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The maximum entropy principle has been a promising approach for learning
models with complex dependency constraints in many areas of science. Here we
propose a generalization of the maximum entropy principle based on the Tsallis
entropy and apply it to the recognition of splice donor sites and transcription
factor binding sites.

1 Introduction

The recognition of statistical patterns within nucleotide sequences is a recurring task in com-
putational biology. In eukaryotes, one important subtask in the process of gene finding is
the recognition of splice donor and acceptor sites. Scanning a whole genome for a known
pattern, such as a sequence motif from literature, is necessary if all target genes of a certain
transcription factor (TF) are of interest. Both problems can be perceived as standard classi-
fication problems. Utilizing a likelihood ratio classifier based on a pair of statistical models
is a common approach for solving such problems. The simplest and most popular model
is a position weight matrix (PWM) model [17, 16], which assumes statistical independence
among all positions. However, many studies have shown that dependencies within binding
sites exist and that modelling these dependencies improves classification performance sig-
nificantly [10, 1, 19, 4]. With the rise of next-generation sequencing based technologies like
ChIP-seq [11], the amount of available data is dramatically increasing in the near future.
Complex statistical models, which have been previously handicapped by overfitting due to
small data samples, are becoming of increasing interest.

One of the most successful algorithms for splice site classification utilizes maximum entropy
models (MEMs) [19]. MEMs choose the probability distribution that maximizes the Shannon
entropy [14] under given constraints and are applied in many fields of sciences, ranging from
linguistics [2] to biology [19]. The advantage of MEMs is the great flexibility with respect
to the structure of statistical dependencies that can be taken into account. One popular
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example, which yields the best result for the classification of splice donor sites [19], are
pairwise dinucleotide frequencies among all positions in the sequence.

Several generalizations of the Shannon entropy have been proposed in the past, with no-
table examples being the Rényi entropy [12] and the Tsallis entropy [18]. In this work, we
propose the classification of nucleotide sequences based on a generalized maximum entropy
model utilizing the Tsallis entropy. Whereas the Shannon entropy assumes a uniform distri-
bution over all events that are equivalent with respect to the constraints, the Tsallis entropy
relaxes this assumption. Depending on an external parameter α, it modifies the shape of the
probability distribution. We propose a criterion for selecting the optimal α-parameter and
evaluate whether the corresponding Tsallis-based MEP yields better classification results
than the Shannon MEP.

2 Methods

In this section, we introduce the generalized maximum entropy principle, which contains the
traditional MEP as special case. Let S denote the set of different events in the state space,
that is, all possible sequences of length L over the DNA alphabet {A,C,G,T}. We denote
the probability of each event i ∈ S by pi ∈ (0, 1) with

∑
i∈S pi = 1.

2.1 Shannon and Tsallis entropy

The Shannon entropy [14] of a probability distribution ~p is defined by

H (~p) = −
∑
i∈S

pi ln pi. (1)

It is a concave function, since the Hessian of H (~p) is a negative definite matrix. The Tsallis
entropy is a parameterized generalization of the Shannon entropy and defined by

Hα (~p) =

∑
i∈S p

α
i − 1

1− α
. (2)

It has been originally proposed by Havrda and Charvát [5] and popularized by Tsallis [18].
Because of the additional parameter α ∈ R, is it also known as α-entropy [5]. In the special
case of α = 1, the Tsallis entropy is undefined. Using l’Hôpital’s rule, we find that

lim
α→1

Hα(~p) = H(~p), (3)

stating that the family of Tsallis entropies contains the Shannon entropy as limiting case for
α→ 1.

The shape of Hα (~p) depends on the parameter α. Considering the Hessian of the Tsallis
entropy, we find that Hα (~p) is concave for α > 0. For α < 0 the Tsallis entropy is a
convex function, having no well-defined maximum. So we restrict α to R+ when utilizing
the maximum Tsallis entropy principle in the following.



