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Abstract

Contrary to standard non-abstaining classifiers, abstaining classifiers have the choice to label
an instance with any of the given class labels or to refrain from giving a classification in
order to improve predictive performance. Our interest in abstaining classifiers is motivated
by applications for which reliable predictions can only be obtained for a fraction of instances
such as, for example, chemical risk assessment which involves the prediction of toxic side-
effects.

The goal of this thesis was to define an appropriate method to choose between classifica-
tion and abstention which does not rely on any specific characteristics of machine learning
algorithms or applications. In this way, any non-abstaining classifier can be converted into
an abstaining classifier by calculating a so-called optimal abstention window.

Abstaining classifiers have to trade off improved predictive performance against reduced
coverage taking into account the costs associated with misclassifications and abstaining re-
spectively. Depending on the specific application, abstaining will be more or less preferred
for the same cost scenarios. Nevertheless, we can make statements as to which cost scenarios
clearly prohibit abstention.

To accommodate lack of knowledge concerning the exact costs, three-dimensional curves
are introduced illustrating the behavior of abstaining classifiers for a variety of cost scenarios.
These curves moreover can be used to compare models derived by different machine learning
algorithms as well as to combine different abstaining classifiers. Due to relationships between
different abstention windows for the same classifier, they can be computed efficiently in time
linear in the number of instances in the validation set and linear in their size.

The existence of such efficient algorithms makes it possible to apply the presented methods
to a variety of classification problems even if they involve large datasets. In this thesis, these
methods are evaluated for EST classification as well as the prediction of carcinogenicity and
mutagenicity of chemical compounds. For each of these applications classification accuracy
can be improved decisively with the help of abstaining classifiers.

Additionally, abstaining is analyzed in the framework of voting ensembles and theoretical
bounds for equal and unequal misclassification costs are obtained based on the PAC-Bayesian
theorem. These results are moreover extended to allow different thresholds for positive and
negative predictions and concur to a large extent with the empirical results.
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Zusammenfassung

Im Gegensatz zu gängigen Klassifikatoren haben sich enthaltende Klassifikatoren die Wahl, ob
sie einem Beispiel eine Klassifikation zuordnen oder nicht, um die Klassifikationsgenauigkeit
zu verbessern. Unser Interesse an sich enthaltende Klassifikatoren wird motiviert durch An-
wendungen bei welchen zuverlässige Vorhersagen nur für einen Teil der Beispiele möglich
sind, wie etwa dem Beurteilen von chemischen Risiken und der Vorhersage von toxischen
Nebenwirkungen.

Das Ziel dieser Arbeit war, ein geeignetes Verfahren zu definieren, um die Entscheidung
zwischen Klassifikation und Enthaltung zu treffen, welches unabhängig von spezifischen Eigen-
schaften von Algorithmen des maschinellen Lernens bzw. bestimmten Anwendungen ist. Auf
diese Weise kann jeder sich nicht enthaltende Klassifikator in einen sich enthaltenden Klassi-
fikator konvertiert durch die Berechnung eines sogenannten optimalen Enthaltungsfensters.

Sich enthaltende Klassifikatoren müssen Verbesserungen in der Vorhersagequalität gegen-
über einer geringeren Anwendbarkeit abwägen unter Berücksichtung der Kosten, die mit
falschen Vorhersagen bzw. Enthaltungen verbunden sind. Abhängig von der spezifischen
Anwendung werden Enthaltungen für gleiche Kostenszenarien mehr oder weniger bevorzugt.
Trotz allem können wir eine Aussage darüber treffen, welche Kostenszenarien Enthaltung
eindeutig unmöglich machen.

Um mangelndem Wissen über exakte Kosten zu begegnen, werden dreidimensionale Kur-
ven eingeführt, die das Verhalten von sich enthaltenden Klassifikatoren für verschiedenste
Kostenszenarien veranschaulichen. Diese Kurven können zudem dazu verwendet werden, um
Modelle, die von unterschiedlichen Algorithmen des maschinellen Lernens erzeugt wurden zu
vergleichen sowie um verschiedene sich enthaltende Klassifikatoren zu kombinieren. Aufgrund
von Beziehungen zwischen Enthaltungsfenstern für denselben Klassifikator können sie zudem
effizient in Zeit linear in der Anzahl der Beispiele in der Validierungsmenge und linear in ihrer
Größe berechnet werden.

Die Existenz von solchen effizienten Algorithmen ermöglicht es erst, die vorgestellten
Methoden für eine Reihen von Klassifikationsproblemen anzuwenden auch wenn diese mit
großen Datenmengen verbunden sind. Im Rahmen dieser Arbeit werden diese Methoden
für EST Klassifikation und die Vorhersage von Karzinogenizität oder Mutagenizität von
chemischen Verbindungen ausgewertet. Für jede dieser Anwendungen kann die Vorhersage-
genauigkeit mit Hilfe von sich enthaltenden Klassifikatoren deutlich verbessert werden.

Abschließend wird Enthaltung im Rahmen von sich abstimmenden Ensembles analysiert
und theoretische Schranken werden für gleiche und ungleiche Kosten für falsche Klassifika-
tionen auf Basis des PAC-Bayesian Theorems bestimmt. Diese Ergebnisse werden darüber
hinaus erweitert um unterschiedliche Schwellwerte für positive und negative Vorhersagen zu
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ermöglichen und stimmen weitgehend mit den empirischen Resultaten überein.
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Chapter 1

Introduction

The objective of the following sections is to provide an insight into the scope of this the-
sis as well as its motivation. We first introduce briefly the notion of supervised learning
and classification and then move on to justify and formally define the idea of abstaining in
classification.

1.1 Classification

Classification involves the task of determining to which element of a finite set of possible
classes or categories an object belongs. The choice for a class label is based on previously
seen training examples whose class is known. The generalization step beyond the observations
is called supervised learning and many learning algorithms have been proposed.

Classification is not only an issue in machine learning and data mining, but is natural
to human thinking. Any physician, for example, is presented daily with the task of classify-
ing patients showing different symptoms based on his observations or further tests he may
conduct. Additionally, he is able to refer to acquired knowledge about diseases as well as
experiences from prior patients. Obviously, for this problem computer programs are clearly
insufficient. However, there are many classification tasks for which machine learning algo-
rithms have been used successfully in various application areas. In bioinformatics, such tasks
comprise the detection of homology for low sequence similarity [3], tumor classification [11],
protein fold recognition [13], the prediction of β-turns in proteins [33] and many more.

To formally define the presented concepts, some terminology has to be introduced first.
Throughout this thesis, an example or object is referred to as an instance which is described
by a set of attributes.

Definition 1.1 (Instance). An instance x is defined by a k-tuple of the form (x1, . . . , xk) ∈
A1 × · · · × Ak. The xi, 1 ≤ i ≤ k, are called attributes and Ai, 1 ≤ i ≤ k, denotes the set of
possible values xi may assume.
The instance space is denoted as X ⊆ A1 × · · · × Ak.

Each Ai may either be a set of discrete values or be continuous. For example, the eye color
of a person can be specified by a limited number of terms, whereas his or her body weight is
given by continuous values. Each instance may belong to a class or category. We denote the

1



2 CHAPTER 1. INTRODUCTION

set of possible class labels Y as a finite set of discrete labels such that Y = {y1, y2, . . . , yl}.
A classifier is then defined as follows.

Definition 1.2 (Classifier). Given an instance space X and a set of possible class labels
Y = {y1, y2, . . . , yl}, a (non-abstaining) classifier labels each instance x ∈ X with an element
from Y.

The task of a learning algorithm is to derive a classifier which labels correctly as many
instances as possible. For this purpose, the learner is provided with a so-called training set
which is composed of labeled instances from X . In chapter 6 a range of machine learning
algorithms such as decision trees or support vector machines are described in detail. For now
it is only relevant to know that such algorithms exist and that they can be used to induce
classifiers.

The performance of the resulting classifier or model can be evaluated against a set of
instances from X called test set. For an accurate estimate training and test set have to be
disjoint, that is no instance should be contained in both sets. Often a third set is required
to tune parameters or to compute optimal thresholds, for example. This set is then called
validation set and should not overlap with both training and test set as well. Note that
we can use neither training nor test set for this purpose for very different reasons. For the
validation step an accurate estimate of the performance of the classifier is required, however
for most classification algorithms the induced classifier performs better on the training data
than on the instance space in general. This effect is called overfitting. On the other hand,
determining optimal thresholds, for example, involves an additional learning step. If we used
the test set for this learning step, accurate estimates of the classifier’s performance could
no longer be obtained from the test set. For the methods presented later a validation set is
indeed necessary.

1.2 Abstaining in Classification

Having described the concept of classification, the notion of abstaining appears to be counter-
intuitive at first. After all, the objective of classification is to come up with a labeling for an
instance and not to refrain from doing so. Yet, in every aspect of human life abstaining plays
a central role. A physician confronted with unusual and ambiguous symptoms may refer the
patient to a specialist instead of giving an unsafe diagnosis. During elections, a large fraction
of eligible voters prefer not casting their vote to voting a candidate they find unacceptable.
Indeed, most people are hesitant in choosing between two equally unattractive alternatives
and if they are forced to do so all the same cannot reason their choice properly in most cases.

Although abstaining is a common phenomenon, it is rarely applied in machine learning,
because the choice to abstain is often based on a variety of factors which are difficult to
quantify. There are several problems associated when introducing abstention to machine
learning. To understand these problems consider the following example.

In a far away country, the population is offered two oracles to turn to for advice. The
first oracle always gives an answer to any question no matter how confident it is about the
correct answer. The second one on the other hand has the possibility to shrug its shoulders –
metaphorically speaking – and offer a“don’t know”instead of an unsafe advice. Consequently,
the question arises which of the oracles people trust in and whose counsel they tend to seek



1.2. ABSTAINING IN CLASSIFICATION 3

accordingly. Generally, this depends on how often the advice given by an oracle is correct.
There are two possible reasons for the first oracle’s answering of every question. Either the
oracle is omniscient and actually knows every answer or – more likely – it is unable to admit
that there exists something it does not know anything about. In the second case its advice
fails in many cases and as people are unable to distinguish between advice given from sound
knowledge or reckless ignorance, they start turning to the second oracle, which may not
always give an answer but if it does, the answer is helpful.

As a strategy to win people back, the first oracle now decides to specify for each advice
how confident it is that it will work, so that people can decide themselves if they follow this
specific advice. However, this approach is also flawed. The confidence values depend strongly
on the “ego” of the oracle, that is how strongly it believes in itself. Some oracles may be shy
and insecure and thus do not dare to claim the correctness of their advice even if they are
good, whilst others boast about their omniscience. As a consequence, people have to learn
from their experience and the experience of others when to believe the oracle and when not.

To compete with the first oracle, the second one on the other hand may choose to give
advice only if it feels absolutely safe in its decree and feign ignorance the rest of the time.
Unfortunately, this can have the opposite effect to what is intended. Instead of rushing in
masses to the second oracle, people might turn their back on it because they hardly ever
actually get any advice from it at all. To prevent this from happening, the oracle has to find
the right balance between the two extremes.

This example illustrates the various issues involved when extending the common classifica-
tion model to handle abstention. Obviously, an abstaining classifier is superior to a classifier
which labels instances with “brute force” no matter how inappropriate it may be. However,
there is a trade-off between abstention frequency and prediction accuracy. Accuracy is de-
fined as the number of instances classified correctly divided by the total number of instances
classified at all. If conducted adequately, abstention improves the performance of a classifier
but on the other hand reduces the number of instances it can be applied to. The importance
attached to each of these aspects determines which direction an abstaining classifiers leans
to. Additionally, there is a connection between classifiers which supply confidence values
for their predictions and abstaining classifiers. In fact, any classifier of the first type can
be converted into an abstaining classifier by a separate learning step. Accordingly, we can
distinguish between two types of abstaining classifiers subject to if abstaining is an integral
part of the model or involves a separate step. This is worked out in detail in the next chapter.

Most classification tasks allow abstention in some way or another. Nevertheless there
exist areas for which it is forbidden. In a criminal trial, for example, the possible outcomes
can always only be “guilty” or “not guilty”, but never “don’t know”. In bioinformatics, there
are several important fields of study which can benefit from abstention and in which it is
already used, albeit rather informally in most cases. For example, if the function of a newly
determined gene cannot be ascertained, it is not assigned some arbitrary function but instead
labeled with a variation of “unknown function”.

Having motivated the use of abstaining classifiers sufficiently, we can eventually proceed
to define them formally. The definition of a traditional (non-abstaining) classifier thereby
serves as a prototype and we introduce a new label ⊥ to denote the choice to abstain.

Definition 1.3 (Abstaining Classifier). Given an instance space X and a set of possible
class labels Y = {y1, y2, . . . , yl}, an abstaining classifier is defined as a classifier which labels
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an instance x ∈ X with an element from Y ∪ {⊥}.

