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Abstract

The development of RNAi libraries aimed at targeting the complete genomes of a number of organisms has
enabled the function of genes to be interrogated at the genome-scale. Indeed, RNAi screens have proven to be
effective at identifying genes associated with various biological processes, including cellular differentiation, cancer,
signaling pathways, host-pathogen interactions, and many others. Here, we show how to exploit the concept of
“guilt by association” in the analysis of these screens. In particular, we demonstrate that it is possible, within
limits, to predict genes that lead to strong phenotypes upon perturbation, simply by looking at the phenotypes
induced by the genes associated with them (in the context of functional association networks). On top of providing
valuable context to the analysis and aiding hit prioritization, this also allows us to extend the coverage of a screen by
identifying promising candidates from those that were originally not included. We demonstrate this by identifying
and experimentally validating novel host factors of the human pathogen, Varicella Zoster virus (VZV). The cellular
factors that we found include several proteasome subunits and genes associated with splicing and nuclear export.
In addition, we also identified several host entities with antiviral activities. For example, we provide evidence that
DHX9 constitutes part of the effective innate immune response that is mounted against VZV, likely by recognizing
pathogen-associated molecular pattern (PAMP) elements within the viral DNA, and then inducing the expression of
pro-inflammatory cytokines in response to this.

Introduction

Functional studies in mammalian cultured cells were
hampered in the past by the lack of a powerful method
for perturbing gene activities (Echeverri and Perrimon,
2006). This changed with the discovery of RNA in-
terference (RNAi) and the subsequent development of
siRNA libraries aimed at targeting complete genomes for
a number of organisms (Birmingham et al., 2009). In-
deed, RNAi screens have proven to be effective at identi-
fying genes associated with various biological processes,
including cellular differentiation (Zhao and Ding, 2007;
Hu et al., 2009; Chia et al., 2010), cancer (Zender et al.,
2008; Bauer et al., 2010; Wurdak et al., 2010), signaling
(Berns et al., 2004; DasGupta et al., 2005), melanogene-
sis (Ganesan et al., 2008), and host-pathogen interactions
(Brass et al., 2008; Zhou et al., 2008; Li et al., 2009; Tai
et al., 2009; Brass et al., 2009). In this study, we demon-
strate how the concept of “guilt by association” can be
exploited for the analysis of these screens. In particu-
lar, we show that it is possible, within limits, to predict
that a gene would lead to a strong phenotype upon per-

turbation, simply by looking at the phenotypes induced
by perturbation of the genes associated with it. This
observation carries implications that can be helpful for:
(1) hit prioritization, i.e., identifying primary hits that
are more likely to be confirmed; (2) providing valuable
context to the primary hits, which could then be used
to formulate hypotheses regarding possible mechanisms;
and (3) extending the coverage of a screen by identifying
candidates – from those that were originally not included
– that are likely to induce strong phenotypes.

Guilt by association is a concept that is widely uti-
lized in the field of systems biology (and biology in gen-
eral). One of the more successful and prominent examples
of this are methods that infer genes potentially involved
in particular human diseases (see Oti and Brunner, 2007
for a review). These methods generally exploit the fact
that the same or phenotypically similar diseases are of-
ten caused by functionally related genes (Brunner and
van Driel, 2004; Lage et al., 2007; Wood et al., 2007;
Lim et al., 2006) – e.g., genes that belong to the same
pathway, protein complex or PPI subnetwork – such that
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one could discover novel gene-disease associations simply
by comparing candidate genes to those already known to
be involved. Similarity metrics that have been proposed
for this purpose include those based on sequence features
(Adie et al., 2005; Lopez-Bigas and Ouzounis, 2004), ex-
pression patterns (Bortoluzzi et al., 2003), functional an-
notations (Perez-Iratxeta et al., 2002; Turner et al., 2003),
literature citations (Hristovski et al., 2005), physical in-
teractions (Oti et al., 2006), and combinations thereof
(Aerts et al., 2006; Franke et al., 2006).