2.2 Constraints and models

Let T ∈ S denote a subset of events from the state space and let w ∈ (0, 1) denote an
arbitrary weight. We define a single constraint by C = (T,w), denote the number of all
contraints of a model by J , and denote all constraints of a model by ~C = (C1, . . . , CJ). We
further define the indicator function

χ(i, j) =

{
1 : i ∈ Tj
0 : else

(4)

for a convenient access to the events that belong to a particular constraint. We define the
j-th constraint function as

hj(~p) =
∑
i∈S

χ(i, j)pi − wj . (5)

A probability distribution satisfies a set of constraints (denoted by ~p ∈ ~C) if and only if all
constraint functions are zero, that is,

~p ∈ ~C ⇔ ~h(~p) = ~0. (6)

The most simple constraint, which guarantees the normalization of ~p, is (S, 1). A maximum
Tsallis entropy model (MTEM) is the set of probability distributions for a given indicator
function χ and a given parameter α. In this work, we always use the same set of constraints
corresponding to marginal dinucleotide frequencies among all pairs of positions, which has
been shown to be optimal for the classification of splice donor sites using MEMs [19]. Hence,
a specific MTEM is parameterized only by α and thus denoted by MTEM(α). We perceive
the MTEM(1) as MEM.

2.3 Learning

Learning a maximum Tsallis entropy model is equivalent to the following problem

~p? = argmax
~p∈ ~C

Hα(~p). (7)

For solving this constrained optimization problem, we introduce a Lagrange multiplier λj for
each constraint Cj , yielding the Lagrange function

Lα

(
~p,~λ
)

= Hα (~p)−
J∑
j=1

λjhj(~p). (8)

Setting the partial derivatives ∂
∂pi
Lα

(
~p,~λ
)

zero for each i ∈ S yields a system of equations

that contains each pi as a function of ~λ. For α = 1, the system of equations can often
be solved analytically, but for α 6= 1, we obtain the following nonlinear coupled system of
equations

∀i∈S : pi(~λ) = α−1

√√√√√1− α
α

 J∑
j=1

λjχ(i, j)

, (9)



for which we do not find a closed-form solution.
Equation 7 is called primal problem and the corresponding target function 2 is called

primal function. Optimizing a function on a constrained state space is typically hard, so we
transform the primal problem into an equivalent unconstrained optimization problem over

the state space of ~λ by applying equation 9 to equation 8. The resulting function Lα

(
~p(~λ), ~λ

)
is called dual function and denoted by Ψα(~λ). In our case, we obtain

Ψα

(
~λ
)

=

(
1− α
α

) α
α−1 ∑

i∈S

 J∑
j=1

λjχ(i, j)

 α
α−1

+
1

α− 1
+

J∑
j=1

λjwj , (10)

where Ψα(~λ) is defined on RJ , as it only depends on ~λ. Minimizing the dual function by

~λ? = argmin
~λ

Ψα(~λ) (11)

is called the dual problem. The primal problem and the dual problem are equivalent, which
is commonly known as Lagrangian duality principle. Because of ~p? = ~p(~λ?), it is sufficient
to solve the unconstrained optimization problem of equation 11 to solve the constrained
optimization problem of equation 7. We obtain the gradient ∇Ψα by computing the partial
derivative for each γ ∈ (1, . . . , J):

∂Ψα

(
~λ
)

∂λγ
= −

(
1− α
α

) 1
α−1 ∑

i∈S
χ(i, γ)

 J∑
j=1

λjχ(i, j)

 1
α−1

+ wγ (12)

Since Ψα(~λ) is convex and its gradient exists, an arbitrary numerical optimization algorithm
can be used to obtain a global minimum. Here, we use the conjugate gradiate algorithm of
Polak and Ribière [9].

2.4 Model selection

Training a MTEM requires the additional task of determining the optimal α, since there is
no possibility to decide a priori which value of α is suitable for a particular data set. To this
end, we utilize a K-fold cross validation on the training data set T . After dividing T into
equally large subsets Tk with k ∈ (1, . . . ,K), we train for different values of α and for each
partition k ∈ (1, . . . ,K) a MTEM(α) on T \Tk and evaluate its classification performance on
Tk. Next, we average the resulting performance measures for each α and select the parameter
α̂ that yields the highest average measure. If the training data set contains less than 500
sequences, we suggest using a repeated holdout strategy instead of a cross validation. We
subsequently train MTEM(α̂) on T and return this model for a classification of independent
test sequences.