For the remainder of this thesis, we restrict ourselves to two-class problems, that is clas-
sification tasks which involve only two categories of instances. Two-class problems can be
described as concept learning tasks. A concept is defined as function c : X → {0, 1} such that
for all instances x ∈ X corresponding to that concept c(x) = 1 and for all others c(x) = 0.
The instances corresponding to the concept are called positive instances whereas the remain-
ing ones are called negative. The set of possible class labels then becomes Y = {P, N}. To
prevent misunderstandings capital letters are used for the actual class and small ones for the
prediction of a classifier.

1.3 Related Work

1.3.1 Cost-Sensitive Active Classifiers

Active classifiers differ from so-called passive classifiers by being allowed to demand values
of not specified attributes before tying themselves down to a class label. The request for
further attributes corresponding to tests is determined by the costs associated with those
tests compared to the costs of misclassifications. Although this idea is not new and has been
explored in different frameworks, the task of learning active classifiers has always been ad-
dressed by first learning the underlying concept and only afterwards finding the best active
classifier. Greiner et al. [24] propose to consider the problems of learning and active classifi-
cation jointly instead of in two separate steps. They show that learning active classifiers can
be done efficiently if the learner may only ask for a constant number of additional tests, but
in general is often intractable.

Their notation deviates slightly from our previous definitions. For the sake of continuity,
it is modified to fit in our setting. All attributes are presumed to be binary, that is Ai = {0, 1}
for 1 ≤ i ≤ k. A concept is regarded as an indicator function c : X → {0, 1}, so that an
instance is positive if it belongs to the underlying concept and negative otherwise. The set
of possible concepts is defined as C = {ci} and a labeled instance is given as a pair (x, c(x)).
Furthermore a stationary distribution P : X → [0, 1] over the space of instances is assumed.
Instances for both training and test set are drawn randomly according to P .

Initially, either no attributes (empty blocking) or a subset (arbitrary blocking) of the
instance’s attributes are revealed for free. Fur any further attribute values a price has to
be payed by the classifier. Accordingly, the classifier can choose at any point to output a
prediction or obtain further tests at the costs associated. This leads to a recursive procedure.
The quality of an active classifier is determined by the expected cost of the active classifier
on an instance. The value of expected cost is also determined recursively.

The class of all possible active classifiers is denoted as Aall and the set of active classifiers
considered may be reduced to a particular subset A ⊆ Aall. The concept c, the set of possible
active classifiers A and the distribution P then determine the optimal active classifier. This
results in an optimization problem which is tractable, for example, if the number of additional
tests the classifier can request is limited, but in general can be NP-hard. Instead of the
separate optimization step, directly computing the active classifier is proposed by Greiner
et al., without learning the full concept or the complete distribution. They introduce an
algorithm which allows to learn active classifiers in Al (classifiers which ask at most for
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l additional attributes) for any concept class, any distribution and any blocking process in
polynomial time. Contrary to that, the problem of learning classifiers in A≈l (active classifiers,
which ask for at most l further attributes on average) still is NP-hard.

Although active classification does not lead to any abstention – every instance is classified
once no further tests are to be performed – parallels to abstaining can be drawn. The choice
to abstain on an instance in most cases entails more extensive tests as well. For example,
if a physician is unable to tell the source of a patient’s problems from the symptoms only,
additional tests are mandatory. These may be blood tests or an electrocardiogram or any
other of a range of possible medical tests. The nature of these tests is not specified any
further in our framework, but may be by combining active classification and abstaining.

1.3.2 Abstaining in Rule Learning

Although standard rule learning approaches have been applied successfully in practice, there
are few theoretical results concerning their predictive performance. Rückert and Kramer
[44] introduce a framework for learning ensembles of rule sets whose expected error can be
bounded theoretically and which relies on a greedy hill-climbing approach (stochastic local
search (SLS), [31]).

Ensembles essentially are sets of classifiers and in this case the individual classifiers are
composed of several rules. The final prediction of the ensemble results from a voting among its
members depending on their accuracy on the training set. Therefore, a separate probability
distribution Qi over the set of all yi-labeled rule sets ri is calculated for each class label
yi ∈ Y. The prediction result for an instance x is given as cV (Q̄, x) = argmaxyi∈Y c(Qi, x),
with Q̄ := (Q1, . . . , Q|Y|) and c(Qi, x) := Eri∼Qi

[ri(x)]. In the two-class case this leads to the
following decision rule:

cV (Q̄, x) =

{
y1 if c(Q1, x) − c(Q2, x) ≥ 0
y2 if c(Q1, x) − c(Q2, x) < 0.

Obviously, the value of |c(Q1, x) − c(Q2, x)| indicates the certainty of the corresponding
prediction as c(Qi, x) can be regarded as a score for class yi. This allows a simple extension
of the rule learning framework by introducing a threshold θ such that instances are only
classified if |c(Q1, x) − c(Q2, x)| ≥ θ. Thus, the above equation becomes

cV (Q̄, x) =






y1 if c(Q1, x) − c(Q2, x) ≥ θ
⊥ if − θ < c(Q1, x) − c(Q2, x) < θ
y2 if c(Q1, x) − c(Q2, x) ≤ −θ.

In order to derive a theoretical bound on the classification error of ensembles of rule sets
the PAC-Bayesian theorem [35] is used. This bound is improved additionally by admitting
abstention. In chapter 7, we use a similar approach to determine a bound on the expected
cost of abstaining voting classifiers for ensembles in general.

1.3.3 Cautious and Delegating Classifiers

Cautious classifiers were introduced by Ferri and Hernández-Orallo [19] similar to our defi-
nition of abstaining classifiers. A cautious classifier extends the set of original classes C by
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an additional class “unknown” or ⊥, which results in new set C ′. Consequently the cautious
classifier is described as a function from the instance space to C ′.

The authors propose various measures of performance for cautious classifiers based on the
confusion matrix. For this purpose, they distinguish between a cost-insensitive context and
a cost-sensitive one. In the first context, standard performance measures are extended to
accommodate abstention and two additional measures – efficacy and capacity – are defined.
Both of these measures are motivated as areas in two-dimensional curves which either plot
accuracy (fraction of correctly classified instances among those actually classified) against
abstention (fraction of instances abstained on) for efficacy or error (portion of misclassified
instances) against a parameter α of a parameterized form of cautious classifiers. For a more
extensive explanation we refer to [19].

Furthermore, several approaches are presented to convert probabilistic classifiers into
cautious classifiers by imposing thresholds on the class probabilities which specify when to
abstain. One of these approaches relies on windows whose size may vary but is the same
for all classes and class biases which influence the degree of abstention for each class. By
increasing the window size and consequently increasing the amount of abstention for a fixed
class bias, a two-dimensional accuracy-abstention curve can be created which illustrates the
behavior of the classifier for changing abstention rates.

Alternatively, costs of cautious classifiers can be calculated by multiplying the confusion
matrix with a cost matrix. The cost can be plotted against abstention instead of error
or accuracy. For unknown costs, the authors suggest extending so-called receiver operating
curves in order to describe visually the behavior of a cautious classifier. This approach is
explored in detail in chapter 3.

Cautious classifiers as such do not specify how to proceed with abstained instances. Ferri
et al. [18] describe an approach which refers the abstained instances to a second classifier.
This process is called delegating and only the first classifier is trained on the complete training
set whereas the subsequent classifier is trained only on instances delegated to it. The next step
for any instance then can either be classification, another delegation to a successor classifier
or a referral back to the original model. The threshold for delegating is chosen such that at
least a fixed proportion of instances is not delegated.

In our framework, we use a similar approach as Ferri and Hernández-Orallo to create
abstaining classifiers from non-abstaining classifiers providing confidence values for their pre-
dictions. The abstaining classifiers are also specified by thresholds, however their performance
is evaluated for the most part in terms of expected cost not accuracy or error rate. Further-
more instead of fixed window size and class biases an optimization step is used to determine
the optimal thresholds between classification and abstention. To illustrate the behavior of
abstaining classifiers for unknown costs three-dimensional cost curves are used which plot the
expected cost of classifiers against costs for misclassifications and abstention.

1.4 Outline of the Thesis

The objective of this thesis is to show that abstaining can be of benefit in a machine learning
context as well as to describe a method to construct abstaining classifiers independent of
specific machine learning algorithms or applications and to choose among a set of similarly
derived ones.
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In chapter 2 we introduce the model of abstaining classifiers as it is considered for the rest
of this thesis. Any classification model can be converted into an abstaining classifier provided
that it calculates confidence values for its predictions. In fact, a large set of abstaining
classifiers can be created with this approach. Which of these classifiers is optimal for a
specific task is determined by the costs expected if it was applied to a randomly drawn
instance. In this context we review the notion of costs in machine learning applications and
the characteristics of expected cost. Based on normalization of expected cost, a sequence of
increasingly strict conditions which are necessary to allow abstention is imposed upon cost
matrices.

If the exact costs and class distributions are specified, computing the best abstaining
classifier is straightforward. Unfortunately, for many problems costs are either known only
approximately or not at all, rendering the determination of the optimal classifier impossible.
To circumvent this problem, three-dimensional curves are introduced in chapter 3, which vi-
sualize the behavior of a given classifier for a variety of cost scenarios and class distributions.
For this purpose, existing visualization techniques are extended which tackle the same prob-
lem for non-abstaining classifiers. These are ROC curves (see e.g. [39]) and cost curves [14].
Additionally a new type of cost curves is introduced which is easier to analyze for fixed class
distributions and otherwise equivalent to the original type of cost curves.

Up to this point, only individual abstaining classifiers are considered. Chapter 4 revolves
around the question of how to combine several abstaining classifiers produced by different
models to obtain higher-level abstaining classifiers. Two methods are presented, one of which
takes a vote among individual classifiers weighted by their expected cost. The second one
utilizes a separate-and-conquer approach to obtain a sequence of classifiers to be applied one
after the other.

As the usability of abstaining classifiers and cost curves is strongly determined by the
computational effort necessary to derive them, we present two algorithms in chapter 5 for
efficiently computing cost curves and optimal abstaining classifiers. The first one adopts a
dynamic programming approach in combination with bounds on expected costs to calculate
the optimal classifier for each cost scenario from a subset of possible classifiers. The second
method relies on an algorithm for directly computing the optimal abstaining classifier in linear
time and uses further information about optimal classifiers for related cost scenarios. In this
context, several important characteristics of optimal abstaining classifiers are described which
greatly reduce the running time of both algorithms.

In the next chapter abstaining classifiers are evaluated on two classification tasks which
involve three separate data sets. These tasks include the prediction of carcinogenicity and
mutagenicity respectively of chemical compounds based on occurrences of molecular frag-
ments and the classification of EST sequences from mixed plant-pathogen EST pools based
on codon bias. We show that the predictive accuracy can be improved by abstaining from
unsafe predictions and analyze the characteristics of abstained instances. Furthermore, the
different types of cost curves are used to compare different classification algorithms with re-
gard to their performance in mutagenicity prediction and to analyze the relationship between
optimal abstention rate and false positive or false negative rate as well as the dependency
between abstention rate and accuracy. Last but not least, the performance of higher-level
abstaining classifiers is examined.

In chapter 7, we focus on ensembles of classifiers in a framework similar to the one
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described above for rule learning. These ensembles are allowed to abstain depending on
the agreement between the individual classifiers. Instead of bounding the expected error,
the expected cost is bounded using the PAC-Bayesian theorem and formulas are derived to
directly compute the optimal threshold for abstaining. Equal and unequal misclassification
costs are distinguished for this purpose.

In the final chapter the results are summarized and possible starting points for further
studies are presented.



Chapter 2

Abstaining in a Cost-Sensitive
Context

So far we have defined abstaining classifiers only informally as classifiers which may or may not
classify an instance. In this chapter, we pose and answer more detailed questions concerning
the nature and characteristics of such abstaining classifiers.

2.1 Abstention Windows

Definition 1.3 states only the most basic characteristic of an abstaining classifier which is
the option to abstain, but does not provide a specification as to how the classifier decides to
abstain. In principle several methods are conceivable. For example, a classifier which chooses
randomly between abstaining and classifying an instance would also qualify as an abstaining
classifier. But as we want to improve the performance of a classifier with regard to prediction
accuracy or any other performance measure by abstaining we require a more sophisticated
decision process which is based on specific properties of instances. One way to achieve this
is to design a machine learning algorithm specifically for this purpose, which learns an extra
class or which abstains if certain tests are unsuccessful. In [22], for example, a classification
system for EST sequences is presented which may abstain if no reading frame of a sequence
is classified to be coding. The alternative approach consists of adding a separate step to
the learning procedure which is independent of any specific machine learning algorithm and
therefore yields a meta-classification scheme.

Such a meta-classification scheme rests its decision to abstain upon the confidence the
underlying base classifier has in a prediction. It uses the fact that most machine learning
algorithms do not only output a class prediction for an instance but also produce scores
associated with the predictions. These can be class probabilities as for Naive Bayes (see page
77) or the distance from a separating hyperplane as for SVMs (see page 76). The difference
between the scores for the two available classes then implies the degree of certainty of the
prediction.

