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Abstract

Outcome in critically ill patients is thought to be dependapon multiple parame-
ters that interact in a complex manner. Experienced cfitiaee doctors are capable of
making reasonably accurate prognoses however variatiwveba prognoses is very high.
Objective risk estimation procedures help to overcomeethtifferences. With advances
in automated patient surveillance there is increasingrpieiefor more rapid and accurate
prognostication by means of computational models. We shawstate-of-the-art machine
learning techniques employed on real world intensive caredata are on par with con-
ventional risk estimation models developed on pristineaesh data sets. We set up a
rigorous validation environment to estimate objectivefgenance values of both conven-
tional and novel risk and mortality models. Our results shbat multiple performance
measures must be taken into account when assessing theo¥alumeodel. With regard to
application into routine medical practice, no single dfgssis superior. Careful definition
of the model characteristics most desirable to health cereiqers are essential before
choosing one risk model over another.

1 Introduction

Highly accurate patient-specific prediction of outcome ldowevolutionise practice in crit-
ical care medicine. Since the early 1980s numerous comgu#htmethods have achieved
varying degrees of success regarding incorporation intbrre practice in intensive care units
(ICUs). The most widely used methods are regression-basesitratifiers (RS) that are based
on physiological variables. Examples include the Acutes®ilggy and Chronic Health Evalu-
ation (APACHE) model [19], the Mortality Prediction Modé1PM, [23]), and the Simplified
Acute Physiology Score (SAPS, [22]). The development asiihig of these models has firmly
established a connection between prognosis and physitlaggd variables in ICU patients.

Risk stratifiers have been shown to be of real value in theviollg areas: improving the
quality of care being provided to patients [33], contrdilifor variations in severity of illness
between ICUs and hospitals when performing audit or allogatesources [14], and when
selecting subjects for participation in clinical trials.

There is broad consensus supporting the use of risk stediificfor these purposes however
using them as a basis for clinical decision making on an idd& patient basis is not appropri-
ate. In this work we investigate state-of-the-art mach@eniing methods as risk stratifiers. In
particular we apply support vector machines, decisiorstee®l random forest approaches. A
novel database (MIMICII, [36]) is used as the data sourcekemaour models to integrate time
series markers. We incorporate information generatechduhe first 48 hours of admission
and so our models can be said to be learning from the cliniealdpment of a patient over
time.

2 Reated Work

To date all the widely used risk stratification models (RSnhtensive care medicine are based
on logistic regression. To faciliate usage by health cao@igers these quite complex models
are generally further reduced to simpler scoring schemes.

Examples of risk stratifiers are the Mortality Prediction déb (MPM, [23]) and the Sim-
plified Acute Physiology Score (SAPS, SAPSII — [22]). The fsc@hysiology and Chronic
Health Evaluation scores are the most widely used and tl&oriy serves to illustrate some



Table 1: AUROC values of mortality models. This table shows an overview of several studies that comiberenost widely used mortality
prediction models in intensive care medicine. The studmesvoverall good discrimination (as represented by aredsmutie ROC curves) but
often poor calibration, specifically overprediction of radity [38]. MPMO:=Mortality Probability Model, MPM/-112:= Mortality Prediction
Model-24 hours, SAPS:=Simplified Acute Physiology ScorB;Acute Physiology and Chronic Health Evaluation Il, {(#k$et, b=validation
set).

Author AP-Il | MPMO | MPM24 | SAPS | AP-I11 | SAPSIT | MPM-I10 | MPM-1124
Castella [5] 0.867 | 0.865 - - - - - -
Rowan [34] 0.83 0.74 - - - - - -
Wilairatana [43] | 0.723 - - 0.71 | 0.694 - - -
Del Bufalo [2] 0.808 - - - - 0.735 - -
Castella(a)[4] | 0.852| 0.773 | 0.825 | 0.798| 0.866 - - -
Castella (b) [4] | 0.857| 0.778 | 0.815 | 0.799 - 0.855 0.815 0.833
Moreno [29] - - - - - 0.822 0.785 -
Nouira [31] 0.82 - - - - 0.84 0.85 0.882
Tan [38] 0.88 - - - - 0.87 - -
Patel [32] 0.702 - - - - 0.672 - 0.695
Vassar [40] 0.87 - - - 0.89 - - -
Katsaragakis [18] 0.839 - - - - 0.87 - -
Livingston [26] | 0.763 - - - 0.795 | 0.784 0.741 0.791
Capuzzo [3] 0.805 - - - - 0.816 - -
Markgraf [28] 0.832 - - - 0.846 | 0.846 - -
Beck [1] 0.835 - - - 0.867 | 0.852 - -




Figure 1: Heatmap of standardized values showing a patiaestecing of all64 parameters.