3 Results and discussion

3.1 Classification of human splice sites

In order to evaluate the performance of MTEMs, we utilize the data set from the MEM
publication of Yeo and Burge [19]. It consists of 12,623 canonic human splice donor sites
and 269,155 decoys. Yeo and Burge divide both sets into training and test data at a ratio
of 2:1, which we also use for the following studies. Sequences are 9 bp long including the
canonic GT-dinucleotide at positions 4 and 5. Since they do not contribute any additional
information, we remove both positions from all data sets and retain sequences of length 7.
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Figure 1: Sensitivity for MEM and MTEM on Yeo/Burge data set. Figure 1a
displays the results of a 50-fold cross validation experiment on the training data
set. α = 1.4 yields an optimal sensitivity and is subsequently used for training a
MTEM on the complete training data set. Figure 1b displays the sensitivity of
this optimal model and a standard MEM on independent test data. The MTEM
outperforms the MEM by 1.7%.



We classify splice sites versus decoys using a likelihood ratio classifier. In contrast to Yeo
and Burge [19], we choose a MTEM for modelling the splice donor sites and a PWM model
for modelling the decoys.

First, we perform a model selection step as specified in section 2.4. In a 50-fold cross
validation on the training data set, we evaluate the sensitivity for a fixed specificity of 99%
for different values of α. The result is shown in figure 1a. A standard MEM yields a sensitivity
of 47.8%. With increasing α, the sensitivity increases up to 50% at α = 1.4. When further
increasing α, the sensitivity decreases quickly to a sensitivity below that of a standard MEM.
In this cross validation, we find a maximal increase in sensitivity of 2.2% and conclude that
MTEM(1.4) is the optimal MTEM for this data set.

Next, we evaluate how well this model performs on the independent test data set. We
train MEM and a MTEM(1.4) on the complete training data and utilize both models to
classify sequences in the test data set of Yeo and Burge [19]. The MEM yields a sensitivity
of 45.9%, whereas the MTEM(1.4) obtains a sensitivity of 47.6% (figure 1b). Even though
the difference is smaller compared to that of the cross validation experiment, we still find an
increase of sensitivity by 1.7% by using the Tsallis entropy. We conclude, that the Tsallis
entropy is – at least for this data set – more suitable to distinguish splice donor sites from
decoys than the standard Shannon entropy.

3.2 Classification of splice sites from different organisms

In a second study, we apply MTEMs on splice sites from five different organisms: Homo sapi-
ens, Danio rerio, Arabidopsis thaliana, Drosophila melanogaster, and
Caenorhabditis elegans [15]. Splice sites and decoys of each organism are partitioned into
five sets [15].

In analogy to the previous study, we define the union of data sets one, two, three and
four as training data and use data set five as independent test data. These data sets are
substantially larger than the Yeo/Burge data set, so we perform a 5-fold cross validation
during the model selection step. We obtain an optimal parameter α̂ for each organism, and
use the resulting MTEM to classify the test data. We compare the results with those of a
standard MEM in table 1.

Table 1: Classification results on data sets of different organisms. The sensitivity
for a specificity of 99% is shown for the optimal MTEM and a standard MEM.

organism MEM MTEM(α̂) ∆ α̂

H. sapiens 48.4 48.5 0.1 0.91
D. rerio 52.8 53.2 0.7 0.80
A. thaliana 47.7 47.8 0.1 0.90
D. melanogaster 70.4 70.8 0.4 0.91
C. elegans 61.7 62.6 0.9 0.80



For D. rerio, D. melanogaster, and C. elegans, we observe an improved sensitivity. For H.
sapiens and A. thaliana, MTEM(α̂) and MEM perform almost equally well. Interestingly,
there are no cases in which the MTEM(α̂) is outperformed by a standard MEM, thus the
application of the maximum Tsallis entropy principle is never disadvantageous.

