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Abstract: The computational prediction of Nuclear Magnetic Resonance (NMR) chemical shifts has
been studied extensively in the last years. For small molecules, accurate quantum chemical methods
can be applied. But for macromolecular systems, such as proteins, the best available techniques that are
sufficiently efficient for high-throughput applications use a combination of semi-classical approximations
and statistical models. In this work, we study the influence of the presence of ligand molecules or ions on
chemical shift prediction of protein atoms. We test a number of ligand-related properties for correlation
with shift deviation and describe how a statistical model for the influence of ligand atoms and ions on
chemical shifts can be built. The technique can be efficiently applied to large-scale data sets, can be
applied on top of an arbitrary protein shift predictor, and can be trained in a fully automated fashion.
Our results clearly highlight the importance of including ligand-related features and that even with the
currently available small data set and relatively crude feature set, shift prediction in the vicinity of non-
protein atoms can be moderately improved.

1 Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is increasingly becoming one of the cornerstones of
structural biology. While the method has its shortcomings, e.g. with respect to the size of systems that can
be studied, it offers a number of unique advantages for the study of molecular structures. Most importantly,
the experiment can take place in solution, relatively close to physiological conditions. However, solving
protein structures by NMR is not a completely straight-forward process. One important step of the NMR
workflow is the resonance assignment process, where experimentally measured chemical shifts are mapped
to atoms in the molecule under consideration. This then usually leads to a number of distance constraints
that can be employed to generate models of the protein structure. Automated chemical shift prediction from
a model or candidate structure of a protein can thus help with the structure elucidation process, but it can do
even more: chemical shifts are highly sensitive to local characteristics of the molecular structure and hence
subsume an enormous amount of structural information. Consequently, all kinds of computational proce-
dures that generate candidate structures as part of their algorithmic process can profit from a comparison
of computed chemical shifts or spectra with experimentally observed assigned or unassigned data. This
collection includes techniques such as homology modelling and molecular docking, which can use NMR
chemical shifts as an experimentally derived scoring function. For the case of protein-protein docking,
for instance, previous work has shown that such information can help significantly in scoring candidates
[KBM+01, MCS+08, CMV11]. Similarly, chemical shifts have been successfully used as restraints for
molecular dynamics simulations [RKCV10].

However, the techniques that are currently available for chemical shift prediction can either cope with
small molecules only (in this case, quantum mechanical treatment becomes possible), or only address non-
modified proteins. An interaction between proteins and ligands, or proteins and ions for that matter, is
out of scope of these techniques. Hence, for an application, e.g., to the scoring of protein-ligand docking
results, we are currently lacking the right tools.



In this work, we study the influence of non-protein atoms on protein chemical shift prediction, propose
simple features to capture part of this effect, and present a technique for incorporating such features into
NMR chemical shift prediction. While the method does not allow to compute the shift for the ligand atoms
themselves, the ligand structure is indirectly reflected in the response of the protein atoms close to parts of
the ligand. This dependancy can lead to a first step along the way towards a pipeline for including protein-
ligand NMR into the scoring of docking results, similar in spirit to [KBM+01], which did the same for the
protein-protein case.

In the following, we will present the methodology behind our approach, describe our implementation, and
discuss the training and evaluation of a preliminary model.

2 The general idea behind the approach

An NMR experiment records one- or multidimensional spectra S, which are formed by the sum of all
responding atoms in the system. The information that is extracted from this recorded spectrum typically
comes in the form of so-called chemical shifts, which describe the discrepancy between the NMR response
observed for a given atom and its standard response in a simple model system. Thus, the chemical shift
value δ of an atom encodes information about its chemical environment (both in molecular topology and
space) and how it differs from that in a simple model system. Computing a mapping between the spectral
peaks and individual atoms in the molecule corresponds to the so-called resonance assignment problem for
the spectrum. The inverse direction, predicting the chemical shift for individual atoms of a molecule, gives
the NMR chemical shift prediction problem.

The official repository for protein NMR shift data is the Biological Magnetic Resonance Data Bank (BMRB)
[UAD+08], which stores the data in NMRStar format, a file format [HC95] that is derived from CIF
[HAB91, BM02]. These data files contain detailed information about the experimental setup and the
physico-chemical conditions as well as the recorded chemical shifts for those atoms of the measured
molecule for which it could be obtained.

