a specific hospital
and accordingly they tend not to generalize well. A well-calibrated model is a model that
generalizes when applied to novel data without loosing its predictive power.

A number of studies have compared performance between the best known risk stratification
models. The area under the ROC (AUROC) has generally been used to compare models and
the published AUCs for a number of different models are shownin Table 1. Using the AUROC
as a basis for model selection has been criticized [7] due to the fact that its use can lead to over-

4



Figure 2: Heatmap of standardized values showing a patient clustering of heart rate timelines
(column 1 equals time 0, 4-hourly increments, column 14 represents mortality.)

fitting and over-sensitivity. As can be seen in the table, while each new model had improved
discrimination when compared to its predecessors, no modelis clearly superior.

We are now in an age of automated generation of large volumes of intensive care unit data,
so it seems a natural progression to employ machine learningmethods. A range of machine
learning techniques have been used in the critical care setting and described in the medical
literature [10, 12, 15, 24, 25, 27, 30, 41]. Machine learing techniques demonstrate compara-
ble discrimination with logistic regression but have not asyet been conclusively shown to be
superior.

As a source of data, the MIMICII database [36] offers well-structured time-stamped patient
data. It has for example been used to find risk factors for the acute respiratory distress syndrome
[17] or to show that certain ICU practices varied significantly as a function of time of day (i.e.
care provided at night is different from that provided during the day [35]).

In this work, we place the problem of risk stratification intoa machine learning setting. We
focus on the development of a patient specific predictive risk model. Reported cross validation
performance as well as scores on an independent validation set provide class specific sensitivity
and specificity values. By using SAPSI scores as baseline values, a direct comparison and
rigorous assessment of several methods was feasible.
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3 Data

The MIMIC II Database. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-
II) is a publicly available database of intensive care unit patient data. It is a substantial and very
comprehensive database containing anonymized demographic, clinical (such as admission di-
agnoses) and physiological data, laboratory results, detailed documentation of treatment and
free text records [36]. One of the major strengths of the database is that it offers high tem-
poral resolution for certain parameters such as heart rate,blood pressure, oxygen saturation
and respiratory rate. In summary, the database is composed of 25,328 ICU patient records.
The median (interquartile range) ICU stay is 2.2 (1.1-4.4) days and the overall mortality rate is
11.7%. We extracted data for the following parameters: number of hospital admissions, num-
ber of ICU admissions, gender, SAPSI score, SOFA score, creatinine, partial pressure of CO2
in blood, bilirubin, arterial blood pH, white cell count, respiratory rate, lactic acid, glucose,
potassium, sodium, coagulation, ventilation parameters.temperature, heart rate, blood pres-
sure, body weight, diagnoses, catecholamine doses, volumeof red cell concentrate infused,
total fluid input and output, urea, hematocrit, bicarbonateand Glasgow coma scale.

4 Methods

4.1 Model and Data Representation

The aim of this work is the prediction of a binary outcome: mortality. Using machine learning
terminology, we refer to these outcomes as labelsl ∈ {0, 1}.

An abstraction of the patient data is given by a matrixF ∈ Fn×m of feature values repre-
senting each ofn patients in a rowi by m featuresFi ∈ Fm. A feature can be numeric, binary
or nominal. Each rowFi in the matrix is associated with an outcomeli, the label. For the
prediction ofli we train a modelM : Fm → L, M(Fi) = li. Since we are dealing with missing
values – round the clock monitoring of an intensive care patient without human or measurement
failure is not realistic – we use a column median replacementstrategy. Each missingfij ∈ F

is replaced bymedian(f1j , ..., fnj). If more than 30% of all features are missing the patient is
not allocated to any set.