The last column represents mortality.
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of the problems in this field. The original APACHE score was finst risk model based on
physiological variables and was developed in 1981 [21]. phgsiological parameters (the
independent variables in the logistic regression) werecsetl by an expert panel of doctors.
The follow-up APACHE Il model was published in 1985 [20] arabla reported AUC of 0.86
on an evaluation set. APACHE IIl never became widely usecbge the authors decided to
make the system proprietary.

Although there are examples of risk stratifiers being comrsially used to aid clinical
decisions such as whether admission to the ICU is futile ativdr to end therapy [8, 16] there
is very broad consensus that currently available riskifitneg are at best useful for controlling
for variations in severity of illness of patients betweetJECand between hospitals [33]. It is
accepted that their capacity to predict outcome on an iddali patient basis is very limited.
This is due to problems of both calibration and discrimioatiThe predictive logistic models
are usually calibrated to fit observed risks for, for insiggracspecific ward or a specific hospital
and accordingly they tend not to generalize well. A welHza@ted model is a model that
generalizes when applied to novel data without loosingrisliative power.

A number of studies have compared performance between sh&it@vn risk stratification
models. The area under the ROC (AUROC) has generally beehtassompare models and
the published AUCs for a number of different models are shiowiiable 1. Using the AUROC
as a basis for model selection has been criticized [7] dusetdeict that its use can lead to over-
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Figure 2: Heatmap of standardized values showing a patiestecing of heart rate timelines

(column 1 equals time 0, 4-hourly increments, column 14as@nts mortality.)
Color Key
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fitting and over-sensitivity. As can be seen in the tableleveach new model had improved
discrimination when compared to its predecessors, no meadédarly superior.

We are now in an age of automated generation of large volufiatensive care unit data,
SO it seems a natural progression to employ machine leamatbods. A range of machine
learning techniques have been used in the critical carengeihd described in the medical
literature [10, 12, 15, 24, 25, 27, 30, 41]. Machine learieghnhiques demonstrate compara-
ble discrimination with logistic regression but have notyat been conclusively shown to be
superior.

As a source of data, the MIMICII database [36] offers wellistured time-stamped patient
data. It has for example been used to find risk factors fore¢heeaespiratory distress syndrome
[17] or to show that certain ICU practices varied signifitgas a function of time of day (i.e.
care provided at night is different from that provided dgrthe day [35]).

In this work, we place the problem of risk stratification imtonachine learning setting. We
focus on the development of a patient specific predictidemsdel. Reported cross validation
performance as well as scores on an independent valida&iqgnavide class specific sensitivity
and specificity values. By using SAPSI scores as baselingesab direct comparison and
rigorous assessment of several methods was feasible.



3 Data

TheMIMIC I Database. Multiparameter Intelligent Monitoring in Intensive CatdMIMIC-

I) is a publicly available database of intensive care uattgnt data. It is a substantial and very
comprehensive database containing anonymized demogragbhical (such as admission di-
agnoses) and physiological data, laboratory resultsjlddtdocumentation of treatment and
free text records [36]. One of the major strengths of thelueda is that it offers high tem-
poral resolution for certain parameters such as heart Ibbded pressure, oxygen saturation
and respiratory rate. In summary, the database is compds#s, 228 ICU patient records.
The median (interquartile range) ICU stay is 2.2 (1.1-4a)dand the overall mortality rate is
11.7%. We extracted data for the following parameters: remobhospital admissions, num-
ber of ICU admissions, gender, SAPSI score, SOFA scoretichea, partial pressure of CO2
in blood, bilirubin, arterial blood pH, white cell count,s@ratory rate, lactic acid, glucose,
potassium, sodium, coagulation, ventilation parametemperature, heart rate, blood pres-
sure, body weight, diagnoses, catecholamine doses, vabdimedl cell concentrate infused,
total fluid input and output, urea, hematocrit, bicarborzate Glasgow coma scale.