Definition 2.1 (Margin). Let sp(x) the score for a positive prediction of instance x ∈ X ,
and sn(x) the score for a negative prediction. The margin of this instance is defined as
m(x) := sp(x) − sn(x).

9
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An instance x is labeled positive if m(x) is positive and negative otherwise. The margin
of an instance cannot only be used to determine the prediction for this instance, but also the
reliability of this prediction. If the absolute value of the margin is large, we can trust the
prediction with higher confidence than for small values. Table 2.1 shows an example dataset
with predicted class probabilities. Obviously when using class probabilities in the two-class
case, the margin is strictly monotone in the probability for the positive class. Nevertheless,
as not all classifiers necessarily produce probabilities, we employ the term margin to avoid
confusion.

In the presented example we notice that instances x6 and x7 are correctly classified with
high confidence, whereas the misclassified instances x3 and x8 have small absolute margin
values. If we classify all instances in the dataset an accuracy of 60% is achieved. Yet, by
restricting the instances to be classified to those xi for which m(xi) ≤ −0.25 or m(xi) ≥ 0.15,
we can increase classification accuracy to 75%. This intuitive example gives rise to the idea of
an abstention window, such that instances are abstained on if they fall within this abstention
window and classified otherwise. The term abstention window has already been used by Ferri
and Hernández-Orallo [19] and Ferri et al. [18], but no formal definition has been given. We
use the following definition.

Definition 2.2 (Abstention Window). An abstention window a is defined as a pair (l, u)
such that the prediction of a on an instance x ∈ X is given by

π(a, x) =






p if m(x) ≥ u
⊥ if l < m(x) < u
n if m(x) ≤ l.

Learning abstaining classifiers involves two separate learning steps. First, a non-abstaining
classifier is learned from a training set and then this classifier is applied to a second validation
set which results in margins for the instances of the validation set. These margins are then
used to calculate optimal thresholds for positive and negative classification, i.e. the optimal
abstention window. Optimality for an abstention window is specified in the following sections.
Note that we have to use a separate validation set instead of either training or test set to
determine the optimal abstention window because this calculation involves an additional
learning step. This was explained more extensively on page 2.

For a given classifier Cl (induced by a machine learning algorithm), there are a large
number of possible abstention windows. In fact, the set of possible abstention windows is
uncountably infinite as both the upper and lower threshold are real numbers. However, for
practical purposes the number of abstention windows considered has to be limited. When

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

sp(xi) 0.6 0.3 0.55 0.2 0.35 0.9 0.05 0.4 0.7 0.65
sn(xi) 0.4 0.7 0.45 0.8 0.65 0.1 0.95 0.6 0.3 0.35
m(xi) 0.2 -0.4 0.1 -0.6 -0.3 0.8 -0.9 -0.2 0.4 0.3
yi P N N N P P N P P N

Table 2.1: Examples for class probabilities on a sample S ⊆ X , with five positive and five negative instances.
yi denotes the class label of instance xi. Based on the predicted class probabilities six instances would be
classified correctly and four would be misclassified.
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comparing different abstention windows for their behavior on the validation set, we observe
that there are sets of abstention windows which behave in the same way on the validation set
for any performance measure. In the previous example, the abstention window (−0.25, 0.15)
resulted in a prediction accuracy of 75% on the validation set. However, the abstention
windows (−0.21, 0.11), (−0.25, 0.19) and (−0.29, 0.15) exhibit the same prediction accuracy.
Again we could produce an infinite number of abstention windows such that all of them show
this property. When trying to find the best abstention window in terms of classification
accuracy or any other measure, the problem arises which of these to choose. In principle,
any of these windows can be chosen but the most reasonable choice appears to be the ab-
stention window for which the thresholds lie exactly between two neighboring margin values.
Consequently, we define the set of abstention windows as follows.

Definition 2.3. Let Cl be a given classifier and S = {x1, . . . , xn} ⊆ X a validation set.
Let M =

{
m(x1), . . . , m(xn)

}
be the margins obtained by applying Cl on S and w.l.o.g.

m(x1) ≤ · · · ≤ m(xn). Let ε > 0 be an arbitrary but constant value. Then the set of
abstention windows for classifier Cl is defined as

A(Cl) =
{

(l, u)|∃ 1 ≤ j < n : l = m(x1) − ε ∧ m(xj) 6= m(xj+1) ∧ u =
m(xj) + m(xj+1)

2

}

∪
{

(l, u)|∃ 1 ≤ j < n : m(xj) 6= m(xj+1) ∧ l =
m(xj) + m(xj+1)

2
∧ u = m(xn) + ε

}

∪
{

(l, u)|∃ 1 ≤ j ≤ k < n : m(xj) 6= m(xj+1) ∧ l =
m(xj) + m(xj+1)

2

∧ m(xk) 6= m(xk+1) ∧ u =
m(xk) + m(xk+1)

2

}
.

A(Cl) consists of three subsets. The first subset comprises all abstention windows which
have the lower threshold below the smallest margin value and a variable upper threshold. The
second one contains the windows with variable lower threshold and upper threshold above the
largest margin value. Abstention windows with both variable lower and upper threshold are
included in the third subset. The value of ε determines the difference between the smallest
margin value and lowest possible threshold and between the largest margin value and highest
possible threshold and can be assigned by the user.

When only one classifier is considered as for this chapter, the abbreviation A is used for
A(Cl). The question of how to compute the optimal abstention window efficiently is resolved
later in chapter 5. But first we have to define when exactly an abstention window is optimal.

2.2 Abstaining Classifiers and Expected Cost

There are several ways to define the optimality of an abstention window. One approach
would be to select the window with lowest error rate (i.e. lowest rate of misclassifications) or
highest accuracy. However, as error rate is negatively correlated to window width, the optimal
abstention window would always be the one which abstains on all instances. For this reason, a
performance measure is desired which has two components, one of these rewarding decreasing
misclassification probabilities and the other one penalizing increasing abstention probabilities.
The weight of each component depends on the costs associated with the corresponding events.
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2.2.1 Costs in Supervised Learning

There are many types of costs in supervised learning. A variety of those is listed by Turney
[51]. Costs can be associated with misclassifications, with tests (i.e. attributes or measure-
ments) or teachers (i.e. abstaining on an instance and referring it to an expert) and many,
many more. They can be constant or conditional, that is depend on the individual instance.
In general, the term cost is defined abstractly and independent of specific units of measure-
ment. Such units might be monetary or itself be abstract as e.g. health or quality of life. We
restrict ourselves to two types of costs: costs for correct and wrong classifications and costs
for abstaining. We also assume that these costs are constant, which means invariable over
time and for instances of the same class.

Costs for the different events in general differ greatly from each other and are also mea-
sured in different units as we see when returning to the introductory example. If a physician
classifies a healthy person to be sick, this results in an unnecessary treatment which may or
may not be damaging to the person’s health. Here we have a combination of monetary costs
for the treatment and costs concerning health or life quality due to stress caused by a wrong
diagnosis. On the other hand, not treating a sick person has much more severe consequences
depending on the disease which makes a simple two-class scenario inappropriate. Costs for
abstaining, on the contrary, are determined by further tests necessary to diagnose or to ex-
clude an illness. By comparing predictions with actual classes, costs associated with certain
events can be given in the form of a matrix.

Definition 2.4 (Cost Matrix). Costs for correct classification, misclassification and ab-
stention are given by a cost matrix C which is defined by the following table †

Predicted Class
True Class p n ⊥
P C(P, p) C(P, n) C(P, ⊥)
N C(N, p) C(N, n) C(N, ⊥).

2.2.2 Expected Cost

Based on the cost matrix we can define the expected cost of an abstention window provided
that we know the probabilities associated with each possible event. These probabilities have
to be estimated by applying the abstention window to a validation set. The estimations are
based on the number of times a positive or negative instance is classified positive or negative
or abstained on. We use the following terms to denote these counts.

Definition 2.5. Let S = {x1, . . . , xn} ⊆ X be the validation set, {y1, . . . , yn} the correspond-
ing class labels and M = {m(x1), . . . , m(xn)} be the set of margins computed on S by a given

†This is based on the assumption that instances are strictly separated into two classes P and N which are
completely disjoint.
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classifier Cl. If a = (l, u) is an abstention window, then we introduce the notation

TP (a) :=
∑

1≤i≤n
yi=P

δ(m(xi) ≥ u) TN(a) :=
∑

1≤i≤n
yi=N

δ(m(xi) ≤ l)

FN(a) :=
∑

1≤i≤n
yi=P

δ(m(xi) ≤ l) FP (a) :=
∑

1≤i≤n
yi=N

δ(m(xi) ≥ u)

UP (a) :=
∑

1≤i≤n
yi=P

δ(l < m(xi) < u) UN(a) :=
∑

1≤i≤n
yi=N

δ(l < m(xi) < u)

for its true positives, true negatives, false negatives, false positives, unclassified positives and
unclassified negatives. δ(F ) = 1 if F is true and δ(F ) = 0 otherwise.

From these counts we obtain values for the frequencies or rates of true and false positive or
negative predictions and abstention. These rates provide a good estimation of the conditional
probabilities given the validation set size is large enough. For this reason, rates and (empirical)
probabilities from now on are used synonymously.

Definition 2.6. Let a be an abstention window defined as before. We introduce the following
notation

P (p|P ) = TPR(a) =
TP (a)

FN(a) + TP (a) + UP (a)
true positive rate

P (n|P ) = FNR(a) =
FN(a)

FN(a) + TP (a) + UP (a)
false negative rate

P (⊥ |P ) = PAR(a) =
UP (a)

FN(a) + TP (a) + UP (a)
positive abstention rate

P (n|N) = TNR(a) =
TN(a)

FP (a) + TN(a) + UN(a)
true negative rate

P (p|N) = FPR(a) =
FP (a)

FP (a) + TN(a) + UN(a)
false positive rate

P (⊥ |N) = NAR(a) =
UN(a)

FP (a) + TN(a) + UN(a)
negative abstention rate

In this definition, we distinguish between the abstention probability for negative and pos-
itive instances. The abstention rate, i.e. probability of abstaining on any instance, can only
be estimated correctly from the validation set if the class distribution within the validation
set corresponds to the actual class distribution observed on the complete instance space X .
The expected cost is calculated by summing up for each event the product of the cost and
the probability that this event occurs. If the class distribution in the validation set represents
the underlying class distribution of the instance space, the expected cost can be more easily
computed by summing up the cost for each instance in the validation set and then dividing
by the total number of instances.
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Definition 2.7 (Expected Cost). Let a be an abstention window and C the cost matrix.
The expected cost of this abstention window is defined as follows.

EC(C, a) :=P (P )
[
P (p|P )C(P, p) + P (n|P )C(P, n) + P (⊥ |P )C(P, ⊥)

]

+ P (N)
[
P (n|N)C(N, n) + P (p|N)C(N, p) + P (⊥ |N)C(N, ⊥)

]

= P (P )
[
TPR(a)C(P, p) + FNR(a)C(P, n) + PAR(a)C(P, ⊥)

]

+ P (N)
[
TNR(a)C(N, n) + FPR(a)C(N, p) + NAR(a)C(N, ⊥)

]

Alternatively, we have

EC(C, a) :=
1

n

[
TP (a)C(P, p) + FN(a)C(P, n) + UP (a)C(P, ⊥)

+ TN(a)C(N, n) + FP (a)C(N, p) + UN(a)C(N, ⊥)
]
.

Abstaining is rewarded by decreasing values for false positive and false negative rate
and penalized by decreasing correct classification rates and increasing abstention rates. The
optimal abstention window is formally defined as the one with minimal expected cost.

Definition 2.8 (Optimal Abstention Window). Let A be the set of possible abstention
windows on the validation set and C the cost matrix. The optimal abstention window aopt is
defined as

aopt := argmin
a∈A

EC(C, a).

2.2.3 Costs for Correct Classifications

So far, we have associated classification costs even with correct classifications, which of course
is reasonable as we can create scenarios for which this is the case. As an example, consider
a charity organization which sends out letters asking for contributions to their projects.
Naturally, they want to address only those people likely to respond. The cost of not addressing
a potential donor is given by the loss of a donation. Sending a letter to a donor however also
costs a certain amount for the posting. Thus, a correct classification of a donor still requires
money, whereas the correct classification of a non-donor in fact costs nothing. This implies
that costs for correct classifications have to be taken into consideration. Yet, for our purposes
as few degrees of freedom – costs to be regarded – as possible are to be desired. Here we
benefit from the fact that any cost matrix having non-zero costs for correct classifications can
be transformed into a matrix which does not count correct classification, but is still equivalent
in every respect to the original matrix.

Lemma 2.9. Given a cost matrix C with C(P, p) 6= 0 and C(N, n) 6= 0. Let a1 and a2 be
any two abstention windows with EC(C, a1) < EC(C, a2), then there exists a cost matrix C ′

with EC(C ′, a1) < EC(C ′, a2) and C ′(P, p) = 0 and C ′(N, n) = 0.