In an idealized NMR chemical shift spectrum S, the peaks are just sharp sticks and the spectrum has the
following form

S =
∑
a∈mS

δ(a) + ε

where ε denotes the noise, δ(a) the recorded chemical shift for atom a, and mS the molecular system.

If the system under consideration is a protein, the spectrum can be further divided into protein and solvent
contributions:

S =
∑
a∈P

δP (a) +
∑
a∈S

δS(a) + ε

where P denotes the set of all protein atoms and S the solvent.

The chemical shifts within a protein–ligand complex thus are:

S =
∑
a∈P

δP (a) +
∑
a∈L

δL(a) +
∑
a∈S

δS(a) + ε

where L denotes the set of ligand atoms.

If we take the influence of protein, ligand, and solvent onto each other into account as well, we find:

S =
∑
a∈P

δP (a) + δLP (a) + δSP (a)

+
∑
a∈L

δL(a) + δPL(a) + δSL(a)

+
∑
a∈S

δS(a) + ε



where δLP (a) (δPL(a)) denotes the chemical shift contribution induced by the ligand onto a protein (pro-
tein onto a ligand) atom a, and δSX(a) denotes the influence of the solvent onto the protein (X = P ) or
ligand (X = L).

The chemical shift information stored in a BMRB file is restricted to protein atoms only. Thus, our model
and the typical content in the BMRB is limited to

S =
∑
a∈P

δP (a) + δLP (a) + δSP (a) + ε

The solvent is assumed to be distributed evenly around the protein and δP (a) and δSP (a) are usually
computed together.

For a protein-ligand shift prediction, we thus have to consider

S =
∑
a∈P

δP (a) + δLP (a) + ε

where δP comprises now the influence of solvent and protein on a protein’s chemical shift and δLP the
ligands influence.

Given these considerations, we can formulate an additive model for a protein-ligand chemical shift predic-
tion as

S =
∑
a∈P
MPL(a) =

∑
a∈P
{MP (a) +ML(a)}

Thus, for a protein–ligand complex and a given pure protein predictionMP (a), we only have to train a
model forML(a) that can be simply added.

In pure protein prediction typical models are based on approximations to semi-classical terms, statistical
models, or a combination of both. Since to our knowledge, no reliable approximations of classical terms
covering the protein-ligand interface are available, we decided for a statistical ligand model

ML(a) = δ̂(a, lf1(a), . . . , lfj(a))

where δ̂ is a random forest model, and lf1,. . . , lfj denote ligand related features.

3 Materials and Methods

3.1 The underlying protein model

For the pure protein model, MP we employed our recently developed pure protein hybrid approach
[DLLH11], a random forest model based on a large collection of features, namely semi-classical approxi-
mations for ring current (ring), the electric field (EF), hydrogen bonding (HB), and random coil contribu-
tions (coil) as well as sequential, structural, and force field based features:

MP = RF(δcoil, δring, δEF, δHB, f1, . . . , fi)

The model was trained on a recent extract of the BMRB, 859 non-homolog NMR resolved PDB files
mapped to BMRB files with 100% sequence identity.

In principle, any protein chemical shift prediction method can be used as basic model. However, our pure
protein model has the advantage that it was built exclusively on unrereferenced pure protein data (PDB
entries with additional ions, ligands, or DNA have been excluded) and focused on NMR resolved PDB
structures for high consistency between the PDB data and the underlying NMR experiment (as we are
going to use for training the protein-ligand model as well).



3.2 Towards a model of the ligand influence

From our experience on protein-only models, we have reason to expect that force field related features,
such as contributions to interaction energies between ligand and protein atoms, will form valuable features
for chemical shift prediction in the protein-ligand case as well. However, in contrast to the protein-only
case, were the chemistry is uniform and hence force fields are relatively simple, treating protein-ligand
interactions correctly is considerably more difficult. Roughly speaking, we will need a force field that
is equally suited to protein and ligand atoms. While there are specialized force fields for the treatment
of ligands, such as MMFF94 [Hal96], these usually have drawbacks in correctly capturing the protein
chemistry. Hence, we decided to base our study on the GAFF force field [WWC+04], which for protein
atoms equals the well-known Amber force field. For non-protein (or non-DNA) atoms, GAFF offers a wide
range of force field parameters and a simple scheme to extrapolate these to atom types that are not fully
covered.

