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Abstract: The prediction of sub-cellular localization of proteins based on sequence
information is a central task in bioinformatics. So far, many approaches have been de-
veloped, utilizing machine learning approaches such as neural networks and support
vector machines. While being successful in general, predictive performance of these
methods varies between different organisms. Moreover, standard methods are usually
not well equipped to produce meaningful results in the case of specialized compart-
ments, which are typically not covered by standard approaches. Yet, organisms exhibi-
ting such compartments can be very interesting for the production of pharmaceuticals.
In this paper, we present a rather unorthodox alternative approach to the prediction
of sub-cellular protein localization, utilizing kernel-based machine learning methods
combined with time-series metrics as distance measures on physicochemical models
of amino acid sequences.

1 Introduction

Identifying the sub-cellular localization of proteins is an important task in bioinformatics.
However, depending on the organism of interest, an experimental verification of a large
number of proteins can be difficult, and in the case of high-throughput experiments out-
right infeasible. Hence, there is a need for reliable prediction tools capable of inferring
protein localization from sequence. Thus, it comes at no surprise that many tools for the
prediction of protein localization already exist. These tools exploit different machine lear-
ning techniques, such as hidden Markov Models (HMM) [JWVHT03, BNvHB04], neural
networks [BNvHBO04, ENBVHOO], support vector machines [SCLK05, BGR05, SCL+07]
or nearest neighbor classification [HPOT07].

Predictions are typically based on the presence of targeting signals, such as signal pep-
tide (SP) or mitochondrial targeting peptide (mTP). Alternatively, more general amino
acid sequence features are exploited, e.g., amino acid composition [ENBvH00, BR04,
HPO™07], compartment-specific motifs and Pfam domains [ENBvHO00], dipeptide com-
position [BR04] or averages of hydropathy index, charge and isoelectric point [BTM™02].

Regardless of the classification method, the performance of prediction tools depends on the
available training data, namely the set of proteins for which the sub-cellular localization
is known. While ample data exists for many model organisms and standard compartments
(e.g. mitochondria), this is not necessarily the case for specialized compartments occurring



only in certain organisms, such as complex plastids of diatoms or the apicoplast of P.
falciparum, the causative agent of malaria, and other Apicomplexa.

Generally speaking, standard prediction tools roughly distinguish between basic groups of
organisms, e.g., plant or animal cells [BNVHB04, ENBvHOO]. Therefore, prediction fo-
cuses on standard compartments omnipresent in all cells, for which targeting signals are
mostly known. As a consequence, standard tools are less suitable for specialized compart-
ments for which this information is not available. In fact, it is not even possible to obtain
a prediction for such cases, since they are generally not considered by the prediction tool.
Alternatively, one can resort to motif searches and protein sequence comparison to predict
the sub-cellular localization of proteins of interest. Yet, motif searches may also turn out
unsuccessful, if the targeting signal is not highly conserved.

Here, we present an alternative approach using time series kernels to predict protein loca-
lization for a “special case” compartment of that kind: the secondary plastid of the diatom
Phaeodactylum tricornutum. Instead of focusing on the amino acid sequence itself, we
obtain a more general physicochemical model by mapping different amino acid properties
to the sequence, thereby deriving a sequence of feature vectors. As distance measures on
these models, we propose the use of time series metrics which can be used in conjunction
with distance-based classifiers.

2 Complex plastids in Pheaodactylum tricornutum

In synthetic biology, eukaryotic organisms such as P. tricornutum are especially interes-
ting, since they offer the potential to constitute synthetic biochemical pathways in distinct
reaction compartments separated from the cytoplasm. This enables the production of po-
tentially harmful products, e.g., pharmaceuticals, that could interfere with cytoplasmic
proteins. Algae, such as P. tricornutum, have the additional advantages of a high reproduc-
tion cycle and cost-efficient cultivation, making them attractive for industrial scale biotech-
nology. To exploit these advantages, the protein import mechanism must be understood to
ensure an efficient transport of engineered proteins.

According to the actual view, diatoms evolved by secondary endocytobiosis, i.e., by engul-
fing a primary photosynthetic red alga which was subsequently reduced to an organelle.
As a consequence, diatoms contain complex plastids surrounded by four instead of two
membranes. In the case of P. tricornutum, the outermost membrane of the complex plastid
is in continuum with the endoplasmic reticulum (ER) [Gib81]. This is followed by the pe-
riplastidal membrane (PPM), which separates the periplastidal compartment (PPC) from
the ER (see Fig. 1). Obviously, a more complex protein targeting system is required to
import nucleus-encoded proteins into the diatom plastid.