2.2. ABSTAINING CLASSIFIERS AND EXPECTED COST 15

Proof. We observe that for i ∈ {1, 2}

EC(C, ai) = P (P )
[(

1 − FNR(ai) − PAR(ai)
)
C(P, p)

+ FNR(ai)C(P, n) + PAR(ai)C(P, ⊥)
]

+ P (N)
[(

1 − FPR(ai) − NAR(ai)
)
C(N, n)

+ FPR(ai)C(N, p) + NAR(ai)C(N, ⊥)
]

= P (P )FNR(ai) (C(P, n) − C(P, p)) + P (P )PAR(ai) (C(P, ⊥) − C(P, p))

+ P (N)FPR(ai) (C(N, p) − C(N, n)) + P (N)NAR(ai) (C(N, ⊥) − C(N, n))

+ P (P )C(P, p) + P (N)C(N, n) (2.1)

Now set C ′(P, y) = C(P, y) − C(P, p) and C ′(N, y) = C(N, y) − C(N, n) for y ∈ {p, n,⊥}.
Obviously, we have that C ′(P, p) = C ′(N, n) = 0 and from equation (2.1) it follows that

EC(C, ai) = EC(C ′, ai) + P (P )C(P, p) + P (N)C(N, n). (2.2)

From the definition of a1 and a2 and equation (2.2) we then get that

EC(C ′, a1) + P (P )C(P, p) + P (N)C(N, n) < EC(C ′, a2) + P (P )C(P, p) + P (N)C(N, n)

Thus, we have EC(C ′, a1) < EC(C ′, a2).

The lemma also indicates how a cost matrix can be transformed to obtain zero costs for
correct classifications without changing the outcome of any comparison between abstention
windows. Although the expected cost EC(C ′, a) of an abstention a for the new cost matrix
differs from the expected cost for the original cost matrix EC(C, a), the difference between
EC(C ′, a) and EC(C, a) is the same for every abstention window. Therefore, after having
computed the optimal abstention window aopt and EC(C ′, aopt), EC(C, aopt) can be computed
easily as EC(C ′, aopt) + P (P )C(P, p) + P (N)C(N, n).

2.2.4 Relationship between Costs and Class Distributions

Previously we have given two definitions for expected cost, one of which is only applicable
when the validation set has been sampled based on the underlying class distribution within
the instance space. The following lemmas allow us to use the alternative definition, which is
more intuitive to compute, even if the distribution of classes within the validation set differs
from the true distribution. We now assume that C(P, p) = C(N, n) = 0, which is completely
legitimate because of lemma 2.9.

Lemma 2.10. Let C be a cost matrix and P (P ) and P (N) be the true class distribution. If
we have a different class distribution given by P ′(P ) and P ′(N), we can create a cost matrix
C ′, such that for any abstention window a ∈ A, we have that EC(C, a) = EC(C ′, a) with
EC(C, a) the expected cost of a for P (P ) and P (N) and cost matrix C and EC(C ′, a) the
expected cost for P ′(P ), P ′(N) and C ′.
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Proof. Set C ′(P, y) = P (P )
P ′(P ) C(P, y) for y ∈ {n,⊥} and C ′(N, y) = P (N)

P ′(N) C(N, y) for y ∈
{p,⊥}. Then we have that

EC(C ′, a) =P ′(P )
[
FNR(a)C ′(P, n) + PAR(a)C ′(P, ⊥)

]

+P ′(N)
[
FPR(a)C ′(N, p) + NAR(a)C ′(N, ⊥)

]

=P ′(P )
[
FNR(a) P (P )

P ′(P ) C(P, n) + PAR(a) P (P )
P ′(P ) C(P, ⊥)

]

+P ′(N)
[
FPR(a) P (N)

P ′(N) C(N, p) + NAR(a) P (N)
P ′(N) C(N, ⊥)

]

=P (P )
[
FNR(a)C(P, n) + PAR(a)C(P, ⊥)

]

+P (N)
[
FPR(a)C(N, p) + NAR(a)C(N, ⊥)

]
= EC(C, a).

Therefore, by changing the cost matrix appropriately we can compute the expected cost
for any class distribution different from the true class distribution, and still get the correct
result. In particular, this is correct for the class distribution in the validation set S. As a
consequence, the expected cost can be calculated directly from the validation set by summing
up the costs over all instances and then dividing by the total number of instances.

Corollary 2.11. Let C the true cost matrix and P (P ) and P (N) be the true class distribu-
tions. Let S ⊆ X . There exists a cost matrix C ′ such that we can compute the expected cost
of any abstention window a ∈ A for C, P (P ) and P (N) by computing the average cost on
instances of S using C ′.

Proof. Let P ′(P ) and P ′(N) the class frequencies in S. Lemma 2.10 implies that we can
construct a new cost matrix C ′, such that EC(C, a) = EC(C ′, a) for any abstention window
a. (EC(C, a) is calculated using P (P ) and P (N) and EC(C ′, a) using P ′(P ) and P ′(N).)
Additionally, we have that

EC(C ′, a) =P ′(P )FNR(a)C ′(P, n) + P ′(N)FPR(a)C ′(N, p)

+ P ′(P )PAR(a)C ′(P, ⊥) + P ′(N)NAR(a)C ′(N, ⊥)

=
TP (a) + FN(a) + UP (a)

n

FN(a)

TP (a) + FN(a) + UP (a)
C ′(P, n)

+
TN(a) + FP (a) + UN(a)

n

FP (a)

TN(a) + FP (a) + UN(a)
C ′(N, p)

+
TP (a) + FN(a) + UP (a)

n

UP (a)

TP (a) + FN(a) + UP (a)
C ′(P, ⊥)

+
TN(a) + FP (a) + UN(a)

n

UN(a)

TN(a) + FP (a) + UN(a)
C ′(N, ⊥)

=
1

n

[
FN(a)C ′(P, n) + FP (a)C ′(N, p) + UP (a)C ′(P, ⊥) + UN(a)C ′(N, ⊥)

]
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Thus we can use the alternative definition of expected cost, even if the validation set does
not represent the correct class distribution. This is an interesting fact which becomes useful
later.

2.2.5 Normalized Expected Cost

We have previously shown that we can assume zero costs for classification. Additionally to
that we make the further assumption that the costs for abstaining on a positive instance
or a negative instance do not differ. This assumption is reasonable since in general we do
not know the class of instances abstained on and any further treatment of these instances
is independent of the class, although it may depend on the attributes of the instances. The
implications of this assumptions are discussed in detail on page 106. As a consequence,
the equation for expected cost of an abstention window a can be rewritten, resulting in the
following equation:

EC(C, a) = P (P )FNR(a)C(P, n) + P (N)FPR(a)C(N, p)

+
[
P (P )PAR(a) + P (N)NAR(a)

]
C(⊥).

with C(⊥) := C(P, ⊥) = C(N, ⊥). The alternative definition then changes to

EC(C, a) =
1

n

[
FN(a)C(P, n) + FP (a)C(N, p) + (UP (a) + UN(a))C(⊥)

]
.

So far we have concentrated on the absolute values for expected costs. As we use them
only to compare abstention windows we are not interested in the absolute values, but rather
in the relationships between the costs. This means we only require to know how much more
expensive an abstention window is relative to another one. In fact several cost matrices can
be constructed which are all equivalent, that is any comparison between abstention windows
has the same result for all of these cost matrices.

Definition 2.12. Two cost matrices C and C ′ are called equivalent (C ≡ C ′) if ∃k ∈ R+

such that for all abstention windows a ∈ A we have that

EC(C, a) = k · EC(C ′, a).

An equivalence class C̄ is defined as the set of all cost matrices which are equivalent to C,
i.e. C̄ := {C ′|C ′ ≡ C}.

We can get any element of an equivalence class C̄ by multiplying every entry of C by a
constant value k ∈ R+. As we can clearly see, all cost matrices of an equivalence class show
the same behavior concerning comparisons between abstention windows.

Lemma 2.13. Let C and C ′ be two cost matrices with C ≡ C ′, then for any two abstention
windows ai and aj ∈ A it is true that

EC(C, ai) < EC(C, aj) ⇐⇒ EC(C ′, ai) < EC(C ′, aj).
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Proof. As C ≡ C ′, there exists k > 0 such that EC(C, at) = k EC(C ′, at) for any abstention
window at ∈ A. Thus, we have that

EC(C, ai) < EC(C, aj) ⇐⇒ k EC(C ′, ai) < k EC(C ′, aj) ⇐⇒ EC(C ′, ai) < EC(C ′, aj).

Therefore, we can conclude that when computing the optimal abstention window given
a cost matrix C we can use any cost matrix of its equivalence class C̄ instead of C and
nevertheless get the same results. In particular, we can also use the cost matrix from C̄ for
which C(P, n) = 1. Such a cost matrix can be obtained from C by dividing every entry of
the matrix by the costs for false negative predictions C(P, n). This leads to the definition of
normalized expected cost.

Definition 2.14 (Normalized Expected Cost). Let a ∈ A and C be an arbitrary cost

matrix. Define µ := C(N, p)
C(P, n) and ν := C(⊥)

C(P, n) . The normalized expected cost of abstention
window a is defined as

NEC(C, a) :=
EC(C, a)

C(P, n)

= P (P )FNR(a) + P (N)FPR(a)µ +
[
P (P )PAR(a) + P (N)NAR(a)

]
ν

or alternatively

NEC(C, a) :=
FN(a) + FP (a)µ +

[
UP (a) + UN(a)

]
ν

n

We observe that the value of normalized expected cost for an abstention window differs
from the value of expected cost for this window. However, because of the equivalence be-
tween the corresponding cost matrices, the optimal abstention window in terms of normalized
expected cost is also the optimal abstention window in terms of expected cost. The original
value of expected cost can be obtained from the normalized expected cost by a multiplication
with C(P, n). For the remainder of this thesis, the term cost scenario is used to denote an
equivalence class of cost matrices which in turn is described by ratios between costs.

2.3 Restrictions to Abstention

In the preceeding sections we have shown that any classification algorithm can be employed to
create an abstaining classifier by computing the optimal abstention window characterized by
minimum expected cost on a validation set. However, the definition of the set of abstention
windows A also includes windows which do not abstain at all as the corresponding lower
and upper thresholds are equal. For any given cost scenario we always compute the optimal
abstention window and only afterwards check if this actually results in any abstention. To
avoid the costly computation step, we desire a condition which tells us a priori that for a
given cost scenario abstention is too expensive. Essentially, we require a necessary (but not
sufficient) condition for abstention to be effectively possible.
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For this purpose, we assume that our validation set correctly represents the distribution
of positive and negative classes and thus calculate the normalized expected cost by comput-
ing the average cost of instances in the validation set, since this makes the further analysis
easier and more comprehensible. However, as we have seen before, we can use the alternative
definition even if the distribution in the dataset differs from the correct class distribution.
Consequently, these results can be extended to the original definition. We aim to find con-
ditions of the form ν ≤ c for some c > 0, such that we can conclude that abstaining is too
expensive whenever we know that the condition is violated.

The proofs of the next lemmas all follow the same principle. First, we assume that some
restriction on the values of ν is violated and then we show that for any abstention window
ai = (li, ui) with li < ui (which means that the abstention window abstains on at least one
instance) we can construct a new abstention window ac = (lc, uc) which has a lower abstention
rate than ai and lower expected cost on the validation set S for this cost scenario. Note that
if li < lc (or ui > uc) there exists at least one instance in S which is abstained on by ai but
classified by ac. This is a result of the definition of A with respect to the validation set. The
following lemma shows that the costs for abstaining cannot be higher than the maximum of
the costs for false negatives (1) and false positives (µ), since in this case expected cost can
always be reduced by classifying an instance no matter how. Note that we do not know if µ
is greater or smaller than 1. This depends on the original values of C(P, n) and C(N, p).

Lemma 2.15. Let S = {x1, . . . , xn} be the validation set. Let µ and ν be defined as in
definition 2.14 and ν > max{1, µ}. Given an abstention window ai = (li, ui) ∈ A with
li < ui, we can always construct a new abstention window ac with li ≤ lc ≤ uc ≤ ui and
either lc > li or uc < ui and NEC(C, ac) < NEC(C, ai).

Proof. Construct ac with li ≤ lc ≤ uc ≤ ui such that there exists at least one instance xj

which is abstained on by ai but classified by ac. (This means that either li < lc or ui > uc.)
Let d be the number of such instances. The difference in expected cost between ac and ai is
only determined by these instances, thus we have

NEC(C, ac) − NEC(C, ai) ≤
d max{1, µ} − ν d

n
=

d

n
(max{1, µ} − ν) < 0.

Therefore, we can conclude that no abstention window which abstains on at least one
instance can ever be optimal if ν > max{1, µ}. However, the same is true if the costs for
abstaining are greater than the minimum of the costs for false negatives and false positives.
The idea is that we can always reduce costs by classifying all abstained instances either
positive if µ < 1 or negative otherwise.