4.2 Cross Validation

Predictive methods like regression, decision trees or random forests must be trained and tested
on two independent sets to avoid overfitting. Most preceeding studies apply a single2 to 1 split
into a training set (the derivation group) and a test set (validation group). To rigorously compare
several methods we use ak-fold stratified cross validation (k-CV) and recompute riskmodels
for each fold: the rows of the feature matrixF are shuffled and the patient set is divided intok

equally sized sets with equal label distribution. Given thejoint CV or validation set predictions
we can now compute test statistics for the assessment of multiple methods. Additionally, we
compile a completely separate validation set to assess the model quality of a method trained on
the complete training set.

4.3 Test Statistics and Scoring

Given a prediction vectorl′ ∈ Ln of all patients and the known labelsl ∈ Ln we compute
several different statistics. For the binary outcomes, we count true negatives (TN), false nega-
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tives (FN), true positives (TP) and false positives (FP). Derived measures are the true positive
rate (TPR) defined as TP/(TP+FN) and the true negative rate (TNR) defined as TN/(TN+FP).
These correspond to the sensitivity on the positive and on the negative class respectively. For
diagnostic tests it is crucial to know whether a test result is reliable. We capture this by two
measures: (1) the negative predictive value NPV:=TN/(TN+FN) i.e. the precision on the neg-
ative class and (2) the positive predictive value PPV:=TP/(TP+FP). The PPV is often referred
to as precision. We then compute a receiver operator characteristics curve (ROC). The ROC
curve shows all possible thresholds on a numeric feature interpreted as classifier and shows the
canonical FPR against TPR values. The area under this curve (AUROC) is1.0 where prediction
is optimal and the binary class is perfectly separated. The F-Measure is the harmonic mean of
TPR and PPV i.e., (2*TPR*PPV)/(TPR+PPV).

4.4 Summary of Applied Methods

We applied all methods below as they are shipped with the WEKAsystem [11]. For libSVM
(version3.0, [6]) we use the wrapper provided by WEKA.
Support Vector Techniques. Support Vector Machines (SVM, [37, 39]) have become an in-
tegral part of statistical learning procedures. We apply Support Vector Classification (SVC)
working on binary labels. The SVC model is a linear function in possibly high dimensional
space – a hyperplane. Its placement is optimized to separateinstances in two classes with a
maximum margin. In this way so-called soft-margin SVMs or C-SVMs allow for misclassified
instances during training. A penalty termC quantifies the weight for an instance. For an SVM,
each instance is encoded as a vector of features corresponding to rows ofF . Instances are com-
pared via akernelfunction. We use a linear kernel, which is simply a scalar product< Fi, Fj >,
and we also apply a high dimensional kernel - the radial basisfunction (RBF Kernel, described
in reference [6]).
Logistic Regression Models. Most existing risk stratifiers build upon logistic regression mod-
els. Fork classes they model the posterior probability of each class via linear functions in the
measured featuresFi for a patienti (See [13] for a more detailed introduction). Fork = 2 a set
of linear functions withl ∈ L = {0, 1}

β1j + β2j ∗ Fij = log
P (l = 0|Fij)

P (l = 1|Fij)
∀j = 1...m (1)

is fitted. For the commonly used risk stratifiers further feature selection and discretization
procedures are applied, yet all of them boil down to a logistic regression model. In order to
have a baseline comparator for our models, we computed AUCs for SAPSI scores for each ICU
admission. Although the SAPSI would be considered by the medical community to have been
superseded by later scores, it was not possible to use scoressuch as APACHE II, APACHE III
or SAPS II because they are either proprietary or because some necessary markers are based
on expert medical opinion and are not routinely captured in most patient data management
systems.
Decision Trees. Decision trees are tree-like classifiers where each leaf represents a labell ∈ L.
We use the grafted C4.5 variant shipped with WEKA termedJ48graft.
Random Forests. Random Forests are ensemble classifiers which build severaldecision trees
and use a majority voting strategy to arrive at a decision. Each tree is build from a subset of
parameters (or instances in some formulations) yielding quite stable predictions.
Unbalanced Classes. A problem one often faces in data mining settings are unbalanced label
assignments within the dataset. Models that focus on the maximization of correctly predicted
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instances while minimizing false predictions tend towardsprediction of the majority class. Ac-
cordingly it is crucial to reduce the weight of the larger class. LibSVM allows class weighting
directly, while for other algorithms we use the WEKACostSensitiveClassifier. It provides a
wrapped cost function for arbitrary classifiers. We choose the inverse fraction of the training
set class distribution as the weighting.