Proteins destined for the complex plastid are imported into the ER via a Signal Peptide (SP)
prior to reaching their destination, along with secretory proteins. PPC-resident and plastid
proteins will then get transported into the PPC via a transit peptide, while the secretory
proteins follow the default secretory pathway. It has been shown that an aromatic or bulky
residue at the +1 position of a predicted SP cleavage site is necessary for plastid import
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Figure 1: Secondary plastid of P. tricornutum. ER = endoplasmic reticulum, PPC = peri-
plastid compartment, PPM = periplastid membrane, OEM = outer envelope membrane,
IEM = inner envelope membrane
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Figure 2: Example of the modeling approach for the sequence MTMRPRTKSL. Each ami-
no acid (A A) is modeled by a feature vector f4 4.

[GVH07]. Despite this knowledge, differentiating between secretory, PPC-resident and
plastid proteins is a problem that has not yet been solved effectively.

3 Modeling of protein sequences

We represent amino acid sequences as a sequences of d-dimensional feature vectors f4 4,
containing amino acid properties (e.g., hydropathy indexes, charges, etc.). This allows
the simultaneous integration of different levels of information, as opposed to a single se-
quence. An example is given in Fig. 2. This is especially interesting if the sequence alone
is insufficient to detect similarities among the proteins, simply because no strongly con-
served motif can be found. Instead, focusing on patterns of general properties of the amino
acids might be more successful, as these could be the result of certain important secondary
structures, e.g., amphiphilic helices, which play an important role in mitchondrial protein
import [LNSO00]. For an amphiphilic a-helices, the charge of the amino acid is obvious-
ly more relevant than the actual amino acid type. Our more general model might help to
detect such characteristics more efficiently.

4 Time series metrics as distance measures

While mostly known from other fields (e.g., economics, mathematical finance or signal
processing), times series analysis has been used in bioinformatics mainly for the analysis



of microarray data [OV10]. In time series analysis, several distance metrics are known
that internally derive an alignment of the time series, very similar to deriving a sequence
alignment of protein sequences. In fact, many of these metrics are calculated via dyna-
mic programming, similar to the well-known Needleman-Wunsch algorithm [NW70], the
major difference being the recursive equation defining the alignment cost.

Here, we will focus on four of these measures: Dynamic Time Warping (DTW), [BC96],
Edit Distance on Real sequences (EDR) [CO005], Edit Distance with Real Penalty (ERP)
[CN04] and Longest Common Sub-Sequence (LCSS) [VGK02] !, defined as follows:
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with 24, y¢ denoting d-dimensional time series, g denoting a d-dimensional gap vector and
distgpr = 01if |xﬁ.] — y[di]| < § and 1 otherwise. In order to use support vector machines,
the distance metrics have to be converted into a similarity measure s in order to yield a
kernel function on time series. This is achieved by using

s(@d,y?) = et )

with § denoting a distance metric on time series.

Note that LCSS is in fact a similarity rather than a distance measure



Using time series metrics to compare protein sequences might seem unorthodox at first,
since we are actually not analyzing time series data. Yet, the problems of comparing time
series and comparing protein sequences are similar, since both come down to comparing
linearly ordered sequences of observations. In our case, the order information has a spatial
(positional) rather than a temporal interpretation.

One advantage of times series measures is the fact that they can be multidimensional.
Hence it becomes possible to compare sequences of feature vectors, regardless of the di-
mension d, allowing to incorporate multiple layers of information. More importantly, time
series metrics account for shifts and stretches in the sequences, which allows for consi-
dering patterns that are only approximately similar. Again for the example of amphiphilic
helices, the exact position of a charged amino acid might not be crucial, i.e., a residue
position may vary slightly or a charged residue may even be missing at some positions,
without disrupting the amphiphilic character of the helix. Allowing for tolerances is there-
fore mandatory to capture such approximate similarities.

5 Results

To assess the performance of the time series approach on the example of P. tricornutum,
we used a test data set consisting of 133 protein sequences, whose location within the
diatom are known due to function or experimentally verified. This data set contains 37
verified PPC-resident proteins, 53 plastid proteins and 43 secretory proteins.

For each sequence, an SP was predicted using SignalP [BNVHBO04], further supporting the
conjecture that each protein is imported into the ER. In each case, the remaining sequences
after the predicted SP cleavage site were converted into a sequence of 2-dimensional fea-
ture vectors, using pKI and the hydrophobicity values according to the Hopp-Woods scale
[HWS83] as attributes. In this initial study, we limited ourselves to only two features to
avoid the risk of including too many potentially irrelevant features that might obscure
discriminating information with background noise. Hydrophobicity and pKI value were
chosen since both are already considered relevant features in the literature [BTMT02]. All
sequences were truncated after the first 15 residues, since the transit peptide responsible
for further protein targeting was assumed to be located after the SP cleavage site.

Tables 1 and 2 summarize the classification results using leave-one-out cross validation for
different two-class classification scenarios. Results were obtained by k-nearest neighbor
classification and an SVM using the LibSVM package [CL11]. Additionally, the Euclidean
distance (ED) is included as a baseline.