Lemma 2.16. Let S, µ and ν be defined as before. If ν > min{1, µ} and ai ∈ A an abstention
window with li < ui, then there always exists another abstention window ac with lc = uc and
NEC(C, ac) < NEC(C, ai).

Proof. Construct a new abstention window ac with lc = uc = li if µ < 1 and lc = uc =
ui otherwise (see figure 2.1(a)). Let d := |{xj ∈ S|li < m(xj) < ui}| be the number of
instances with margins between li and ui. Note that these are the only instances for which
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Figure 2.1: Figure (a) illustrates the relationship between abstaining and non-abstaining classifiers. The
abstention window ai = (li, ui) abstains on all instances in the crosshatched range and classifies the remaining
instances. The neighboring non-abstaining classifiers have either threshold li or ui. Figure (b) visualizes the
increasing strictness of the conditions for µ ≤ 1. The yellow region corresponds to the condition ν ≤ max{1, µ},
the green hatched to ν ≤ min{1, µ} and finally the red hatched to ν ≤ µ

1+µ
.

the predictions of ai and ac differ. Let dm := |{xj ∈ S|li < m(xj) < ui ∧ yj 6= π(ac, xj)}| the
number of instances among these which are misclassified by ac. We know that d > 0 (from
the definition of A) and dm ≤ d. Thus, we have for the difference in normalized expected
cost between ac and ai that

NEC(C, ac) − NEC(C, ai) =
1

n

(
dm min{1, µ} − d ν

)

<
1

n

(
dm min{1, µ} − d min{1, µ}

)
=

1

n
min{1, µ}(dm − d) ≤ 0

and the newly defined abstention window has lower expected cost.

So far, we can conclude that we have ν ≤ min{1, µ} if the optimal abstention window in
A does actually abstain on at least one instance in the validation set. Still this is not the
most stringent restriction we can make. The final condition can be obtained by comparing
any abstention window with its neighboring non-abstaining classifiers. See figure 2.1(a) for
this. The abstention window ai abstains on all instances which fall in the green and red
crosshatched region. The neighboring non-abstaining classifiers either have li or ui as thresh-
olds for positive classification. One of them classifies the same instances as negative as ai and
the complete green hatched region as positive, whereas the other one classifies the red hatched
region as negative and the remainder positive. Evidently, at least one abstention window ai

with li < ui must have lower expected cost than both neighboring non-abstaining classifiers
for abstaining to be useful. If no such abstention window exists, we can always reduce the
expected costs of an abstaining classifier by converting it to a non-abstaining classifier. From
this observation the subsequent lemma follows.

Lemma 2.17. Let S be the validation set and µ, ν > 0 be defined as before. If ν > µ
1+µ

and ai ∈ A an abstention window with li < ui, then there always exists another abstention
window ac with lc = uc and NEC(C, ac) < NEC(C, ai).

Proof. By contradiction:
First assume that for all abstention windows ac with lc = uc it is the case that NEC(C, ac) ≥
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NEC(C, ai). Thus, in particular, it is true that NEC(C, al) ≥ NEC(C, ai) and NEC(C, au) ≥
NEC(C, ai), whereby al = (li, li) and au = (ui, ui). Let dy = |{xj ∈ S|li < m(xj) < ui ∧yj =
y}| for y ∈ {P, N} the instances of class y for which the predictions of ai, al and au differ.
We have that both dN > 0 and dP > 0. If dN = 0 costs could be reduced by classifying all
instances positive which fall within the abstained range (as al does ). If dP = 0, costs could
be reduced by classifying those instances negative (as au does). The difference in expected
cost between al and ai is

NEC(C, al) − NEC(C, ai) =
1

n

(
dN µ − (dP + dN ) ν

) by def.
≥ 0 ⇐⇒ dN ≥ dP

ν

µ − ν
(2.3)

Note that for ν = µ the above equation implies that µ = 0 which contradicts the assumption
that µ > 0. We then get

NEC(C, au) − NEC(C, ai) =
1

n

(
dP − (dP + dN ) ν

) Equ. (2.3)

≤ 1

n

(
dP − (dP + dP

ν

µ − ν
) ν

)

=
dP

n

(µ − ν − νµ

µ − ν

)
<

dP

(µ − ν)n

(
µ − µ

1 + µ
− µ

µ

1 + µ

)

=
dP

(µ − ν)n

(µ + µ2 − µ − µ2

1 + µ

)
= 0 (2.4)

But equation (2.4) is a contradiction to the assumption.

The presented lemmas impose ever increasingly strong restrictions on abstaining. Figure
2.1(b) visualizes this for µ ≤ 1. Lemma 2.15 still leaves the complete yellow shaded region,
whereas Lemma 2.16 limits this to the green hatched rectangle. The last theorem finally
excludes all cost scenarios but those that fall in the red hatched area. This implies that
only for a small part of possible cost scenarios abstention can in fact improve expected costs.
These last results can of course be extended such that they apply to any cost matrix.

Theorem 2.18 (Necessary Condition for Abstaining). Let S ⊆ X be the validation set
and aopt ∈ A an abstention window, such that l < u and aopt = argmina∈A EC(C, a), then
we have for the cost matrix C that

C(⊥) ≤ C(P, n)C(N, p)

C(P, n) + C(N, p)

Proof. From lemma 2.17 we know that if ν > µ
1+µ

, we can always construct a non-abstaining
classifier from aopt which has smaller expected cost than aopt. Thus from the optimality
of aopt we can conclude that ν ≤ µ

1+µ
. The theorem then results by inserting the original

definition of ν and µ.

The results presented in this chapter require knowledge about costs and class distributions.
Unfortunately, this knowledge may be limited. In the following chapter, we examine ways to
deal with this problem.
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Chapter 3

Visualizing the Behavior of
Abstaining Classifiers

In the last chapter we have shown that given a cost matrix and the class distribution finding
the optimal abstention window is straightforward. However, there are only few applications
for which cost matrices and class distributions are known for certain at all. In most cases,
attaching an unequivocal value to costs and class distributions is intricate, as many factors
play into the generation of costs and each of those may be rated differently by different people.
Even though the exact values for costs are not important and only the ratios between costs
are required, the task at hand does not become easier.

The same problems also apply to non-abstaining classifiers and have been approached
several times in different ways before. Commonly visualizations are used which illustrate
the behavior of classifiers for a variety of cost matrices and class distributions. In the fol-
lowing, two such curves for non-abstaining classifiers are presented and then extended to
accommodate abstaining classifiers.

3.1 ROC Curves and Cost Curves for Non-Abstaining Classi-
fiers

We have already given the formal definition of a non-abstaining classifier in the introduction.
But since it can be considered as a special case of an abstaining classifier with zero probability
for abstaining, we introduce the following notation analogously to the previous chapter.

Definition 3.1 (Threshold). A threshold t is defined as an abstention window a = (l, u) ∈ A
with the further restriction of l = u := s. The prediction of t on an instance x ∈ X is given
by

π(t, x) =

{
p if m(x) ≥ s
n if m(x) < s.

Again we can compute for a threshold t the values for TP (t), FP (t), TN(t) and FN(t) as
well as the corresponding probabilities of correct or wrong classifications. As a consequence,
expected cost can be defined in the same way as for an abstention window. However, as t
does not abstain at all, costs for abstaining are of no avail.

23
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Definition 3.2 (Expected Cost). Let t be a threshold, i.e. non-abstaining classifier, and
C be a cost matrix defined as before. The expected cost of t is defined as

EC(C, t) = FNR(t) · P (P ) · C(P, n) + FPR(t) · P (N) · C(N, p)

Furthermore we can define the set of possible thresholds for a given classifier as a subset
of the set of abstention windows A(Cl).

Definition 3.3. Let Cl be a given classifier and S = {x1, . . . , xn} ⊆ X a validation set. Let
M =

{
m(x1), . . . , m(xn)

}
be the margins obtained by applying Cl on S and m(x1) ≤ · · · ≤

m(xn). Furthermore, let ε > 0 be an arbitrary but constant value. The set of thresholds for
classifier Cl is defined as

T (Cl) := {a|a ∈ A(Cl) ∧ l = u} =
{

t|s = m(x1) − ε ∨ s = m(xn) + ε
}

∪
{

t|∃ 1 ≤ j < n : m(xj) 6= m(xj+1) ∧ s =
m(xj) + m(xj+1)

2

}
.

As before, we use the abbreviation T for T (Cl) if only one classifier is considered at all.

3.1.1 Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic graphs have their origin in signal detection, where they
were used to visualize the trade-off between hit rate and false alarm rate [16]. Since then,
they have been applied to a wide range of problems as the analysis of diagnostic systems [48],
medical purposes [2] and data mining [39].

A point in a ROC curve is derived by plotting the true positive rate of a threshold t on
the y-axis against the corresponding false positive rate on the x-axis. A ROC curve for a
classifier Cl then results from connecting the points for all t ∈ T (Cl) or fitting a curve to
them. Example ROC curves for three classifiers are given in figure 3.1(a).

With the help of ROC curves the behavior of classifiers can be studied without knowledge
of class distributions and misclassification costs. In general, the closer to the upper left
corner the curve is, the better is the corresponding classifier. A diagonal line on the other
hand represents a completely random classifier. Additionally, ROC curves can be used to
compare the performance of different classifiers based on the notion of dominance which is
defined as follows.

Definition 3.4. Let Pi and Pj be two points in a ROC curve, ti and tj the correspond-
ing thresholds and ~pi = (FPR(ti), TPR(ti)) and ~pj = (FPR(tj), TPR(tj)) the correspond-
ing position vectors. We say that Pi dominates Pj (Pi ¹ Pj) if FPR(ti) ≤ FPR(tj) and
TPR(ti) ≥ TPR(tj).

Information about dominance relationships between two points Pi and Pj is useful when
comparing the corresponding classifiers because no threshold can ever be optimal for any cost
scenario if it is dominated by another threshold. This is shown by the next lemma.

Lemma 3.5. Given two points Pi and Pj in a ROC curve and Pi ¹ Pj, then we have for the
corresponding thresholds ti and tj that

EC(C, ti) ≤ EC(C, tj)

for all possible cost matrices C.
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Figure 3.1: Figure (a) depicts ROC curves for three example classifiers. Classifier C is dominated by both of
the remaining classifiers, whereas none of these is dominated by the other. The convex hull is indicated by a
dotted line. Figure (b) shows example cost curves for two non-abstaining classifiers A and B. C represents a
classifier which labels every instance as negative and D labels every instance as positive.

Proof. This becomes clear by using the definition of expected cost for a threshold. Hence, we
have

EC(C, ti) = (1 − TPR(ti)) · C(P, n) + FPR(ti) · C(N, p)

≤ (1 − TPR(tj)) · C(P, n) + FPR(tj) · C(N, p) = EC(C, tj).

for arbitrary values of C(P, n) and C(N, p).

For this reason, a classifier Cl1 can be considered to be better than another classifier Cl2
if for every point Pj in the ROC graph for Cl2 there exists a point Pi in the ROC Graph
for Cl1 with Pi ¹ Pj . In this case, we say that Cl1 dominates Cl2 (Cl1 ¹ Cl2). In figure
3.1(a) Classifier C is obviously dominated by both A and B and can consequently be excluded.
Unfortunately, we neither have that A¹B nor that B¹A, which makes it difficult to decide in
favor of any of these two.

If we extend this approach to more than three classifiers, we observe that the number
of potentially useful classifiers can be reduced by computing the convex hull of all ROC
graphs. Classifiers which do not contribute a point to the convex hull no longer have to
be taken into consideration as the convex hull dominates all other points. Note that we
can reach any point on the convex hull even if it is not part of any of the ROC curves.
This is due to the fact that for any point Pc on the convex hull, there exist two points Pi

and Pj in one of the original ROC curves, such that Pc lies on the straight line connecting
these two points. Hence, we can conclude, that there exists a value σ ∈ [0 : 1], such that
FPR(tc) = σ FPR(ti) + (1 − σ)FPR(tj) and TPR(tc) = σ TPR(ti) + (1 − σ)TPR(tj) and
the point Pc can be reached by choosing randomly between the corresponding thresholds or
classifiers respectively with probabilities σ and (1 − σ) (see also Witten and Frank [54]).
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An alternative performance measure for classifiers based on ROC curves offers the area
under the ROC curve (AUC) which reduces the two dimensional curve to a single value. This
value can be employed similar to accuracy or error rate ([26], [5]) and be estimated by the
Mann-Whitney-Wilcoxon test statistic or direct integration. The advantage of the AUC is
that it can be easily used to compare classifiers and extended to more than two classes [25].