4 Methods

4.1 Mode and Data Representation

The aim of this work is the prediction of a binary outcome: tatity. Using machine learning
terminology, we refer to these outcomes as labelg0, 1}.

An abstraction of the patient data is given by a maffix F"*™ of feature values repre-
senting each of patients in a row by m featuresF; € F™. A feature can be numeric, binary
or nominal. Each rowr; in the matrix is associated with an outcomgethe label. For the
prediction ofl; we train amodeM : 7™ — L, M(F;) = ;. Since we are dealing with missing
values — round the clock monitoring of an intensive caregmdtvithout human or measurement
failure is not realistic — we use a column median replacersategy. Each missing, € F
is replaced bynedian(fi;, ..., fn;). If more than 30% of all features are missing the patient is
not allocated to any set.

4.2 CrossValidation

Predictive methods like regression, decision trees oraamfrests must be trained and tested
on two independent sets to avoid overfitting. Most precegsindies apply a singleto 1 split
into a training set (the derivation group) and a test setdatibn group). To rigorously compare
several methods we usekdold stratified cross validation (k-CV) and recompute niskdels
for each fold: the rows of the feature matidikare shuffled and the patient set is divided ihto
equally sized sets with equal label distribution. Givenjtiet CV or validation set predictions
we can now compute test statistics for the assessment oipheutiethods. Additionally, we
compile a completely separate validation set to assessddelmuality of a method trained on
the complete training set.

4.3 Test Statisticsand Scoring

Given a prediction vectof € L™ of all patients and the known labelse L™ we compute
several different statistics. For the binary outcomes, aumnttrue negatives (TN), false nega-
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tives (FN), true positives (TP) and false positives (FP)i\&& measures are the true positive
rate (TPR) defined as TP/(TP+FN) and the true negative ré&®]Tefined as TN/(TN+FP).
These correspond to the sensitivity on the positive and emégative class respectively. For
diagnostic tests it is crucial to know whether a test resuteliable. We capture this by two
measures: (1) the negative predictive value NPV:=TN/(TN)}Fe. the precision on the neg-
ative class and (2) the positive predictive value PPV:=TPHFP). The PPV is often referred
to as precision. We then compute a receiver operator cleaistats curve (ROC). The ROC
curve shows all possible thresholds on a numeric featueegreted as classifier and shows the
canonical FPR against TPR values. The area under this cAURQ®C) is1.0 where prediction

is optimal and the binary class is perfectly separated. FNMeR&sure is the harmonic mean of
TPR and PPV i.e., (2*TPR*PPV)/(TPR+PPV).

4.4 Summary of Applied Methods

We applied all methods below as they are shipped with the WEgtem [11]. For libSVM
(version3.0, [6]) we use the wrapper provided by WEKA.

Support Vector Techniques. Support Vector Machines (SVM, [37, 39]) have become an in-
tegral part of statistical learning procedures. We applg@ut Vector Classification (SVC)
working on binary labels. The SVC model is a linear functinrpbssibly high dimensional
space — a hyperplane. Its placement is optimized to sepastgnces in two classes with a
maximum margin. In this way so-called soft-margin SVMs o8E&Ms allow for misclassified
instances during training. A penalty texthquantifies the weight for an instance. For an SVM,
each instance is encoded as a vector of features corresgaodiows off'. Instances are com-
pared via &ernelfunction. We use a linear kernel, which is simply a scaladpat< F;, F}; >,
and we also apply a high dimensional kernel - the radial Hasistion (RBF Kernel, described
in reference [6]).

L ogistic Regression M odels. Most existing risk stratifiers build upon logistic regressmod-
els. Fork classes they model the posterior probability of each classnear functions in the
measured featurds for a patient (See [13] for a more detailed introduction). Hot= 2 a set

of linear functions withl € L = {0, 1}

Pl = 0[Fy)

/61] +ﬁ2]* 7 0og P(l: 1‘}7”)

Vi=1.m Q)

is fitted. For the commonly used risk stratifiers further gieatselection and discretization
procedures are applied, yet all of them boil down to a logistgression model. In order to
have a baseline comparator for our models, we computed ABICSAPSI scores for each ICU
admission. Although the SAPSI would be considered by theicabdommunity to have been
superseded by later scores, it was not possible to use suwksas APACHE Il, APACHE I
or SAPS Il because they are either proprietary or because secessary markers are based
on expert medical opinion and are not routinely captured osthpatient data management
systems.