5 Results

We divide the patients into two sets designated the trainingand validation sets. The training set
contains797 patients and the validation set contains749 patients. The validation set serves as an
independent testing set. In the training set there were661 survivors (l = 0) and136 mortalities
(l = 1). The validation set contained631 patients labeledl = 0 and118 labelledl = 1. Were
majority class prediction applied to all patients, this would correspond to a precision of82.9%
in the training and84.2% in the validation set.

As feature setF we extract a set of parameters that are known to be related to outcome
in critical illness. Missing values are replaced by their column’s median. Variables include
the mean value for the parameter over the first 24 hours of the hospital admission; time series
values for heart rate and blood pressure (the mean value for each 4 hour period in the first 48
hours of ICU admission); a mean equipotent to noradrenalinedosage of the inotropic agents
noradrenaline, adrenaline, dopamine, vasopressin and phenylephrine during the first 24 hours of
admissions; a score based on the International Classification of Diseases diagnoses assigned to
each patient and a number of factors related to clinical history and basic patient characteristics
such as age and weight. Concerning the time series data, eachtime point is treated as a separate
feature. We choose to use the SAPS I [9] and SOFA [42] scores asbaseline performance
comparators for our own predictions. It should be pointed out that these scores have been
superseeded by newer scores such as the SAPSII and APACHE IIIscores. We are unable
however to retrieve these newer scores form the MIMIC-II database because, in contrast to
SOFA and SAPSI, they require ’expert medical opinion’ that is not routinely captured in clinical
data management systems.

From a feature matrixF containing one patient’s parameters per row we build a model
M for each method.M(Fi) for a patienti predicts the mortality during hospital stay. A
standardized value heatmap of the matrixM is shown for all37 input variables (see Section
4) in Figure 1. We note that no obvious patterns are discernable. Considering the heart rate
timeline (2) confirms conventional medical wisdom that extreme heart rates are related to poor
prognosis.

We apply a 10-fold cross validation (10-CV) on the training set as described in Section 4.
Table 2 shows the area under curve values (AUC) and further statistics for decision trees (DT),
random forests (RF), logistic regression (LR) and support vector classification with both linear
kernel (SCLin) and RBF kernel (SCRBF) in a 10-fold CV. In Figure 3 we show the ROC curves
for all classifiers with respect to mortality prediction as predicted class. For some classifiers
the curves have a lower resolution due to non-continuous decision values. Next to the 10-CV,
the independent validation set performance is reported in Table 3. We apply all algorithms in
bothnormaland acost sensitive(c.s.) version. We choose penalties of6 (false negatives) and
1 (false positives), respectively. These values represent the class distribution (the survivors to
mortalities ratio was approximately 6:1) within the training set.

2these scores cannot be be recomputed and are directly taken from the MIMICII database
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Cost Sensitive Method TNR NPVN TPR PPV F-Measure AUROC
Yes SCRBF 0.722 0.946(1) 0.801(1) 0.372 0.508(2) 0.762
Yes SCLin 0.749 0.945(2) 0.787(2) 0.392 0.523(1) 0.768
Yes LR 0.756 0.928(3) 0.713(3) 0.376 0.492(3) 0.81(1)

Yes DT 0.893 0.877 0.39 0.427 0.408 0.644
Yes RF 0.92 0.867 0.31 0.448 0.371 0.809(2)

No LR 0.927 0.868 0.316 0.473(3) 0.379 0.801
No DT 0.92 0.886 0.426 0.523(2) 0.47 0.642
No RF 0.98(3) 0.858 0.213 0.69(1) 0.326 0.805(3)

No SCLin 0.98(2) 0.858 0.213 0.69(1) 0.326 0.597
No SCRBF 1.0(1) 0.829 0.0 0.0 0.0 0.5
- SAPSI2 - - - - - 0.694
- SOFA2 - - - - - 0.648

Table 2:Cross validation on training set. Negative Predictive Value (NPV, precision in pre-
dicted negatives), Positive Predictive Value (PPV, precision in predicted positives) F-Measure
and the area under curve (AUC). Cost sensitive variants of each algorithm (i.e. informed of
the underlying class distribution) are included. The parameter settings are WEKA defaults. In
each column, the three best scores are indicated by a rank in brackets.