In our analysis of RNAi screens, we adopted a strat-
egy that is often used by disease gene prediction meth-
ods: that of identifying candidates that are “close” to the
known disease genes in the context of a functional asso-
ciation network (built from similarity metrics mentioned
above). We designed and implemented several methods
for this purpose, which we demonstrate by application to
several published RNAi datasets from human cell lines.
We show that “guilt by association” is indeed a useful
concept that can be exploited for the analysis of RNAi
datasets. Finally, we extended the coverage of a screen
for host factors of the human pathogen, Varicella Zoster
virus (VZV), by identifying promising candidates from
among those that were originally not included (the screen
covered only about 7,000 genes). We experimentally val-
idated some of these predictions.

Results and discussion

Application to a HCV host factor screen

One of the most popular application of RNAi screens
in human cell lines is the identification of host factors
(HFs) of medically relevant viruses (Cherry, 2009; Mohr
et al., 2010). In this type of experiments, the typical phe-
notype read-out that is associated to each gene is a fold
change that quantifies how much infection is inhibited or
enhanced upon perturbation of that gene. To date, host
factor screens have been performed for HIV (Brass et al.,
2008; König et al., 2008; Zhou et al., 2008), HCV (Tai
et al., 2009; Li et al., 2009), Influenza (Brass et al., 2009;
Karlas et al., 2010; Konig et al., 2010), and West Nile
virus (Krishnan et al., 2008). We use the HCV dataset
to illustrate our methods.

The main question that we wish to address is whether
“guilt by association” is evident in human RNAi screens.
Specifically, we ask whether it is possible to predict a
strong perturbation effect for a gene simply by looking
at the activities of those associated with it. To this end,
we adopt the strategy of testing for the unexpectedness
of the neighborhood of a gene in the context of a func-
tional association network. Here, we use the STRING
database (Jensen et al., 2009) – which scores protein pairs
for functional association based on various criteria, in-

cluding coexpression, phyiscal interactions, co-citation,
genomic context, functional annotations – to provide the
necessary context.

One of the simplest way to test for the enrichment
of a gene’s neighborhood is to compare how many screen
hits it contains in relation to the number expected by
chance. This is, in fact, the prototypical strategy for gene
set analysis (GSA) (Dinu et al., 2009; Liu et al., 2007).
A score (p-value) could very easily be derived from a hy-
pergeometric distribution. Despite the simplicity of the
approach however, it suffers from the fact that one needs
to define the the set of “hits” beforehand. Moreover, it
completely ignores the continuous nature RNAi datasets.
Accordingly, we designed and implemented several meth-
ods that use the data values directly. For example, in one
test that we refer to as SOS-DN, we normalize the data by
performing a Z-score transformation, such that strongly
inhibiting and enhancing perturbations get strongly neg-
ative and positive Z-scores, respectively, and then score
each neighborhood by estimating the probability that the
sum of squares of the data values of the genes that it con-
tains are as high as they are. The different methods are
described in detail in the Methods section

Hepatitis C virus (HCV) is a positive-sense single-
stranded RNA virus that in humans causes its namesake
disease, hepatitis C (Senecal and Morelli, 2007). About
3% of the world’s population (270-300 million) is chron-
ically infected with HCV. Of this number, about 30%
will develop cirrhosis (liver scarring) within 20 years of
initial infection, a condition that could then progress to
life threatening complications, including liver failure and
hepatocellular carcinoma. We use the recent screen for
HFs of this medically relevant virus from Tai et al. (2009)
to demonstrate our methods. Out of the approximately
21,000 knockdowns included in that dataset, we were able
to map 17,821 to ENTREZ records. Of these, 13,104
participate in at least one interaction in the STRING-
derived network. All subsequent analyses were limited to
this subset.