Decision Trees. Decision trees are tree-like classifiers where each leaésepts a labéle L.
We use the grafted C4.5 variant shipped with WEKA terrdé8graft

Random Forests. Random Forests are ensemble classifiers which build sedeceaion trees
and use a majority voting strategy to arrive at a decisiorchBeee is build from a subset of
parameters (or instances in some formulations) yieldintgable predictions.

Unbalanced Classes. A problem one often faces in data mining settings are uniathrabel
assignments within the dataset. Models that focus on themization of correctly predicted
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instances while minimizing false predictions tend towgrdsdiction of the majority class. Ac-
cordingly it is crucial to reduce the weight of the largerssdaLibSVM allows class weighting
directly, while for other algorithms we use the WEKZostSensitiveClassifielt provides a
wrapped cost function for arbitrary classifiers. We chotseitverse fraction of the training
set class distribution as the weighting.

5 Results

We divide the patients into two sets designated the traianthvalidation sets. The training set
containsr97 patients and the validation set contaid8 patients. The validation set serves as an
independent testing set. In the training set there Wetesurvivors ( = 0) and136 mortalities

(I = 1). The validation set containgi$1 patients labeled = 0 and118 labelled/ = 1. Were
majority class prediction applied to all patients, this Wbeorrespond to a precision 82.9%

in the training and4.2% in the validation set.

As feature sef’ we extract a set of parameters that are known to be relatedttome
in critical illness. Missing values are replaced by theiluoon’s median. Variables include
the mean value for the parameter over the first 24 hours ofdbpital admission; time series
values for heart rate and blood pressure (the mean valuaébr 4 hour period in the first 48
hours of ICU admission); a mean equipotent to noradrenaosage of the inotropic agents
noradrenaline, adrenaline, dopamine, vasopressin amyjgpdirine during the first 24 hours of
admissions; a score based on the International ClassificafiDiseases diagnoses assigned to
each patient and a number of factors related to clinicabhysind basic patient characteristics
such as age and weight. Concerning the time series datatieechoint is treated as a separate
feature. We choose to use the SAPS | [9] and SOFA [42] scordmsaline performance
comparators for our own predictions. It should be pointetitbat these scores have been
superseeded by newer scores such as the SAPSII and APACHEoHes. We are unable
however to retrieve these newer scores form the MIMIC-llablase because, in contrast to
SOFA and SAPSI, they require 'expert medical opinion’ tlatat routinely captured in clinical
data management systems.

From a feature matrix’ containing one patient’s parameters per row we build a model
M for each method. M (F;) for a patient: predicts the mortality during hospital stay. A
standardized value heatmap of the matyixis shown for all37 input variables (see Section
4) in Figure 1. We note that no obvious patterns are discé&nabonsidering the heart rate
timeline (2) confirms conventional medical wisdom that ewte heart rates are related to poor
prognosis.

We apply a 10-fold cross validation (10-CV) on the trainireg as described in Section 4.
Table 2 shows the area under curve values (AUC) and furthéstts for decision trees (DT),
random forests (RF), logistic regression (LR) and suppectar classification with both linear
kernel (SCLin) and RBF kernel (SCRBF) in a 10-fold CV. In Fig® we show the ROC curves
for all classifiers with respect to mortality prediction aggicted class. For some classifiers
the curves have a lower resolution due to non-continuoussidacvalues. Next to the 10-CV,
the independent validation set performance is reporteciniel3. We apply all algorithms in
bothnormaland acost sensitivéc.s.) version. We choose penaltiessdfalse negatives) and
1 (false positives), respectively. These values representlass distribution (the survivors to
mortalities ratio was approximately 6:1) within the traigiset.