3.1.2 Cost Curves

Cost curves are an alternative way of illustrating a classifier’s performance independent of
actual costs and class distributions and were introduced by Drummond and Holte ([14] and
[15]). For this kind of curves, normalized expected cost for a threshold t is plotted against
the so-called probability-cost function on the x-axis. Note that the definition of normalized
expected cost by Drummond and Holte differs from our previous definition. Normalization is
performed by dividing the expected cost for a given classifier – i.e threshold – by the expected
cost of the worst possible classifier. The worst possible classifier assigns all positive instances
to the negative class and all negative ones to the positive class and therefore misclassifies all
of them. Of course, this a rather hypothetical case since a classifier of that kind could be
transformed to a perfect classifier without effort simply by switching the predictions to the
respective other class. Nevertheless, this type of normalization is useful for plotting expected
cost. It differs from the one presented in chapter 2 in that the value of the expected cost is
normalized with respect to some default classifier instead of with respect to the cost matrix.
To prevent confusion of the two types of normalization, we use the notation of Drummond
and Holte here.

Definition 3.6. Let t ∈ T (Cl) be a threshold for a given classifier Cl and C a cost matrix.
Let TPR := TPR(t) and FPR := FPR(t). The normalized expected cost is defined as

NE[C] =
(1 − TPR) · P (P ) · C(P, n) + FPR · P (N) · C(N, p)

P (P ) · C(P, n) + P (N) · C(N, p)
.

The probability-cost function is defined such that we can express normalized expected
cost as a linear equation with respect to it.

Definition 3.7. Let C be a cost matrix, L ∈ {P, N} and l̄ = n if L = P and l̄ = p otherwise.
The probability-cost function PCF (L) is defined as

PCF (L) =
P (L) · C(L, l̄)

P (P ) · C(P, n) + P (N) · C(N, p)
.

Definitions 3.6 and 3.7 can be used to rewrite the normalized expected cost, resulting in
the following theorem.

Theorem 3.8. Given a threshold t, a cost matrix C and TPR and FPR defined as before,
we have that

NE[C] = (1 − TPR − FPR) · PCF (P ) + FPR.

Proof. We observe that

NE[C] = (1 − TPR) · PCF (P ) + FPR · PCF (N)

= (1 − TPR) · PCF (P ) + FPR · (1 − PCF (P )). (3.1)

From equation (3.1) the theorem follows directly.
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Therefore, normalized expected cost can be plotted against PCF (P ) on the x-axis which
is limited to the range from 0 to 1 as PCF (P ) + PCF (N) = 1 and thus PCF (P ) ≤ 1.
Increasing values for PCF (P ) correspond to increasing values for P (P ) or C(P, n) relative
to P (N) and C(N, p). Since a threshold t is represented by a straight line in the cost curve,
a point in the ROC curve corresponds to a line in the cost curve and vice versa a point in
the cost curve corresponds to a straight line in a ROC curve, a so-called iso-performance
line (see [14] and [40]). Thus, ROC curves and cost curves are dual representations. As a
classifier is represented by a set of possible thresholds, a ROC curve for a given classifier Cl
can be converted into a cost curve by taking the minimum over the normalized expected cost
of all points in the ROC curve for each value of PCF (P ) evaluated. If we define normalized
expected cost as a function f(t, PCF (P )) for a threshold t, a cost curve for a classifier Cl is
defined by mint∈T (Cl) f(t, PCF (P )) for 0 ≤ PCF (P ) ≤ 1.

Figure 3.1 shows example cost curves of two classifiers A and B. Using these curves several
questions can be addressed. For instance, it can be determined for which values of PCF (P )
a classifier outperforms both trivial classifiers which either classify all instances as negative
(C) or positive (D). This is called the operating range [15]. In the given example both A

and B always outperform the trivial classifiers, which is not surprising as our definition of
T (CL) for a given classifier Cl actually includes the trivial classifiers. We therefore redefine
the operating range of a classifier Cl as the range of values for PCF (P ) for which Cl actually
has lower normalized expected cost than any of the trivial classifiers. Furthermore, we can
use cost curves to compare two classifiers and determine for which values of PCF (P ) one
classifier has lower expected cost than the other as well as the significance of this difference.
We refer the reader to Drummond and Holte ([14] and [15]) for a more extensive description
of the capabilities of cost curves and a comparison of ROC curves and cost curves.

3.2 Abstaining under Uncertain Cost and Class Distributions

In the previous section two different types of curves were introduced which make it possible to
demonstrate the behavior of a classifier produced by any machine learning algorithm without
knowledge of the exact cost matrix and the class distributions. We now try to create similar
visualizations which allow the same analysis for abstaining classifiers. Note that an abstaining
classifier Cla is in fact given by a set of abstention windows A(Cla), as before a non-abstaining
classifier Cln was given by a set of thresholds T (Cln). Again the notion of cost scenario as
an equivalence class of cost matrices is used.

We then can formulate several questions which have to be addressed:� For which cost scenarios (and class distributions) does a given classifier outperform the
trivial classifiers, i.e. have lower expected cost?� Given two abstaining classifiers Cli and Clj

– For which cost scenarios (and class distributions) does Cli outperform Clj?

– Is one of the them better than the other one for all (reasonable) cost scenarios?

– What is the difference in expected cost between the two classifiers?
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cost scenarios (and class distributions)?� For which cost scenarios (and class distributions) is abstaining helpful at all for our
given purpose?

In general any visualization capable of addressing these questions for non-abstaining clas-
sifiers can be extended to accommodate abstention. Unfortunately, we always have to add at
least one dimension since further degrees of freedom are created. In the following, we present
three types of curves for the evaluation of abstaining classifiers – an extension to ROC curves
and to the original cost curves as well as a new type of cost curves.

3.2.1 ROC Curves for Abstaining Classifiers

In the original definition of ROC curves the true positive rate of a threshold is plotted against
the corresponding false positive rate. When including abstention two additional dimensions
are necessary: one for the positive abstention rate and one for the negative abstention rate.
This results in a four-dimensional curve which is extremely impractical for human interpre-
tation. Therefore, instead of both positive and negative abstention rate only the overall
abstention rate is used.

Definition 3.9. Given an abstention window a ∈ A and a validation set S ⊆ X , the absten-
tion rate AR(a) is defined as

AR(a) :=
UP (a) + UN(a)

n

where UP (a) and UN(a) denote the number of positive and negative instances in S abstained
on by a.

Unfortunately, the abstention rate depends on the class distribution on the validation set
and may differ from the abstention rates obtained for other class distributions. However,
without the assumption that the overall abstention rate does not change no matter how the
class distribution is altered, no intelligible visualization could be devised.

An additional problem arises when extending the definition of ROC curves to abstention.
For the original ROC curves, only one threshold is increased such that the rate of positive
predictions is rising and as a result both true positive rate and false positive rate increase.
However, for abstaining classifiers, two thresholds can be changed. If only the lower threshold
for an abstention window changes but the upper threshold remains as it is, both true positive
rate and false positive rate are not affected at all. Plotting the true positive rate against false
positive and abstention rate then would not describe the behavior of the abstention window
properly. This can only be achieved by using false negative rate instead of true positive rate.
For the original ROC curves those two values are complementary. To remain as close as
possible to the original definition, a ROC curve for abstaining classifiers then is described as
follows.

Definition 3.10. Let a be an abstention window. The corresponding point P in the ROC
curve is given by the position vector

~p := (FPR(a), AR(a), (1 − FNR(a))).
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Figure 3.2: Figure (a) depicts a three dimensional ROC curve as it is expected to look like, whereas figure (b)
shows an example ROC curve for a real-life application. Points with high false positive rate and abstention
rate are missing completely, because high abstention rate results in low false positive rate and vice versa.

Accordingly, we can see that the value at the z-axis is affected even if only the lower
threshold is changed.

The ROC curve for a classifier Cl results from plotting all abstention windows a ∈ A(Cl).
Intuitively, one might expect a graph as depicted in figure 3.2(a) with (1-FNR) increasing
as FPR and AR increase. However, the curve in figure 3.2(b) more accurately reflects the
behavior of the ROC curve for an abstaining classifier. For small values of abstention or false
positive rate we observe the expected behavior, yet points with high abstention and false
positive rate are missing completely. The reason for this is that high false positive and high
abstention rate exclude each other as many false positives mirror the fact that a considerable
amount of instances is actually classified. Vice versa we cannot misclassify instances if we
already abstain on a majority of them.

Given such a three dimensional ROC curve, we can use it the same way as the two di-
mensional curves to compare classification schemes based on the convex hull. Additionally,
it can help to choose an appropriate abstention window without exact knowledge of class
distributions and costs. We might tend to select an abstention window with moderately low
abstention, false positive and false negative rate. If false negative predictions are consid-
ered more expensive than false positive predictions, false negative rate can be reduced at
the expense of false positive rate or abstention rate. On the other hand, abstention rates
can be kept low by increasing both false positive and false negative rates, and so on. The
disadvantage of this approach is that it is a rather inexact method to choose an appropriate
abstention window as without knowledge of costs the optimal abstention window can only be
estimated and is difficult to find by visual inspection only. Furthermore, we are at a loss to
answer most of the above mentioned questions.

3.2.2 Cost Curves for Uncertain Costs and Class Distributions

As we have seen, 3D ROC curves are insufficient for determining a suitable abstention window
for unknown costs or class distributions or for comparing classifiers. To circumvent this
problem we now extend the cost curves described on page 26 which enable us to illustrate
the behavior of classifiers for changing costs and class distributions.
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The definition of expected cost for an abstention window has already been given in the
previous chapter. Again, as for ROC curves, we have to use the overall abstention rate
on the validation set instead of both positive and negative abstention rate to reduce the
dimensionality of the constructed curves. The expected cost for an abstention window is
then normalized with respect to the expected cost of the worst classifier conceivable which
has FPR = 1, FNR = 1 and AR = 1. In reality, no classifier ever reaches this maximum
expected cost since it is not possible to misclassify all instances and at the same time abstain
on all of them. Nevertheless, this normalization is essential to represent the expected cost in
terms of the probability-cost function.

Definition 3.11. Let a be an abstention window and C a cost matrix. Define FNR :=
FNR(a), FPR := FPR(a) and AR := AR(a). The normalized expected cost of a is defined
as

NE[C] =
P (P ) · FNR · C(P, n) + P (N) · FPR · C(N, p) + AR · C(⊥)

P (P ) · C(P, n) + P (N) · C(N, p) + C(⊥)
.

The probability-cost functions PCF (P ), PCF (N) and PCF (⊥) are defined analogously
to definition 3.7 with PCF (P ) + PCF (N) + PCF (⊥) = 1.

Definition 3.12. Let C be a cost matrix, L ∈ {P, N} and l̄ = n if L = P and l̄ = p otherwise.
The probability-cost function PCF (L) is defined as

PCF (L) =
P (L) · C(L, l̄)

P (P ) · C(P, n) + P (N) · C(N, p) + C(⊥)
.

The probability-cost function PCF (⊥) is defined as

PCF (⊥) =
C(⊥)

P (P ) · C(P, n) + P (N) · C(N, p) + C(⊥)
.

By inserting definition 3.12 into the equation for normalized expected cost we receive the
following result.

Theorem 3.13. Given an abstention window a and a cost matrix C and FNR := FNR(a),
FPR := FPR(a) and AR := AR(a) we have that

NE[C] = (FNR − AR) · PCF (P ) + (FPR − AR) · PCF (N) + AR.

Proof. From definition 3.12 we obtain

NE[C] = FNR · PCF (P ) + FPR · PCF (N) + AR · PCF (⊥)

= FNR · PCF (P ) + FPR · PCF (N) + AR · (1 − PCF (P ) − PCF (N)) (3.2)

The theorem follows directly from the last equation.

Based on theorem 3.13 a cost curve is created by setting the x-axis to PCF (P ), the y-axis
to PCF (N) and the z-axis to NE[C]. As a consequence, an abstention window a ∈ A is
depicted as a plane in this type of cost curves. The operating range of an abstention window
is then defined as the area for which the abstention window outperforms the three trivial
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Figure 3.3: Example cost curves for uncertain costs and class distributions. Figure (a) shows the three trivial
classifiers which either label all instances as positive (green) or negative (red) or abstain on all of them (blue).
Figure (b) shows a cost curve for an example classifier and (c) the same curve projected to 2D. Note that in
figure (a) only individual abstention windows are depicted whereas figures (b) and (c) contain cost curves for
classifiers which are represented by a set of abstention windows.

classifiers which either classify every instance as negative (z = x) or positive (z = y) or
abstain on every instance (z = −x − y + 1). See also figure 3.3(a).

Given a classifier Cl and the corresponding set of abstention windows A(Cl), we can
compute a cost curve by computing the minimum normalized expected cost over all possible
abstention windows a ∈ A(Cl) for each combination of PCF (P ) and PCF (N). By encoding
the value of expected cost by colors, the three dimensional curve can be projected into two
dimensions which makes it easier to be interpreted. The darker the color, the lower is the
expected cost. Figure 3.3(b) shows such a cost curve in 3D and figure 3.3(c) the same curve
projected to 2D by colors.

Before describing how these cost curves can be used to compare classifiers and to answer
the questions we posed, first a second type of cost curves is introduced which presumes fixed
class distributions and alters only the cost scenarios.