However, fully integrating the GAFF force field into our chemical shift prediction is a non-trivial task.
Instead, in this study we aim at first answering whether such an approach is worthwhile at all by addressing
two different questions: (a) do chemical shift predictions really fare significantly worse in the presence of
ligand atoms and (b) is there a non-trivial correlation between the interactions encoded in GAFF and the
deviation of the chemical shifts close to a ligand from their predicted values?

For the first question, we have collected a data set of 581 PDB-BMRB pairs of protein-ligand complexes
(c.f. section 3.3). After culling the set to 10% homology using the PISCES package provided by the
Dunbrack group [WJ05] and further restricting to 100% sequence similarity between PDB and BMRB
protein content, we obtain 151 such pairs.

The data set was generated automatically using the procedure described in [DRB+11]. Out of the 102,427
assignments of shift values to protein atoms that were contained in this set, 39,230 belonged to atoms that
were located less than 10Å from a ligand atom.

To answer the second question, we created a set of new features that capture information about the ligand
environment. Such information has been intelligently encoded into the GAFF atom types, which are based
on the local molecular topology of the ligand. In contrast to other atom typing techniques, GAFF not
only relies on pure connectivity information, but also uses the orders of the bonds connecting the atoms
to deduce the final atom type. For this to work, however, correct bond order information for the ligand is
required.

Unfortunately, the ligand information provided by the Protein Data Bank (PDB) [BWF+00] is often incom-
plete, hydrogen information is missing and/or bond order information is not provided. In cases where only
one of these is missing, the other can be deduced by either filling up free valences with hydrogens or by
distributing free valences over bonds. For the latter case, we use BALL’s bond order assigner [DRB+11].

In principle, we could now try to proceed by computing GAFF interaction energies between all pairs of
ligand- and protein atoms. However, this turns out to be a non-trivial problem: first, the input structures
need to be carefully prepared (charges have to be assigned, e.g., with the help of a quantum chemical
procedure, force field parameters have to be extrapolated, etc.). Then, we might need to optimize the
structures with respect to the GAFF energy in order to relax potential non-optimal configurations due to
inaccuracies in the structure or approximations in the force field. The parameters for the minimization will
have to be carefully controlled, and quite possibly, structural restraints will have to be employed to keep
the structure from deviating from the NMR experiment. Finally, we need to be able to decompose the
energies into the intra-protein, intra-ligand and protein-ligand components for each term in the force field’s
Hamiltonian. Not all of these requirements can be easily satisfied using the commercial implementation of
the GAFF force field, but on the other hand, implementing GAFF is a challenging task.

We hence started with a simpler set of features to determine whether such a force field based approach will
be likely to succeed: instead of computing GAFF energies, we determine the local chemical neighbourhood
from the composition of non-protein GAFF types we find in the vicinity of each atom. As cutoff for
neighborhood of protein and ligand atoms we use 10Å.



We then define the following new features for our statistical model: for each protein atom, we use the total
number of ligand atoms within a 10Å radius summed over all atom types (num het atoms), the atomic ele-
ment (cl het element), the GAFF type (cl gaff type), the distance of the closest ligand atom (cl het dist),
and for each GAFF type i separately the number and closest distances (gaff type i and gaff type dist i )
for all ligand atoms within the 10Å radius as features.

In addition, we added the size of the ligand (ligand size) and an indicator variable for the presence of ions
(has ion) to the feature list. For the classification whether a non-protein molecule counts as ion or ligand,
we use the PDB RESTful web service (http://www.rcsb.org/pdb/software/rest.do).

3.3 Creation of the data set

A number of datasets for NMR protein chemical shift prediction has been employed by former approaches,
e.g. the very recent ShiftX2 [HLGW11] training and test set, the PROSHIFT set [Mei03], the TALOS+
set [SDCB09], the RefDB [ZNW03] or the general PDB to BMRB mapping of the BMRB [UAD+08]
itself. To the best of our knowledge, none of these specially focuses on protein-ligand complexes. We thus
created a new pure protein-ligand data set based on the official BMRB repository.