Given that none of the methods that we used consid-
ered the phenotype of a gene itself in calculating its score
(rather, the methods relied only on the the data values
of neighboring genes), then one way of validating their
effectiveness is to check that the genes that were ranked
highly in each method also have strong data values them-
selves in the RNAi screen. We summarized the results of
this analysis in row one of Figure 1. Each of the three
graphs in the row shows the fraction of the top screen
hits – defined as the genes with the top 1%, 2% and 5%
strongest induced phenotypes, respectively – that is re-
covered as a function of the fraction of the total number
of genes that is considered when the genes are prioritized
according to each method. For example, we see that for
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certain methods (e.g., SOS-DN-90), we are already able
to recover 25-30% of the top 1% genes with the strongest
phenotype even if we consider only less than 2% of the
genes. This indicates that at least for some of the hits,
the strong phenotypes that they induce are reflected in
the genes that they associate with.

A complementary view to analyzing the recovery of
the top screen hits is to look directly where the top-ranked
genes of each method falls along the main screen with re-
spect to their data values. This is summarized in the mid-
dle row of Figure 1. Specifically, each of the graphs show
how the top 1%, 2% and 5% top-ranked genes for each
method are distributed in the main screen (sorted from
left to right by decreasing phenotype). For example, we
see in the leftmost graph that for the method WCX-DN-

90, over 50% of the top 1%-ranked genes are among the
15% of genes that induce the strongest phenotypes. The
statistical significance of these distributions, obtained via
comparison to all genes in the network using Wilcoxon’s
Rank-Sum test, are shown in the corresponding plot in
row 3 of the figure.

Some are more guilty than others

It is clear from Figure 1 that the correlation between
a gene that induces a strong phenotype and those associ-
ated with it is stronger in some than in others. For exam-
ple, we see in the top-left graph that only about 25-35%
of the top 1% genes with the strongest phenotypes are
highly predictable (i.e., recoverable). The question then
is: what happened to the rest? To be sure, the sensitiv-
ity and accuracy of the methods that we use contribute
to this discrepancy. However, there are also a number
of other possible contibuting factors: First, the strong
data values of some genes could simply be due to random
noise. Indeed, most primary screens consist of only a few
replicates (two in the case of HCV). Second, there could
be not enough information on the function of some genes;
i.e., there are not enough edges in the functional associ-
ation network. Third, the critical function performed by
a gene could be relatively isolated from others. Fourth,
the function of the genes associated with a hit could be
compensated for by others, which makes them essentially
invisible. For example, consider two alternative pathways
that converge at a hit gene. And last but not least, it is
also possible that some of the strong phenotypes resulted
from off-target effects; i.e., RNAi reagents that perturbed
the activities of unintended genes due to partial sequence
complementarity. Indeed, considering that wide-spread
off-target effects have been reported in some studies (Ma
et al., 2006; Schultz et al., 2011), even to the point that
they dominated the primary hits (Ma et al., 2006), it is
very likely that this phenomenon contributes a great deal
to the discrepancy.

In addition to the differences between genes, we also

found that some screens tended to be more predictable
than others (at least given the methods). For example,
whereas substantial numbers of screen hits were found to
be highly predictable in the HCV host factor (Figure 1)
and the stem cell identity factor (Figure 2) screens, there
were hardly any in the cancer chemosensitizer locus (Fig-
ure S1) and melanogenesis (Figure S2) screens. Indeed,
the predictions for these latter two datasets were hardly
better than random. Again, possible explanations include
random and systematic noise, such as off target-effects,
and poor data (technical) quality. In addition, it is also
possible that the nature of the phenotypes themselves
came into play. For example, there are arguably fewer
human modules that are directly involved in melanogen-
esis than in HCV pathogenesis. That is, the universe of
true potential hits is much smaller. A similar situation
is probably also true for cancer chemosensitizer loci. The
predictability of the different screens using some of the
methods is summarized in Figure 3.