5.1 Unweighted Classes

In case of unweighted algorithms (that is where the algorithm was not informed of the class
distribution) the support vector variants perform poorly regarding AUCs and F-Measures. They
tend too strongly towards predict the majority class (reflected by high positive predictive values)
and the resulting AUCs are close to0.5. In fact, the SCRBF performance is no better than
random both during testing and validation. This is not surprising because the support vector
classifier is designed to maximize the amount of correctly classified instances rather than AUC.
With respect to AUCs, the best performers in the unweighted algorithms were LR and random
forrests, which had an AUCs of0.80 and0.81 respectively. This values are consistent with
values reported in the literature for existing risk stratifiers.

5.2 Weighted Classes

For most of the classifiers it is possible to trade decreased false negatives (FN) against increased
false positives (FP) with little impact on either true positives (TP) or true negatives (TN). By
forcing unequal class weights we primarily observed an improvement in the rate of FNs. In
the context of intensive care medicine this is highly desirable. The negative predictive value
(NPV) is the amount of error when the test outcome is negative. In case of the validation set,
the expected value, were all cases to be predicted as negative, would be0.842 (the support
vector classifier with an RBF kernel predicted all as negative and had an NPV of 0.842). The
corresponds to a recall on the negative class (TNR) of1.0. We observe that all methods except
c.s. SCRBF, SCLin and LR have a relatively high type II error rate (FN) drastically reducing
the TPR. This is however associated with a better positive predictive value (PPV). The best
precision of0.455 is achieved by c.s. RF at a recall of0.381. The best recall is the c.s. SCRBF
with 0.797 at a precision of0.324. The cost sensitive LR achieves the best F-measure and
AUROC, but its TPR is almost 10% below that of support vector machines with similar PPV.
Notably, its NPV is ranked third. SAPSI and SOFA as instancesof traditional risk stratifiers
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Figure 3: ROC curves of all applied classifiers on the validation set. ’CS’ denotes cost-sensitive
versions of the algorithms using either class weighting or the WEKA cost-sensitive classifier
wrapping procedure. Abbreviations: decision trees (DT), random forests (RF), logistic regres-
sion (LR) and support vector classification with both linearkernel (SCLin) and RBF kernel
(SCRBF).

trained on a large set of patients show medium AUROC values.

6 Discussion

In this work we present a comparison of risk stratifiers for mortality prediction derived from
automatically monitored parameters of patients in Intensive Care Units (ICUs). Specifically,
we compare classic logistic regression models with other machine learning tools like support
vector classification and random forests. The models are trained on a publicly available patient
data set: the MIMICII dataset [36]. In contrast to the designof existing models we include
time series parameters in our model (4 hourly heart rate and blood pressure measurements dur-
ing the first 48 hours of the ICU admission). From the databasewe extract a subset of1546
patients,797 of which we use for training. The remainder serve as an independent valida-
tion set. Regarding mortality, the data set is unbalanced. Approximately 14% of patients are
”positive” (died in the hospital) and 86% were ”negative” (discharged from hospital alive and
well). We show that measures to correct this imbalance profoundly affect the performance of
all algorithms. In order to perform a fair comparison of all algorithms we apply cost-sensitive
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Cost Sensitive Method TNR NPVN TPR PPV F-Measure AUROC
Yes SCRBF 0.689 0.948(1) 0.797(1) 0.324 0.461(3) 0.743
Yes SCLin 0.704 0.945(2) 0.78(2) 0.33 0.463(2) 0.742
Yes LR 0.751 0.931(3) 0.703(3) 0.346 0.464(1) 0.791(1)