3.2.3 Cost Curves for Uncertain Costs and Fixed Class Distributions

In the last section we have presented an extension of standard cost curves to abstaining
which can deal with both uncertain costs and class distribution. However, as we will see in
the next section, these curves are difficult to analyze. We now introduce a second type of cost
curves for which class distributions have to be kept fixed in some way. Now, the definition
of normalized expected cost from 2.14 is used again. Remember that for µ = C(N, p)

C(P, n) and

ν = C(⊥)
C(P, n) normalized expected cost is defined as

NEC(C, a) = P (P )FNR(a) + P (N)FPR(a)µ +
(
P (P )PAR(a) + P (N)NAR(a)

)
ν

or alternatively

NEC(C, a) =
FN(a) + FP (a)µ +

(
UP (a) + UN(a)

)
ν

n

Note that the data set S ⊆ X on which the cost curves are computed does not have
to reflect the actual distribution of classes in the instance space X . In this case the first
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definition can be used with any class distribution supposed to be the true class distribution.
As determining the correct class distribution is not a trivial task, the alternative definition can
be used if we either know or – lacking further information – assume that the class distribution
in S actually is the correct one.

Without loss of generality, we can take for granted that µ ≤ 1 if the positive class is
always defined to be the one with highest misclassification costs. This might seem a rather
stringent restriction considering the fact that the misclassification costs are unknown. Yet
even though establishing the exact cost values is complicated, determining the class with
highest misclassification costs for most problems is not. Suppose the task of predicting
whether a specific person is suffering from a certain perilous disease. Although we do not
know how much more expensive not detecting the disease is compared to treating a healthy
person, it is in many cases safe to say that it is more expensive. Furthermore, we can assume
that ν ≤ 1 on the grounds of the limitations to abstaining presented in chapter 2. The cost
curve then is created by plotting normalized expected cost against values of µ and ν between
0 and 1.

Once again, an abstention window a ∈ A is represented by a plane in the cost curve. An
abstention window can be compared against the trivial classifiers which are also defined by
planes. If every instance is classified as negative, the resulting plane is defined by z = P (P )
and is parallel to the base area. On the other hand, if every instance is labeled positive
we have that z = P (N)x and if all instances are abstained on z = y. As before the cost
curve for an abstaining classifier results by taking the minimum over the expected cost for all
corresponding abstention windows for each combination of µ and ν and the cost curve can
be projected to a two dimensional curve using color coding. (See figure 3.4 for examples).

3.3 Analyzing Cost Curves for Abstaining Classifiers

To avoid repetition, the behavior of both types of cost curves as well as the basic approach
to analyzing them is described in one section. We distinguish between them by using the
terms cost curves type I and type II. For the sake of simplification, we now assume that any
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Figure 3.4: Example cost curves for uncertain costs but fixed class distributions. Figure (a) shows the three
trivial classifiers which either label all instances as positive (green) or negative (red) or abstain on all of them
(blue). Figure (b) shows a cost curve for an example classifier and (c) the same curve projected to 2D. Note
that in figure (a) only individual abstention windows are depicted whereas figures (b) and (c) contain cost
curves for classifiers which are represented by a set of abstention windows.
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cost curve is given by a function f(a, x, y) with a an abstention window and x, y ∈ [0, 1].
For the first type of cost curves x is PCF (P ) and y PCF (N), therefore increasing values of
x result from increasing values of C(P, n) and/or P (P ), whilst increasing values of y are a
consequence of increasing values of C(N, p) and/or P (N). As PCF (⊥) = 1−x−y, the costs
for abstaining are negatively correlated to x and y.

It is due to these dependencies between costs and class distributions, that the first type
of cost curves are difficult to interpret. If we change the class distributions but leave costs
constant, the values for PCF (P ) and PCF (N) are changed completely. This becomes clear in
the following example. Let the costs for misclassification be C(P, n) = 6 and C(N, p) = 4 and
the cost for abstaining be C(⊥) = 2. For equal class distributions we then have PCF (P ) = 3

7
and PCF (N) = 2

7 . However if we change class probabilities only slightly to P (P ) = 0.4 and
P (P ) = 0.6, we have that PCF (P ) = PCF (N) = 6

17 .
The second type of cost curves is distinctively easier to interpret. Increasing values of x

correspond to increasing C(N, p) relative to C(P, n) and increasing values for y correspond
to increasing C(⊥) relative to C(P, n) and there exist no dependencies between x and y.
Yet, it is a big disadvantage of these curves that class distributions have to be fixed, i.e. a
specific class distribution has to be chosen (see also page 31). Nevertheless, we demonstrate
in the next section that the second type of cost types can also be used to explore different
class distributions without computing a new curve each time.

Although cost curves are continuous in theory, expected cost has to be computed for
specific values of x and y in order to plot the curves. The number of values chosen for x and
y determines the resolution of the curve and is denoted as ∆. The more values we choose, the
better the cost curve. Unfortunately, the time required for calculating a cost curve strongly
depends on the values chosen for ∆, as we see in chapter 5. We thus can define a cost curve
as a ∆ × ∆ matrix:

Definition 3.14. Let Clp be a classifier and A(Clp) the set of possible abstention windows
over S ⊆ X . Let ∆ be the desired resolution. We define a cost curve as a matrix K(p) with

ki,j(p) := min
a∈A(Clp)

f(a, i/∆, j/∆), 0 ≤ i, j ≤ ∆.

For the first type of cost curves any entry ki,j(p) with i+j > ∆ within the cost curve matrix
is irrelevant because PCF (P ) = i/∆ and PCF (N) = j/∆ and PCF (P ) + PCF (N) ≤ 1.
This is not the case for the second type of cost curves. However, we may occasionally restrict
the entries considered to those with j ≤ ∆/2 which implies that ν ≤ 1

2 . As we have shown
before, abstaining is only possible if ν ≤ µ

1+µ
≤ 1

2 . For this reason, any entry of the matrix
with j > ∆/2 does not provide any further information at all.

To analyze the difference in expected cost between two classifiers we can simply compute
the difference between the corresponding cost curves. The two classifiers may have been
generated by two different classification algorithms or also different settings of the same
algorithm. As a consequence, we obtain a new curve or matrix.

Definition 3.15. Given two classifiers Clp and Clq, let K(p) and K(q) be the corresponding
cost curves. The differential cost curve D(p, q) is defined as the difference between K(p) and
K(q):

di,j(p, q) := ki,j(p) − ki,j(q), 0 ≤ i, j ≤ ∆.
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Note that for a specific classifier Clp ki,j(p) denotes the minimum expected cost of any
abstention window of Clp for the cost scenario specified by i and j. For the first type of cost
curves i and j specify values for PCF (P ) and PCF (N), whereas for the second one they
specify µ and ν. For the second type of cost curves for example, we have that

ki,j(p) = min
a∈A(Clp)

EC(C, a)

with C(P, n) = 1, C(N, p) = i/∆ and C(⊥) = j/∆ since normalized expected cost is the
same as expected cost for a normalized cost matrix. Thus, normalization is performed simply
by computing expected cost for normalized cost matrices. Therefore the values of expected
cost can be directly compared between cost curves and by computing di,j(p, q) we compute
the difference of expected cost between the optimal abstention window of Clp and the optimal
abstention window of Clq for the cost scenario specified by i and j.

If all entries in the differential cost curve D(p, q) for two classification algorithms Clp and
Clq are positive, this implies that Clq outperforms Clp for all combinations of costs (and
also class distributions for the first type of cost curves). A classifier Cls outperforms another
classifier Clt for a specific cost scenario if there exists an abstention window of Cls that has
lower expected cost than any abstention window of Clt for this scenario. On the other hand,
Clp is superior to Clq if all entries of D(p, q) are negative. If one of these possibilities applies,
we are fortunate as we can completely discard one of the classifiers in either case.

Unfortunately, most of the time we have di,j(p, q) > 0 for some i and j and di,j(p, q) < 0
for others. In this case, the cost curves have to be studied thoroughly. Now the absolute value
of the difference becomes important or additional information which allows us to restrict the
possible ranges for i and j. If so we can use only a sub-matrix of the complete curve.

If we compute the differential cost curve between the set of trivial classifiers we described
before and any other abstaining classifier Cl, we observe that this curve contains no negative
entries at all, as the trivial classifiers are contained in the set of abstention windows for any
classifier. Nevertheless, it is interesting to examine when exactly the entries are actually
greater than zero.

As the actual cost values are rather arbitrary, one can alternatively examine how much
better one classifier is relative to the other one. For this purpose, the definition of the
differential cost matrix can be rewritten as

di,j(p, q) :=
ki,j(p) − ki,j(q)

max{ki,j(p), ki,j(q)}
, 0 ≤ i, j ≤ ∆. (3.3)

The entries in the matrix still are positive for cost scenarios for which classifier Clq outper-
forms Clp and negative otherwise.

Instead of considering the difference between cost values one might compute the ratio
ki,j(p)/ki,j(q) between those values. Again this is possible because the normalization is the
same for both cost curves. In this case, entries in the resulting matrix are greater than 1 if
classifier Clq is better than Clp and smaller than 1 otherwise. Unfortunately, these ratios
are more difficult to analyze in a plot as the ranges of possible values differ strongly. If Clq
is superior to Clp, we observe values between 1 and ∞, whereas otherwise we observe only
values between 0 and 1. Therefore, we can have both very large and very small values in the
same plot and changes between cost scenarios for which Clq is the better choice appear to be
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more pronounced than for cost scenarios for which Clp is better even though it may not be
the case.

If we have more than two classifiers, it can be tiresome to compare all differential cost
curves as the number of differential cost curves is quadratic in the number of classifiers. In
this case we use a different curve.

Definition 3.16. Let Cl1, . . . , Clp be p classifiers and K(1), . . . , K(p) the corresponding cost
curves. Then we define the minimum cost curve M as

mi,j := min
1≤s≤p

ki,j(s)

and the index matrix I as
ii,j := argmin

1≤s≤p

ki,j(s).

The minimum cost curve is only of minor interest here since it only contains the minimum
cost that can be achieved for every cost scenario, but gives no hint as to which classifier to
use. For practical purposes, the index matrix is of greater importance. Any classifier which is
not contained in the index matrix at all can be eliminated completely. We may even remove
a classifier, which is optimal only for very few cost scenarios and differs only insignificantly
from some other classifier. Here pairwise differential cost curves turn out to be helpful again.

The answers to the questions raised on page 27 can be determined easily with help of the
introduced matrices. When comparing one specific classifier against the trivial classifiers or
another classifier we calculate a differential cost curve. Negative and positive entries indicate
the cost scenario for which either one is superior. The absolute value of the difference tells
us how much better one classifier is. Unfortunately, it is difficult to determine for the first
type of cost curves exactly which costs and class distributions correspond to values of i and
j due to the elaborate definition of PCF (P ) and PCF (N). Contrary to that, the second
type of cost curves is easy to interpret. A value of i corresponds to false positive costs of
i/∆ and a value of j to abstention costs of j/∆. Although the same questions might be
answered without the help of the differential cost curve by simply comparing the curves for
the two classifiers, the use of the differential cost curve makes this task easier. We do not
only obtain the exact cost scenarios for which either of the classifiers is superior – which is
difficult to determine by visual inspection of the two curves only – but we can also use the
color projection to 2D for easier analysis of the differences.

For a specific classifier the best abstention window to choose is exactly the one with
minimum expected cost for each cost scenario (and class distribution). Alternative curves
can be computed containing the optimal lower and upper thresholds. These curves visualize
the shifts in the optimal abstention window for changing costs (and class distributions for
the first type of cost curves). Finally, the scenarios for which abstaining is of benefit unfold
when studying the curve which shows the optimal abstention rate for each cost scenario.
Abstention can only be applied successfully for those cost scenarios for which the optimal
abstention rate is actually greater than zero.

3.4 Comparison between both Types of Cost Curves

We have presented two types of cost curves and described how each of them can be used to
compare classifiers produced by different classification algorithms. The distinction between
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the two types at first glance appears to be clear. The first one is to be used if both costs and
class distributions are unknown, whereas the second one applies to unknown costs yet fixed
class distributions. However, when using the abstention rate instead of positive as well as
negative abstention rate, both types of representations are in fact equivalent.

Suppose the class distributions are originally given as P ′(P ) and P ′(N) but then the focus
changes to a different distribution given by P (P ) and P (N). Lemma 2.10 allows us to use
the original class distribution to calculate normalized expected cost by simply changing the
cost matrix to a matrix C ′ with C ′(P, n) = P (P )

P ′(P ) and C ′(N, p) = P (N)
P ′(N)µ.

Initially, the costs for abstaining are not affected because the abstention rate of the val-
idation set is used for any class distribution. Therefore, changes in the class distribution do
not affect abstention rate. However, to obtain normalized costs the complete matrix has to be
divided by C ′(P, n) resulting in a second matrix C ′′. By this means, the value of normalized
expected cost for P (P ) and P (N) and the original matrix C can be obtained by looking up

the costs for C ′′ in a cost curve computed for P ′(P ) and P ′(N) and multiplying it by P (P )
P ′(P ) .