The experimental settings (and quality) used in a
screen also seems to be a big determinant of predictabil-
ity. For example, one of the phenotype readouts that were
provided in the cellular division factor screen (Screen H)
is the total amount of DNA. We can interpret this data as
a measure of cellular viability. In this dataset, we found
a substantial number of genes with strong phenotypes to
be highly predictable (see Figure S3). However, when we
analyzed some of the other cellular viability screens, such
as screens J and L, we were not able to observe the same
pattern (see figures S4 and S5, respectively). Indeed, very
few of the genes in these two screens proved to be recover-
able. Thus, we have a situation wherein different screens
that measure the same biological activity (i.e., viability)
exhibit very different levels of modularity (i.e., guilt by
association) in their hits. As mentioned above, we believe
this to be likely due to the different experimental settings
that were used. For example, whereas screen H used DNA
content to measure viability, screens J and L used ATP
content and expression of a Renilla reporter construct,
respectively. Moreover, and probably more importantly,
screen J was optimized to detect perturbations that affect
cellular division, which is closely-related to cellular via-
bility. In contrast, the two other screens were optimized
to detect far more removed phenotypes – i.e., host factors
of HCV and members of the WNT pathway – since they
were only meant to correct for toxic perturbations in the
main screens that they accompanied.

Novel host factors of the Varicella Zoster virus

Using data from an ongoing screen for host factors of
the human pathogen VZV, we identified novel candidates
from those that were not included in the original screen.
Specifically, for each gene g, we identified its neighbors
in the functional association network that were included,

3



and then calculated its enrichment score based on these
(note that the methods use only the data values of re-
lated genes and not that of the reference gene itself). We
experimentally tested 57 of the candidate host factors by
performing the corresponding knockdowns using siRNA
smartpools. The results are summarized in Figure 4. Of
those tested, 24 (48%) inhibited viral growth by more
than 50% (normalized to negative controls), compared to
less than 4% in the main screen.

Several of the VZV-inhibiting perturbations that we
found corresponded to subunits of the proteasome com-
plex. In fact, 13 of the 15 components that we tested
inhibited infection by more than 50%. Although one may
expect such a situation, where perturbation of any sub-
unit results in a strong phenotype, if the complex is truly
linked to the virus, we still found this to be highly sur-
prising given that such outcomes are very rarely observed
in actual screens. For example, the eIF2 and eIF3 com-
plexes are known to be utilized by HCV during duplica-
tion of its RNA genome (reviewed in Fraser and Doudna,
2007). However, in the recent screen for host factors of
the virus (Tai et al., 2009), only a very few subunits reg-
istered statistically significant effects (which were even
moderate at best). In our own screen for host factors of
Human Simplex virus 1 (HSV-1) (manuscript in prepa-
ration), subunits – of complexes known to be involved
in the virus’ pathogenesis – that induced strong pheno-
types were again almost never the majority (although
they could still be overrepresented in the hit list). Ac-
cordingly, the fact that perturbation of most proteasome
subunits led to strong VZV-inhibiting phenotypes sug-
gests that the virus is strongly dependent on the complex
and/or the relevant function is very easy to disturb (i.e.,
the subunits are not able to effectively compensate for
each other). Our results complement other studies that
link the proteasome to VZV infection (Stallings et al.,
2006; Walters et al., 2008).

The strongest phenotype we observed in our “sec-
ondary screen” belonged to perturbation of NXF1. Con-
sistent with this, a scan through the literature revealed
that the IE4 protein of VZV has been shown to interact
with SR proteins in order to export viral mRNAs through
the TAP/NXF1 pathway (Ote et al., 2009). Nuclear ex-
port is likely also the mechanism behind the substantial
effect of NUP93 (Nucleoporin 93kDa), one of the other
candidates that we identified, on the virus.