3.3 Classification of TFBS

After having evaluated the performance of MTEMs for splice site classification, we investi-
gate if they might be also useful for the classification of transcription factor binding sites
(TFBS). Sequence motifs from databases such as JASPAR [13] or TRANSFACr [7] are of-
ten based on a computational de-novo discovery. Since most de-novo motif discovery tools
use a PWM model to infer the statistics of the motif, the predictions are biased towards
statistical independence of nucleotides. In order to avoid this effect, we utilize data from
protein binding matrix (PBM) experiments [3] that determine the in-vitro binding affinity
of each possible oligonucleotide of length eight to given proteins. Even though there are
also some computational postprocessing steps of the experimental output, the set of high
scoring oligomers should be less biased towards statistical simplicity than computational
PWM-based predictions.

Here, we focus on PBM data of transcription factors from the yeast Saccharomyces cere-
visiae [20], which are available through the UniPROBE database [8]. PBM experiments
assign a score in the interval (−0.5, 0.5) to each oligomer. We define a threshold by consider-
ing all oligomers with a score greater than 0.35 to be bound by the TF and declare them as
positive data set. We further assume all oligomers with a score less than 0 not to be bound
by the TF and use them as negative data set. Next, we choose the ten TFs with largest
positive data sets to perform classification experiments.

Using PBM data requires an additional preprocessing step, as the high scoring oligomers
are not necessarily aligned. Some are shifted by a position with respect to a true motif,
and approximately half of them differ in strand orientation. In order to to cope with that
problem, we apply MotifAdjuster [6] with demanding a common oligonucleotide of length six.
We randomly fill empty positions of the resulting alignment of length ten with nucleotides
according to the relative nucleotide frequencies of the column and extract the oligomer from
positions 2 to 9.

Table 2: Classification results on PBM data of yeast transcription factors. The
sensitivity for a fixed specificity of 99.9% of a MTEM is compared with the perfor-
mance of a standard MEM. The MTEM yields an improvement up to 1.3%.

TF MEM MTEM(α̂) ∆ α̂

Put3-11 98.2 99.5 1.3 1.12
Rdr1-9 92.5 93.2 0.7 1.18
Rds1 94.9 95.5 0.6 1.17
Tbs-1 99.1 98.8 -0.3 1.04
Yox1 96.4 97.0 0.6 1.15



In contrast to splice sites, the classification of TFBS is orders of magnitude easier, since
all motifs contain at least some highly conserved nucleotides, while the negative data does
not share this property. Hence, we measure the sensitivity fixed specificity of 99.9%.

In analogy to the previous experiments, we first determine α̂ via the model selection
procedure of section 2.4. We find α̂ > 1 for all TF and compare the corresponding models
with a standard MEM.

In five of ten cases (Sum1-11, Sum1-9, Ume6-11, Yll054-9, Asg1), the sensitivity of the
optimal MTEM and the MEM is identical and varies between 98.2% and 99.7%. In these
five cases, the classification is nearly perfect, yielding almost no room for improvement. The
results of the five remaining TF are shown in table 2. In four of five cases (Put3-11, Rdr1-9,
Rds1, Yox1), we find an increase of sensitivity of more than 0.5%. However, the model
selection step of the MTEM is misleading in the case of Tbs-1, where a straightforward
application of a MEM would have lead to a more accurate classification.

3.4 Conclusions

We developed a generalization of maximum entropy models by utilizing the Tsallis entropy.
We studied the efficacy of MTEMs for classifying splice sites and transcription factor binding
sites. Apart from one exception, we found that MTEMs increase the classification accuracy
over MEMs or that both models classify equally well. These results make it tempting to
speculate that the maximum Tsallis entropy principle might possibly be useful for other
classification problems in computational biology or beyond. We implemented the model
including all learning algorithms in the open source Java library Jstacs1 and make them
publicly available with the next release.

1http://www.jstacs.de
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