To this end, we further extended our pipeline for NMR pure protein chemical shift prediction models
[DLLH11]. Thus, automated creation of datasets and retraining of the models is easily possible if new data
becomes available.

The pipeline starts with the official BMRB mapping, from which we select all entries with either ions or
ligands present according to the PDB RESTful web service. The pipeline further restricts the dataset to a
subset with solely non-homolog entries and PDB–BMRB pairs with 100% sequence similiarity.

The pipeline then creates an SQLite database storing for each atom the experimenal shift and the features,
the ones used for evaluating the pure protein model as well as the new ligand related features. These
computations were assisted by the BALL library [HDR+10].

We then apply the pure protein modelMP and compute for each atom a a residual shift δres(a) by sub-
stracting the pure protein prediction from the atom’s experimental chemical shift:

δres(a) = δexp(a)−MP (a, δ
coil(a), δring(a), δEF(a), δHB(a), f1(a), . . . , fi(a)) (1)

For training statistical models, the pipeline uses R [R D11] and its Random Forests package [Bre01]. The
pipeline randomly splits the dataset in a ratio of 70:30 into training and test set. The resulting (extended)
pipeline is shown in Fig. 1.

3.4 Performance Evaluations of the Model

We evaluated the model on the randomly chosen test sets created by our pipeline. Comparison to state-
of-the-art techniques was performed by applying the stand-alone versions of ShiftX2 to our test data sets.
The performance of our models can be estimated from the root mean squared error (rmse) and Pearson’s
Correlation Coefficient (corr) on the test set.

rmse =

√√√√ n∑
i=1

(
δexp
i − δ

pred
i

)2
n

(2)

corr =
1

n− 1

n∑
i=1

(
δexp
i − δ̂

exp
i

sδexp

)(
δpred
i − δ̂pred

i

sδpred

)
(3)



Figure 1: Pipeline for dataset generation and training of protein-ligand NMR chemical shift prediction models.

with δexp denoting the experimentally measured chemical shift of an atom, δpred the predicted chemical
shift, and n the number of predictions made. δ̂exp(δ̂pred) denotes the standard deviation of the experimen-
tally measured (predicted) shifts and sδexp(sδpred) its mean.

4 Results

To answer the first question mentioned above, i.e., to determine whether shift prediction really works
significantly worse in the presence of ligand atoms as compared to the bulk, we compared the prediction
of an established protein shift prediction package, the recently published ShiftX2 program, on the set of
protein atoms in the spatial neighbourhood of a ligand atom. The results can be found in Tab. 1.

As can be seen, the performance of shift prediction close to ligand atoms indeed breaks down considerably.
This is in line with our expectations: the ligand atoms are part of the chemical environment, which is what
determines the chemical shift values. Since the ligand atoms are not covered by previous shift prediction
models, the estimate of the chemical environment does not match that realized in nature and hence, the
prediction strongly deviates from the true values. This motivates that additional steps should be taken to
model ligand atoms in shift prediction procedures.

To now address the second question, i.e., to decide whether force field based features contain useful in-
formation for shift prediction, we started by plotting each feature against the absolute residual shift value,
i.e., against the magnitude of the shift not explained by the protein model (of course, this number includes
errors in the protein model as well). Not all features show a significant correlation, but some do: from
Fig. 2 for the feature ligand size, e.g., we see that larger ligands tend to have a greater influence on shift
prediction than smaller ones. The largest ligands in our data set, however, tended to be modified peptides
so that the deviation from a pure protein model is not as pronounced as the ligand size might suggest.

Another example of an interesting dependency between residual shift value magnitude and feature can be
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Figure 2: Exemplary plot of the residual shift magnitude as a function of ligand size for carbon atoms.

Figure 3: Exemplary plot of the residual shift magnitude as a function of distance to the next atoms of type h4 (left)
and n3 (right).

found in Fig. 3, which shows the distances to the closest h4 and n3 atoms. Here, we see that the residual
shift tends to decrease with increasing distance from the next h4 or n3 atom, since the interactions that
influence the chemical shift are strongly decaying with distance.