In contrast to proviral host factors, we identified sev-
eral genes that, upon perturbation, led to significant en-
hancement in viral growth. These include DHX9, TXNL4
and EIF3K. Their induced phenotypes indicate that in
vivo, they likely perform antiviral activities. In the case of
DHX9 (DEAH box protein 9), the gene has recently been
reported to recognize CpG-containing microbial DNA in

plasmacytoid dendritic cells (pDC) and induce activation
of NF-κB through MYD88. Importantly, it was associ-
ated with the expression of pro-inflammatory cytokines
after HSV-1 infection, and knockdown of the gene was
demonstrated to inhibit pDC responses to the virus (Kim
et al., 2010). Our results thus strongly suggest that
DHX9 is also able to recognize PAMP elements within
the VZV DNA and that it constitutes part of the effec-
tive innate immune response that is mounted against the
virus.

Methods

Data sources

To serve as context for the analysis of the RNAi data,
we assembled a network by collecting interactions defined
in the STRING database (Jensen et al., 2009). Only
those rated with at least a medium level of confidence
(combined score≥0.4) were included. All identifiers were
mapped to ENTREZ records, using mapping information
(Ensembl protein id to Entrez gene id) retrieved from
ENSEMBL BioMart. In situations where more than one
STRING record could be mapped to a gene pair, the
strongest confidence value was assigned. This resulted
in a network composed of 13,104 vertices (genes) and
330,523 edges (interactions). In certain parts of our anal-
ysis, we also considered higher confidence subnetworks
by retaining only interactions with a combined score of
at least 0.7 or 0.9.

RNAi datasets from human cell lines were collected
directly from the literature. These include screens for
genes involved in the WNT pathway (Tang et al., 2008;
Major et al., 2008), cellular division (Kittler et al., 2007),
HCV (Tai et al., 2009) and VZV pathogenesis, melano-
genesis (Ganesan et al., 2008), and stem cell differenti-
ation (Chia et al., 2010). Cell viability screens that ac-
companied some of these primary screens were included
whenever available. As with the interaction network, all
RNAi datasets (summarized in Table 1) were mapped to
ENTREZ gene records.

Tests for neighborhood enrichment

We designed and implemented several statistical tests
for the enrichment of the neighborhood of a gene g. The
first, which we designate as STF-DN, is based on Stouf-
fer’s Z-score test. Specifically, let pg be the p-value asso-
ciated with perturbation of a gene g, we converted this
to a Z-score zg according to

zg = Φ−1(pg) (1)

where Φ−1(p) is the standard normal inverse cumulative
distribution function evaluated at p. From this, we calcu-
lated the enrichment score of the neighborhood of a gene
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g as

pSTF−DN
g = Φ





1
√

|Ng|
∑

i∈Ng

zi



 (2)

where Ng is the first order neighborhood of g; i.e., the set
of genes that are directly adjacent to g in the functional
association network. The p-value (for the unexpectedness
of the neighborhood of g) that is calculated by Equation
2 is based on the fact that the sum of n independent stan-
dard normal random variables when normalized by

√
n is

also standard normally distributed.

The second test that we used is a weighted modifica-
tion of Equation 2. We designate this as SWT-NS. For
a given gene g, we calculate the enrichment of its neigh-
borhood as

pSWT−NS
g = Φ





1
√

∑

i6=g S2
gi

∑

i6=g

Sgi · zi



 (3)

where

Sij =
|Ni ∩ Nj |

max(|Ni|, |Nj |)
(4)

is a measure of the similarity of the first order neigh-
borhoods of two genes i and j. The motivation behind
using Equation 3 is to let genes that have more similar
neighborhoods to gene g contribute more to its score.

The third test that we implemented, which we desig-
nate as SOS-DN, is based on the fact that the sum of the
squares of n independent, standard normal random vari-
ables is distributed according to a chi-square distribution
with n degrees of freedom. For this test, we calculated
gene z-scores differently than in the first two. Specifically,
if xg is the phenotype (e.g., fold change) value associated
with the perturbation of g, then

zg =
xg − µ

σ
(5)

where µ and σ are the mean and standard deviation of
the population, respectively. The main difference is that
in this case, the “significant” genes are in both tails of
the distribution (assuming that both positive and nega-
tive changes in phenotype are interesting). A Q statistic
for the enrichment of the neighborhood of each gene g is
calculated as

Qg =
∑

i∈N(g)

z2
i (6)

from which a p-value is derived according to

pSOS−DN
g = Pr(Q ≤ Qg)

= 1 − Fχ2

|Ng|
(Qq) (7)

where Fχ2

|Ng|
is the chi-square cumulative distribution

function with |Ng| degrees of freedom.