’these scores cannot be be recomputed and are directly takentfe MIMICII database



Cost Sensitive | Method | TNR | NPVA | TPR PPV | F-Measure | AUROC
Yes SCRBF | 0.722 | 0.946™ | 0.801™ | 0.372 0.508® 0.762
Yes SCLin | 0.749 | 0.945® | 0.787® | 0.392 0.523(M 0.768
Yes LR 0.756 | 0.928® | 0.713® | 0.376 0.4920) 0.810
Yes DT 0.893| 0.877 | 0.39 | 0.427 0.408 0.644
Yes RF 0.92 | 0.867 | 0.31 0.448 0.371 0.809®
No LR 0.927 | 0.868 | 0.316 | 0.473G) 0.379 0.801
No DT 0.92 | 0.886 | 0.426 | 0.523@ 0.47 0.642
No RF 0.98® | 0.858 | 0.213 | 0.69M 0.326 0.805()
No SCLin | 0.98® | 0.858 | 0.213 | 0.69™ 0.326 0.597
No SCRBF| 1.0 | 0.829 0.0 0.0 0.0 0.5
- SAPS|? - - - - - 0.694
- SOFA?Z - - - - - 0.648

Table 2:Cross validation on training set. Negative Predictive Value (NPV, precision in pre-
dicted negatives), Positive Predictive Value (PPV, pienign predicted positives) F-Measure
and the area under curve (AUC). Cost sensitive variants ci edgorithm (i.e. informed of
the underlying class distribution) are included. The patemsettings are WEKA defaults. In
each column, the three best scores are indicated by a ram&ckeis.

5.1 Unweighted Classes

In case of unweighted algorithms (that is where the algoritlias not informed of the class
distribution) the support vector variants perform poodgarding AUCs and F-Measures. They
tend too strongly towards predict the majority class (réflédy high positive predictive values)
and the resulting AUCs are close @d. In fact, the SCRBF performance is no better than
random both during testing and validation. This is not ssipg because the support vector
classifier is designed to maximize the amount of correctigsified instances rather than AUC.
With respect to AUCs, the best performers in the unweightgordhms were LR and random
forrests, which had an AUCs 080 and0.81 respectively. This values are consistent with
values reported in the literature for existing risk strati

5.2 Weighted Classes

For most of the classifiers it is possible to trade decreassd hegatives (FN) against increased
false positives (FP) with little impact on either true pov&s (TP) or true negatives (TN). By
forcing unequal class weights we primarily observed an owement in the rate of FNs. In
the context of intensive care medicine this is highly dddea The negative predictive value
(NPV) is the amount of error when the test outcome is negativease of the validation set,
the expected value, were all cases to be predicted as negatuld be0.842 (the support
vector classifier with an RBF kernel predicted all as negadind had an NPV of 0.842). The
corresponds to a recall on the negative class (TNR)®fWe observe that all methods except
c.s. SCRBF, SCLin and LR have a relatively high type Il erager(FN) drastically reducing
the TPR. This is however associated with a better positieeiptive value (PPV). The best
precision 0f0.455 is achieved by c.s. RF at a recall@B81. The best recall is the c.s. SCRBF
with 0.797 at a precision 0f).324. The cost sensitive LR achieves the best F-measure and
AUROC, but its TPR is almost 10% below that of support vectachines with similar PPV.
Notably, its NPV is ranked third. SAPSI and SOFA as instarafasaditional risk stratifiers
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Figure 3: ROC curves of all applied classifiers on the vaimteset. 'CS’ denotes cost-sensitive
versions of the algorithms using either class weightingherWEKA cost-sensitive classifier
wrapping procedure. Abbreviations: decision trees (Dandom forests (RF), logistic regres-
sion (LR) and support vector classification with both linkarnel (SCLin) and RBF kernel

(SCRBF).
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trained on a large set of patients show medium AUROC values.