In both figures, the results agree with our expectations.

However, plotting the residual itself as opposed to its magnitude as a function of the individual features
(c.f. Fig. 4), we found a less clear trend. Roughly speaking, the presence of several GAFF atom types in
the vicinity of a protein atom seems to induce a strongly deviating shift, but the direction and strength of
the deviation can in most cases not simply be read of from the atomic composition of the neighbourhood.

An intuitive reasoning thus seems to suggest that simple atom type features as described above can indeed
help in improving prediction performance, but that their influence will be limited, and more sophisticated
features such as GAFF energy components will be needed to further improve the quality. And indeed, this
is in line with our results when we proceed with our pipeline and train random forest models to the residual
shift values (since we have significantly fewer data points at our disposal as in pure protein shift prediction,
we only train three different models, one for C, N, and H atoms each): as can be seen in Tab. 1, which
shows the results on the independent, non-homolog test set (30% of the initial data set), shift prediction is
assisted by the new ligand model (prediction accuracy increases in all cases), but the increase is moderate
in nature.
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Figure 4: Exemplary plot of the residual shift as a function of ligand size for carbon atoms.

Method 15N correlation 13C correlation 1H correlation
(rmse) (rmse) (rmse)

ShiftX2 (reported) 0.9800 (1.1169) 0.9875 (0.497) 0.9729 (0.1471)
ShiftX2 0.72 (3.606) 0.999 (1.804) 0.939 (0.887)
BALL (ligand) 0.811 (2.712) 0.999 (1.592) 0.961 (0.867)
size (training/test) 3873 / 1660 9188 / 3938 14399 / 6172
num features 49 49 50

Table 1: Performance of ShiftX2 as reported, as measured on our new data set of protein atoms close to a ligand, and
of our new ligand model on this set. Values shown are Pearson correlation and rmse (in parentheses), respectively, per
atom type. The reported values of ShiftX2 have been averaged over all atom types for each element. The last two lines
show the size of our data set in terms of shifts and the number of used features in our random forest model.



5 Discussion

As expected from the feature/residual correlations, the inclusion of GAFF atom type features improves the
prediction, but only moderately. The limited improvement is probably due to two effects: for some of the
atoms, the errors of the protein model are relatively large and these of course do not correlate with any
ligand feature. Secondly, and more importantly, the dependency between protein shifts and ligand atoms
is complex and cannot be modelled well by just counting atom types. In the terminology of a hybrid shift
prediction model, we need semi-classical terms (i.e., models of the underlying physico-chemical processes
in contrast to a mere collection of molecular properties) to greatly improve the prediction performance.

Still, considering the complexity of the task (for a similarly complex problem, imagine predicting force
field energies using a purely statistical model from the composition of the chemical neighbourhood of a
given atom), the slight but consistent increase in model performance strongly indicates that force field
based descriptors are a promising ingredient for protein-ligand chemical shift prediction.

Here, we expect to improve matters by using GAFF energies in future work. Even though this might sound
like a trivial extension at first glance, it is a highly non-trivial task that involves questions of a technical (im-
plementation, integration, energy decomposition, . . . ) as well as of a more fundamental (parametrization,
treatment of singularities, treatment of missing atoms or non-optimal input structures) nature. However,
from the results of this study we are convinced that the effort will be worth its while.

References

[BM02] I. D. Brown and B. McMahon. CIF: The computer language of crystallography. Acta Crystallographica
Section B: Structural Science, 58(3 PART 1):317–324, 2002.

[Bre01] L. Breiman. Random Forests. Machine Learning, (1):5–32, 2001.

[BWF+00] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E.
Bourne. The Protein Data Bank. Nucleic Acids Research, 28:235–242, 2000.

[CMV11] A. Cavalli, R. W. Montalvao, and M. Vendruscolo. Using Chemical Shifts to Determine Structural
Changes in Proteins upon Complex Formation. The journal of physical chemistry. B, June 2011.

[DLLH11] A.K. Dehof, S.H. Loew, H.P. Lenhof, and A. Hildebrandt. A Pipeline for automated dataset generation
and model training for NMR chemical shift prediction. submitted for publication, 2011.
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