In addition to the three tests described above, we
also implemented one based on Wilcoxon’s rank-sum test
(WCX-DN). Here, we compared the ranks of the genes
in the first order neighborhood of g (i.e., Ng) against the
ranks of all the genes that were included in the screen
and are in the functional association network (i.e., par-
ticipate in at least one interaction/edge). Finally, we also
implemented one of the best performing variants of the
method described in Wang et al., 2009, which was used
in a related analysis of Drosophila RNAi screens. Specifi-
cally, for a given gene g, a score was calculated according
to

NNPH−NS
g =

∑

i6=g SgiHi
∑

i6=g Sgi

(8)

where Sgi is calculated as in Equation 4, and Hi is a
binary variable that is equal to 1 if gene i is a “hit” in
the screen and 0 otherwise. Note that in contrast to the
other tests, NPH-NS does not output a p-value. More-
over, it requires that some genes be designated as “hits”
beforehand. How these hits were defined for each dataset
is indicated in Table 1.

Experimental protocols

The siRNA knockdown experiments were performed
in quadruplicates using black 96 well clear bottom as-
say plates (Costar). Briefly, 10,000 MeWo cells in 100 µl
RPMI1640 supplemented with 10% FCS, Pen/Strep and
Glutamine have been transfected with 5 pmol of siRNA
smartPools (Thermo Scientific) using Lipofectamine 2000
(Invitrogen) in a final concentration of 0,4% according
to manufacturer’s manual. 48 hours after transfection
the cells were infected with 100 pfu of rVZV-GFP (Zer-
boni and Arvin, 2000). 72 hours later, the GFP-signal
was measured on a fluorescence reader (Fluostar Optima,
BMG labtech). For deconvolution experiments, 5 pmol of
single siRNAs were used instead of the smartPools.
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Table 1: RNAi Datasets.
Code Phenotype Scale Hit list used Comments Reference

A Chemosensitization genome-wide
author supplied high

confidence list
NCI-H1155 cells Whitehurst et al., 2007

B HCV host factors genome-wide
author supplied

primary hit list
Huh7 cells Tai et al., 2009

C Melanogenesis genome-wide |Z| ≥ 2 MNT-1 cells Ganesan et al., 2008

D Stem cell identity genome-wide
author supplied

deconvolution list
hESC cell lines Chia et al., 2010

E VZV host factors druggable |Z| ≥ 2 MeWo cells unpublished

F WNT signaling genome-wide
author supplied

primary hit list
DLD1 cells Major et al., 2008

G WNT signaling genome-wide |Z| ≥ 2 HeLa cells Tang et al., 2008

H Cell viability genome-wide |Z| ≥ 2 HeLa cells Kittler et al., 2007

I Cell viability genome-wide |Z| ≥ 2 Companiona to B Whitehurst et al., 2007

J Cell viability genome-wide |Z| ≥ 2 Companiona to C Tai et al., 2009

K Cell viability druggable |Z| ≥ 2 Companiona to F unpublished

L Cell viability genome-wide |Z| ≥ 2 Companiona to H Tang et al., 2008
aA secondary screen used to filter nonviable perturbations in the primary screen.