6 Discussion

In this work we present a comparison of risk stratifiers fortalty prediction derived from
automatically monitored parameters of patients in Intens§lare Units (ICUs). Specifically,
we compare classic logistic regression models with otherhina learning tools like support
vector classification and random forests. The models areettaon a publicly available patient
data set: the MIMICII dataset [36]. In contrast to the desafrexisting models we include
time series parameters in our model (4 hourly heart rate boodiipressure measurements dur-
ing the first 48 hours of the ICU admission). From the databeasextract a subset db46
patients,797 of which we use for training. The remainder serve as an inudpat valida-
tion set. Regarding mortality, the data set is unbalancqapréximately 14% of patients are
"positive” (died in the hospital) and 86% were "negativeiggharged from hospital alive and
well). We show that measures to correct this imbalance prafty affect the performance of
all algorithms. In order to perform a fair comparison of dfaithms we apply cost-sensitive
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Cost Sensitive | Method | TNR | NPVA | TPR PPV | F-Measure | AUROC
Yes SCRBF| 0.689 | 0.948™ [ 0.797™ | 0.324 | 0.461® 0.743
Yes SCLin | 0.704 | 0.945® | 0.78® 0.33 0.4632 0.742
Yes LR 0.751 | 0.931® | 0.703®) | 0.346 0.464™) 0.791D
Yes RF 0.914 | 0.888 | 0.381 | 0.455 0.415 0.762
No LR 0.933 | 0.886 | 0.356 | 0.5 0.416 0.789®
No DT 0.764 | 0.881 | 0.449 | 0.262 0.331 0.625
Yes DT 0.872 | 0.879 | 0.356 | 0.341 0.349 0.616
No SCLin | 0.992® | 0.878 | 0.263 | 0.861(M 0.403 0.627
No RF 0.968) | 0.864 | 0.186 | 0.524® 0.275 0.772®)
No SCRBF| 1.0 0.842 0.0 0.0 0.0 0.5

- SAPS|? - - - - - 0.684
- SOFA?2 - - - - - 0.640

Table 3:Validation set results. Statistics are described in Table 2. Note that the cost insen
sitive variant of the linear support vector classificatidfers both high negative and positive
predictive value. Yet, only a quarter of all positives iseted (TPR). The table clearly shows
the possibility to sacrifice negative for positive predietvalue.

meta-classifiers, effectively simulating a 1:1 mortalitytdbution.

Both the logistic regression and support vector machineatsqaerform well, yet no clear
winner can be chosen. We emphase that the negative prediciues (NPV) of the best
performing models seem comparable but have to be lookedyathesely. For instance, in our
data set, differences in NPV of 1.7% between LR and SCRBR éawssitive) correspond to 24
vs. 35 patients incorrectly classified negative. On therdted the positive predictive values
(PPV: proportion of correct positive predictions) are l@ghith SVMs that are not aware of
class distribution. These higher PPVs are however at thettsver total positive rates (fewer
positive cases in total).

A predictive model with a high NPV only rarely misclassifiepatient with a good prog-
nosis as having a poor prognosis. Misclassification of aepatvith a good prognosis could
have catastrophic consequences in an ICU, were for inseamgéhdrawal of care decision to
be made based on the predictive model. From a critical carepbint, a high NPV is an
indispensable characteristic of any predictive model. d¢& sensitive linear support vector
classificator detects 70% of all negatives at an NPV of 94.%% 6 out of 100 patients will
be falsely classified as negatives. This improvement comggedigh price of reduced PPV.
Ranking by AUROC suggest Random Forests to be among the le¢isbds, yet the NPV of
86.4% corresponds to 96 false negatives (in comparison witt4he best method).

As discussed in the introduction, a focus of the criticismisi prediction models currently
available is that they are poorly calibrated — their preditt do not reflect the true probability
of death or survival on an individual patient basis. Our lissemphasise that the focus should
not purely be on calibration - there are clinically impottparameters such as negative predic-
itive value that such also be taken into account. Out dataodstrate that when considering
any model, it is vital that the way the model will be used ingbirge is taken into account. A
model capable of predicting patients with good prognostsgtt precision and recall may in
fact be more useful than one predicting only a fraction ofgatents with poor prognosis with
100% certainty. Thus, models have to be chosen with greatarad after taking into account
their future clinical use.
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A focus of future work should be risk prediction models the¢ apdated over time in
an automated manner [44]. Previously trained models thatiraeally evaluate novel patient
data are likely capable of very specific predictions. Tragnmnodels specific for specific class
predictions and specific patient groups, and employing d@kest available patient data, will
be extremely helpful for intensive care medicine. Furth@mencontinuous re-evaluation and
re-training is extremely important. It has been shown tleatggmance falls with time: modern
predictive models will have to cope with rapid changes du@rtproved therapies, patient
characteristics and varying patient groups.

In this work, we have shown that model choice and even méerarsuch as class spe-
cific costs make a significant difference regarding predictiapablities. The implementation
of flexible, specific models in ICUs is a perhaps a distant gaals definitely worth pursuing.
Given appropriate validation sets for model classes on a-wahnospital- and even country-
specific scale, patient specific models rooted in machinaileg techniques are feasible ob-
jectives.
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