Table 1 shows the accuracy for separating plastid proteins from non-plastid proteins as a
proof-of-concept. Table 2a shows the classification accuracy for predicting PPC-directed
secretory vs. (plastid and ppc-resident) proteins, Table 2b for predicting secretory vs. PPC-
resident proteins.

As additional baselines, we included predictions by three of the most widely used me-
thods for localization prediction: MultiLoc2 [BBK09], TargetP [ENBvHO00] and WoLF
PSORT [HPO107]. MultiLoc2 employs an SVM approach utilizing sequence motifs and



ED | DTW | EDR | ERP | LCSS
I-NN | 699 | 8.0 | 805 | 722 | 759
3-NN | 73.7 | 89.5 | 782 | 729 | 82.0
5-NN | 714 | 90.2 | 82.0 | 782 | 82.0
7-NN | 752 | 90.2 | 82.7 | 82.7 | 76.7
SVM | 76.7 | 89.5 | 82.0 | 84.2 | 789

Table 1: Percent of correct classifications for plastid vs. non-plastid proteins.

ED | DTW | EDR | ERP | LCSS ED | DTW | EDR | ERP | LCSS

INN | 654 | 722 | 729 | 82.0 | 82.0 62.2 | 81.1 | 689 | 644 | 689
3NN | 699 | 722 | 774 | 83.5 | 79.7 71.1 | 86.7 | 76.7 | 73.3 | 77.8
SNN | 684 | 759 | 80.5 | 80.5 | 81.2 74.4 | 889 | 77.8 | 76.7 | 76.7
7NN | 684 | 774 | 79.7 | 774 | 80.5 733 | 86.7 | 789 | 80.0 | 7I.1
SVM | 759 | 76.7 | 69.2 | 69.2 | 82.7 76.77 | 889 | 733 | 75.6 | 63.3

(a) PPC-directed vs. secretory (b) PPC-resident vs. secretory

Table 2: Predictive accuracy (percent of correct classifications) for separating secretory
proteins from PPC-directed and PPC-resident proteins.

amino acid composition in conjunction with gene ontology, TargetP uses a neural network
and hidden Markov models to check for targeting signals, while WoLF PSORT utilizes
weighted nearest neighbor classification based on known targeting signals and correlative
sequence features.

Note that these tools in principle return more information than our binary classifiers, being
predictors for multiple locations. For the pairwise classification, the majority of these clas-
ses are irrelevant, since we are interested in a separation of plastid and non-plastid proteins,
respectively, secretory and non-secretory proteins. Obviously, this will result in an overe-
stimation of the accuracy of these approaches, since, for example, a secretory protein that
is predicted to be mitochondrial by TargetP will still be considered correctly classified
as non-plastid, although the actual prediction is wrong. The results for the three pairwise
classifications are given in Table 3.

In each classification scenario, the time series kernels achieve higher accuracy than the
ED, indicating the benefit of allowing for a certain tolerance regarding stretches and shifts.

plastid vs. non-plastid | sec vs. PPC-directed | sec. vs. PPC
TargetP 65.4 56.4 63.8
WoLF PSORT 65.4 68.4 50.0
MultiLoc2 67.7 61.7 55.0

Table 3: Classification accuracy for MultiLoc2, TargetP and WoLLF PSORT, using standard
parametrization.



Moreover, the time series metrics outperform all three competitors.

In the first experiment, one could also classify plastid proteins based on the presence of
a bulky or aromatic amino acid at the +1 cleavage site position of the signal peptide. In
the case of P. tricornutum, this yields an accuracy of 88.7%. Without using this explicit
knowledge, the time series approach still yields reasonable accuracies, and in the the case
of dprw also surpasses this value. However, such information is known for some but not
all algae species, such information is not available.

6 Discussion

In this paper, we proposed an intriguing new application of time series kernels for sub-
cellular localization prediction. The results showed that the methodology is capable of
producing reasonable results, even outperforming widely used baseline methods.

In preliminary experiments, we found that the transit peptide could not be reliably detected
by standard approaches or motif searches (data not shown). Yet, we are still able to separate
the secretory proteins from the proteins imported into the PPC to some extend. Plastid-
resident proteins could be distinguished from secretory and PPC-resident proteins as well.
In the case of P. tricornutum, this could in principle also be achieved based on the signal
peptide cleavage site. Yet, such information is generally not available for other species, for
which the identification of plastid proteins is still an open problem.

In our opinion, the promising results justify further investigation, for example by using
related time series kernel methods or including additional features, such as alternative hy-
drophobicity scales, charge or bulkiness of the residues. Moreover, it could be interesting
to expand the methodology to other species. This will be addressed in future work.
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