8



0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 1.0% of each method in original screen

relative rank (RR)
0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 2.0% of each method in original screen

relative rank (RR)
0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 5.0% of each method in original screen

relative rank (RR)

0 2 4 6 8 10

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)
0 1 2 3 4 5 6 7

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)
0 1 2 3 4 5 6

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 1.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

1.
0%

 r
ec

ov
er

ed

 

 

SWT−NS−90
STF−DN−70
SOS−DN−70
STF−DN−90
NPH−NS−90
SOS−DN−90
WCX−DN−90
WCX−DN−70
SWT−NS−70
STF−DN−40
SWT−NS−40
SOS−DN−40
NPH−NS−70
NPH−NS−40
WCX−DN−40
CNTRLTY

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 2.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

2.
0%

 r
ec

ov
er

ed

 

 

SWT−NS−90
STF−DN−90
SOS−DN−70
STF−DN−70
SOS−DN−40
SOS−DN−90
WCX−DN−90
STF−DN−40
NPH−NS−90
NPH−NS−40
SWT−NS−70
WCX−DN−70
SWT−NS−40
NPH−NS−70
WCX−DN−40
CNTRLTY

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 5.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

5.
0%

 r
ec

ov
er

ed

 

 

SWT−NS−90
STF−DN−90
SWT−NS−70
WCX−DN−90
NPH−NS−40
SOS−DN−40
STF−DN−70
SOS−DN−90
SOS−DN−70
NPH−NS−90
STF−DN−40
SWT−NS−40
WCX−DN−70
NPH−NS−70
WCX−DN−40
CNTRLTY

Figure 1: Summary of results for the HCV host factor screen (Screen B). Top row: Summarizes the
recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each method. For example,
the leftmost graph shows the fraction of the top 1% genes with the strongest induced phenotypes that is recovered as
a function of the fraction of the total number of genes that is considered when the genes are prioritized according to
the corresponding method scores. Note that none of these methods used the phenotype of a gene itself in calculating
its score; only the data values of the gene’s neighbors were considered. The different methods in the legend are
ordered according to the corresponding AUC (area under the curve). Middle row: Shows the distribution of the
top ranked genes for each method in the primary screen (sorted from the strongest to the weakest phenotype). RR
stands for relative rank. Bottom row: Shows the statistical significance of the corresponding distribution in the
middle row. Specifically, we plotted the logarithms of the p-values obtained via comparison of the phenotypes of
the top-ranked genes for each method to the phenotypes of all the genes in the network using Wilcoxon’s Rank-Sum
test. Please see the methods section for the method codes used. The number that follows each code refers to the
confidence threshold that was used in assembling the functional association network from the STRING database.

9



0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 1.0% of each method in original screen

relative rank (RR)
0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 2.0% of each method in original screen

relative rank (RR)
0 0.2 0.4 0.6 0.8 1

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

RR of top 5.0% of each method in original screen

relative rank (RR)

0 5 10 15 20 25

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)
0 5 10 15 20

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)
0 5 10 15 20

CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90
SOS−DN−40
SOS−DN−70
SOS−DN−90
STF−DN−40
STF−DN−70
STF−DN−90
SWT−NS−40
SWT−NS−70
SWT−NS−90
WCX−DN−40
WCX−DN−70
WCX−DN−90

Ranksum test significance

−log
10

(p−value)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 1.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

1.
0%

 r
ec

ov
er

ed

 

 

SOS−DN−90
WCX−DN−90
STF−DN−90
SWT−NS−90
SOS−DN−40
WCX−DN−40
SOS−DN−70
STF−DN−40
SWT−NS−40
WCX−DN−70
SWT−NS−70
STF−DN−70
CNTRLTY
NPH−NS−40
NPH−NS−90
NPH−NS−70

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 2.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

2.
0%

 r
ec

ov
er

ed

 

 

SWT−NS−90
WCX−DN−90
SOS−DN−40
SOS−DN−90
SWT−NS−70
STF−DN−90
SOS−DN−70
SWT−NS−40
STF−DN−40
WCX−DN−70
STF−DN−70
WCX−DN−40
CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recovery of the top 5.0% of the primary screen

Top ranked proportion of each method

P
er

ce
nt

ag
e 

of
 th

e 
pr

im
ar

y 
sc

re
en

 to
p 

5.
0%

 r
ec

ov
er

ed

 