Yes RF 0.914 0.888 0.381 0.455 0.415 0.762
No LR 0.933 0.886 0.356 0.5(3) 0.416 0.789(2)

No DT 0.764 0.881 0.449 0.262 0.331 0.625
Yes DT 0.872 0.879 0.356 0.341 0.349 0.616
No SCLin 0.992(2) 0.878 0.263 0.861(1) 0.403 0.627
No RF 0.968(3) 0.864 0.186 0.524(2) 0.275 0.772(3)

No SCRBF 1.0(1) 0.842 0.0 0.0 0.0 0.5
- SAPSI2 - - - - - 0.684
- SOFA2 - - - - - 0.640

Table 3: Validation set results. Statistics are described in Table 2. Note that the cost insen-
sitive variant of the linear support vector classification offers both high negative and positive
predictive value. Yet, only a quarter of all positives is detected (TPR). The table clearly shows
the possibility to sacrifice negative for positive predictive value.

meta-classifiers, effectively simulating a 1:1 mortality distribution.
Both the logistic regression and support vector machine models perform well, yet no clear

winner can be chosen. We emphase that the negative predictive values (NPV) of the best
performing models seem comparable but have to be looked at very closely. For instance, in our
data set, differences in NPV of 1.7% between LR and SCRBF (cost sensitive) correspond to 24
vs. 35 patients incorrectly classified negative. On the other hand the positive predictive values
(PPV: proportion of correct positive predictions) are higher with SVMs that are not aware of
class distribution. These higher PPVs are however at the cost of lower total positive rates (fewer
positive cases in total).

A predictive model with a high NPV only rarely misclassifies apatient with a good prog-
nosis as having a poor prognosis. Misclassification of a patient with a good prognosis could
have catastrophic consequences in an ICU, were for instancea withdrawal of care decision to
be made based on the predictive model. From a critical care standpoint, a high NPV is an
indispensable characteristic of any predictive model. Thecost sensitive linear support vector
classificator detects 70% of all negatives at an NPV of 94.5% i.e., 6 out of 100 patients will
be falsely classified as negatives. This improvement comes at the high price of reduced PPV.
Ranking by AUROC suggest Random Forests to be among the best methods, yet the NPV of
86.4% corresponds to 96 false negatives (in comparison to 24with the best method).

As discussed in the introduction, a focus of the criticism ofrisk prediction models currently
available is that they are poorly calibrated – their predictions do not reflect the true probability
of death or survival on an individual patient basis. Our results emphasise that the focus should
not purely be on calibration - there are clinically important parameters such as negative predic-
itive value that such also be taken into account. Out data demonstrate that when considering
any model, it is vital that the way the model will be used in practive is taken into account. A
model capable of predicting patients with good prognosis athigh precision and recall may in
fact be more useful than one predicting only a fraction of thepatients with poor prognosis with
100% certainty. Thus, models have to be chosen with great care and after taking into account
their future clinical use.
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A focus of future work should be risk prediction models that are updated over time in
an automated manner [44]. Previously trained models that continually evaluate novel patient
data are likely capable of very specific predictions. Training models specific for specific class
predictions and specific patient groups, and employing the latest available patient data, will
be extremely helpful for intensive care medicine. Furthermore continuous re-evaluation and
re-training is extremely important. It has been shown that performance falls with time: modern
predictive models will have to cope with rapid changes due toimproved therapies, patient
characteristics and varying patient groups.

In this work, we have shown that model choice and even meta-critera such as class spe-
cific costs make a significant difference regarding predictive capablities. The implementation
of flexible, specific models in ICUs is a perhaps a distant goalbut is definitely worth pursuing.
Given appropriate validation sets for model classes on a ward- , hospital- and even country-
specific scale, patient specific models rooted in machine learning techniques are feasible ob-
jectives.
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