 

SWT−NS−90
SOS−DN−40
SWT−NS−70
SOS−DN−90
SOS−DN−70
STF−DN−40
WCX−DN−90
STF−DN−90
STF−DN−70
SWT−NS−40
WCX−DN−70
WCX−DN−40
CNTRLTY
NPH−NS−40
NPH−NS−70
NPH−NS−90

Figure 2: Summary of results for the stem cell identity factors screen (Screen D). Top row: Summarizes
the recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each method. The
different methods in the legend are ordered according to the corresponding AUC (area under the curve). Middle
row: Shows the distribution of the top ranked genes for each method in the primary screen (sorted from the strongest
to the weakest phenotype). RR stands for relative rank. Bottom row: Shows the statistical significance of the
corresponding distribution in the middle row.

10



Figure 3: Predictability of the human RNAi screens. Summarizes the predictability of the different screens
using SOS-DN-90 (top), SWT-NS-90 (middle) and WCX-DN-90 (bottom). The graphs on the left show the distri-
bution of the top 1% ranked genes by each method in the primary screens (sorted from left to right by decreasing
phenotype strength). The graphs on the right show the recovery of the top 1% hits of each screen by the three
methods. Clearly, the correlations between the genes that induce strong phenotypes and those associated with them
are more evident in some screens than in others.
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Figure 4: Validation of VZV predictions. We experimentally tested 57 of the candidate host factors for VZV
by performing the corresponding knockdowns using siRNA smartpools. 24 (48%) inhibited viral growth by more
than 50% (normalized to negative controls), compared to less than 4% in the main screen. Several were also found
to have significantly enhanced infection, including DHX9, TXNL4, and EIF3K. Positive and negative controls are
marked accordingly.
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Figure S1: Results for the chemosensitizer loci screen (Screen A). Top row: Summarizes the

recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each method.

The different methods in the legend are ordered according to the corresponding AUC (area under the

curve). Middle row: Shows the distribution of the top ranked genes for each method in the primary

screen (sorted from the strongest to the weakest phenotype). RR stands for relative rank. Bottom row:

Shows the statistical significance of the corresponding distribution in the middle row.
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Figure S2: Results for the melanogenesis factors screen (Screen C). Top row: Summarizes the

recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each method.

The different methods in the legend are ordered according to the corresponding AUC (area under the

curve). Middle row: Shows the distribution of the top ranked genes for each method in the primary

screen (sorted from the strongest to the weakest phenotype). RR stands for relative rank. Bottom row:

Shows the statistical significance of the corresponding distribution in the middle row.
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Figure S3: Results for the Kitler et al. (2007) cell viability screen (Screen H). Top row: Summa-

rizes the recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by

each method. The different methods in the legend are ordered according to the corresponding AUC

(area under the curve). Middle row: Shows the distribution of the top ranked genes for each method in

the primary screen (sorted from the strongest to the weakest phenotype). RR stands for relative rank.

Bottom row: Shows the statistical significance of the corresponding distribution in the middle row.
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Figure S4: Results for the Tai et al. (2009) cell viability screen (Screen J). Top row: Summarizes

the recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each

method. The different methods in the legend are ordered according to the corresponding AUC (area

under the curve). Middle row: Shows the distribution of the top ranked genes for each method in

the primary screen (sorted from the strongest to the weakest phenotype). RR stands for relative rank.

Bottom row: Shows the statistical significance of the corresponding distribution in the middle row.
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Figure S5: Results for the Tang et al. (2008) cell viability screen (Screen L). Top row: Summarizes

the recovery of the top hits in the screen (i.e., genes with the strongest induced phenotype) by each

method. The different methods in the legend are ordered according to the corresponding AUC (area

under the curve). Middle row: Shows the distribution of the top ranked genes for each method in

the primary screen (sorted from the strongest to the weakest phenotype). RR stands for relative rank.

Bottom row: Shows the statistical significance of the corresponding distribution in the middle row.
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