In order to make this observation easier to comprehend, an example is given. We presume
that the positive class is the one with highest misclassification costs and that C(P, n) = 1,
C(P, n) = µ and C(⊥) = ν for some constants µ, ν ∈ [0 : 1]. For this example, we set
µ = 0.8 and ν = 0.4 and do not change them at all. Our aim is to examine how expected
costs change with changing class distributions. Using the first type of cost curves, this task
is easy. We simply compute the appropriate values for PCF (P ) and PCF (N) and then look
up the pre-computed costs for this scenario.

Alternatively, we can compute a cost curve of the second type for each class distribution.
However, the additional effort then is immense. The second possibility is to use the original
cost curve and only change the costs considered. Suppose a cost curve of type II for P ′(P ) =
0.5 has been calculated, but now we want to examine the expected cost for P (P ) = 0.8. First
a new cost matrix C ′ is derived such that P ′(P ) ·C ′(P, n) = P (P ) · 1 and P ′(N) ·C ′(N, p) =
P (N) · µ. Then, a normalized cost matrix C ′′ is computed from C ′ with C ′′(P, n) = 1.
Accordingly, we can determine the normalized expected cost for P (P ) = 0.8, µ = 0.8 and
ν = 0.4 by looking up the pre-computed expected cost for P ′(P ) = 0.5, µ = 0.2 and ν = 0.25

and multiplying this value by P (P )
P ′(P ) = 1.6 in the end.

If the value for P (P ) in the example was decreasing instead of increasing, the costs for
false positives might actually become greater than the costs for false negatives depending on
the original value of C(N, p). In this case a second cost curve has to be computed which
presumes the negative class as the one with highest misclassification costs. Nevertheless, this
requires only one additional curve.

Hence, when analyzing changing class distributions with the second type of cost curves
two steps have to be performed for each scenario considered. First, the new cost matrix
C ′′ has to be computed – this is analogous to the computation of PCF (P ) and PCF (N)
for the first type of cost curves – and then the value of expected cost for C ′ is obtained by
a multiplication with P (P )

P ′(P ) . This second step does not have to be performed for the first
type of cost curves, thus when comparing expected cost for different cost scenarios and class
distributions, the second type of cost curves is not completely equivalent. However in most
cases we are more interested in the optimal classifiers for certain scenarios or the optimal
abstention rate or false positive and negative rate than in the exact value of expected cost.
For these purposes the multiplication is not relevant because the matrices C ′ and C ′′ are
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equivalent. Therefore the optimal abstention window for C ′′ is also optimal for C ′ and in this
case the effort for using the second type of cost curves is the same as when using the first
type.

The advantage of the second type of cost curves is that they are easier to evaluate if only
cost scenarios change but not class distributions. If both costs and class distributions are
variable the two curves are equivalent to a large extent if the abstention rate on the validation
set is assumed to correspond to the expected abstention rate on any sample from X . A more
accurate estimate of expected costs can be achieved by distinguishing between positive and
negative abstention rate. However, in this case, the first type of cost curves cannot be
applied at all without adding a further dimension. The second type is still applicable, yet
class distributions cannot be changed anymore.
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Chapter 4

Combining Abstaining Classifiers

In the previous chapters the emphasis has always been on one model which is transformed
into an abstaining classifier by choosing one of its possible abstention windows. Such a
classifier abstains on a range of instances and thus is able to give more confident predictions
for those instances which are actually classified. However, for different classifiers the optimal
abstention window for a given cost scenario might cover a different selection of instances. This
situation is illustrated in figure 4.1(a). The instance space X is depicted by the blue circle.
The green hatched area represents those instances on which the first abstention window a1

abstains on, whereas the red hatched area represents the ones which the second abstention
window a2 does not classify. In the depicted case the two abstention windows do overlap,
but they do not have to in general. In the following chapter, we focus on the problem of how
to combine two (or more) abstention windows in such a way that we achieve high confidence
predictions for a wider range of instances than for any of the original abstention windows.

Unfortunately, this cannot be solved as easily as classifying instances when any of the two
abstention windows would classify and abstaining only when both windows would vote to do
so, as the predictions of the two abstention windows may contradict each other. In the above
example, a1 might classify an instance as positive which a2 classifies negative. Alternatively,
one of the abstention windows might abstain on an instance which the other one misclassifies.
In this case classifying the instance is detrimental and abstaining the better choice. Thus,
the essential problem we are faced with when combining two (or more) abstaining classifiers
consists of how to resolve contradictory predictions appropriately. We present two different
approaches which either combine the predictions of abstention windows by weighting them
according to expected cost or prevent contradictory predictions altogether by applying one
window after the other.

Both approaches to the combination of abstention windows result in meta-classification
schemes, which are independent of the actual algorithms used to produce the base classifiers.
This is not surprising since abstention windows itself were introduced as a form of meta-
classification. However, they are computed from one model only, whereas several models are
involved when combining abstaining classifiers.
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4.1 Approaches to Combining Classifiers

There are several approaches to combining base-level models. Such are bagging [6], boosting
[21] and stacking [55] (and meta-decision trees (MDTs, [49]) as a special case of stacking).
The general idea behind all of these methods is that a set of diverse base level classifiers is
used to create a higher level classifier. However, the way the base level models are combined
differs greatly between the methods.

4.1.1 Bagging

For bagging multiple models are derived using the same classification algorithm by taking
bootstrap samples of the original training data and using each sample to train one of the base
classifiers. Bootstrap samples are created from the training set by drawing with replacement.
Each of the samples has the same size as the original set, but some instances of the training
set are missing or represented more than once. As the training sets differ between each
other, each of the resulting classifiers behaves slightly different on the test data. The final
prediction result follows from a vote among the multiple models. Bagging is most effective
for unstable classification algorithms, for which small perturbations within the learning set
cause distinctive changes in the model constructed.

4.1.2 Boosting

While for bagging the base classification models can be computed in parallel, for boosting
they have to be computed one after another, as in later iterations the classification algorithm
is encouraged to produce models which perform good on training instances misclassified by
the previous models. This is achieved by storing weights for the instances of the learning set.
At the beginning the weights are uniformly distributed but with each iteration the weights
of misclassified instances are increased. For the final prediction the individual classification
models are weighted based on their performance on the training data. Boosting originated
from a specific theoretical framework of computational learning theory, the so-called PAC
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Figure 4.1: Figure (a) illustrates how abstention windows may cover different instances within the instance
space X and thus be used complementary. The presented abstention windows a1 and a2 do overlap, but in
many cases they are disjoint. Figure (b) describes a plane in a three-dimensional space through three non-
collinear points A, B and C. If A, B and C correspond to specific abstention windows, we can reach any point
lying on the rectangle between these points (orange) by choosing between them with appropriate probabilities.
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(probably approximately correct) model of machine learning. (An introduction can be found
in Mitchell [37].)

4.1.3 Stacking

Both bagging and boosting use only one classification algorithm to produce the base clas-
sifiers. For stacking on the other hand several algorithms can be used to produce the base
level (level-0) models. The prediction of the models then can be combined by a higher level
(level-1) model, which has been trained on the predictions of the base level classifiers. The
corresponding training set is derived in the same way as for the calculation of optimal absten-
tion windows by applying the base level classifiers on a separate validation set. Essentially,
the level-1 classifier is trained to decide for each instance how much weight to give to each
base model and how to combine the predictions and any machine learning algorithm can be
used to train the higher level model. For example, meta-decision trees – as the name implies
– use a modification of standard decision tree learning.

4.2 Combining in ROC Space

As we have seen before in the original two-dimensional ROC curve, any point on a straight line
between two points in the ROC graph can be reached by choosing between the corresponding
models with appropriate probabilities. A similar approach can be used to reach any point
on a plane defined by three points in the three-dimensional ROC space. As these points
represent abstention windows, this method effectively combines these windows.

Lemma 4.1. Given three abstention windows a1, a2, a3 and the corresponding points in the
ROC curve Pi, 1 ≤ i ≤ 3 with ~pi = (FPR(ai), AR(ai), (1 − FNR(ai))). We can reach any
point Pm on the rectangle defined by a plane through P1, P2 and P3 by choosing any of the
abstention windows ai with probability ρi such that ρ1 + ρ2 + ρ3 = 1.

Proof. If we choose the abstention windows according to the probabilities ρi we observe that
~pm = ρ1 · ~p1 + ρ2 · ~p2 + ρ3 · ~p3. We have to prove now that

i) for any values for the ρi such that ρ1 + ρ2 + ρ3 = 1, Pm lies on the rectangle defined by
P1, P2 and P3.

ii) for any point on this rectangle there exist such ρi.

A plane through three non-collinear points A, B, C with corresponding position vectors ~a, ~b
and ~c is given by the following equation (see also figure 4.1(b)).

~x = ~a + σ(~b − ~a) + τ(~c − ~a) (−∞ < σ, τ < ∞) (4.1)

Thus, for P1, P2 and P3 we have the rectangle between these points defined by

~x = ~p1 + σ(~p2 − ~p1) + τ(~p3 − ~p1) (σ, τ ∈ [0 : 1] ∧ σ + τ ≤ 1) (4.2)

Obviously we can see that Pm lies on that rectangle by setting σ = ρ2 and τ = ρ3. On the
other hand we know that for any point X on that rectangle, there exist σ and τ such that
for the corresponding position vector ~x equation (4.2) holds. Now the ρi can be found easily
by setting ρ1 = 1 − σ − τ , ρ2 = σ and ρ3 = τ .
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The lemma suggests a simple way to combine abstaining classifiers in the three-dimensional
ROC curve by computing the convex hull. The higher level classifier is created by choosing
randomly among three abstention windows on the convex hull with corresponding probabil-
ities ρi. This way no contradictions occur as always only one single classifier delivers the
final prediction. Unfortunately, there are two problems associated with this approach. First
three-dimensional ROC curves are difficult to analyze and secondly – and this is the major
drawback – none of the combined classifiers can ever surpass all base classifiers with regard
to expected cost as the following lemma shows.

Lemma 4.2. Let a1, a2 and a3 be three abstention windows and ~pi, 1 ≤ i ≤ 3 the corre-
sponding vectors in the ROC curve. Let am be a combined abstention window with ~pm =
ρ1 · ~p1 + ρ2 · ~p2 + ρ3 · ~p3 and ρ1 + ρ2 + ρ3 = 1. Then for any cost matrix C, we have that
EC(C, am) ≥ min1≤i≤3 EC(C, ai).

Proof. From the definition of ~pm it follows that

EC(C, am) = ρ1 · EC(C, a1) + ρ2 · EC(C, a2) + ρ3 · EC(C, a3)

≥ ρ1 · min
1≤i≤3

EC(C, ai) + ρ2 · min
1≤i≤3

EC(C, ai) + ρ3 min
1≤i≤3

EC(C, ai)

= min
1≤i≤3

EC(C, ai).

Based on this lemma one might conclude that combining abstention windows is inappro-
priate to improve expected cost. However, it only shows that the naive method of choos-
ing randomly among classifiers according to a given probability distribution is unsuitable.
Therefore, more sophisticated methods for combining the predictions of different abstention
windows are necessary.

4.3 Weighted Voting

Of course, any of the previously described meta-classification schemes could be used to com-
bine several models into one abstaining classifier in a straightforward way. We only have to
compute a classification model using one of these methods, apply it to a validation set and
eventually calculate the optimal abstention window based on the margins of the validation
instances.

An alternative idea, which is pursued further now, is to use the estimations for expected
cost and the optimal abstention windows computed to create voting classifiers. The prediction
of a base level classifier is provided by an abstention window and can be either positive,
negative or the choice to abstain. The weight that is given to each vote depends on the
expected cost for the corresponding abstention window. Abstention windows receive more
weight if they are expected to have low cost and vice versa. To evaluate the performance
of this higher level abstaining classifier, the model has to be applied to a separate test set
T ⊆ X as the estimation of expected cost on the validation set would be highly optimistic.
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4.3.1 Weighting

So far we have only presented the general idea of how to combine the abstention windows,
but not explained in detail in which way weighting and voting among the base level classifiers
is to be performed.

We presume a fixed cost scenario which is specified by a cost matrix C. If the costs are
unknown cost curves can be used to derive higher level abstaining classifiers for a variety of
costs. In the first step, the optimal abstention window for this cost scenario is determined for
each classifier and based on the expected costs for this window weights are calculated. Note
that the expected cost of each abstention window is estimated from the validation set S ⊆ X
but the predictions of the combined classifier are derived for a separate test set T which
is disjoint from both training and validation set. To distinguish between the two sets, the
function for expected cost is extended to a third parameter for the set on which the expected
costs are computed. Thus, EC(C, a, P ) denotes the expected cost of abstention window a on
the set P ⊆ X given cost matrix C. We use the following notation to describe the optimal
abstention window for each classifier.

Definition 4.3. Let Cl1, Cl2, . . . , Clt be the used base level classifiers. The optimal absten-
tion window for each base level model Cli is denoted by

aopt(Cli) := argmina∈A(Cli) EC(C, a, S).

The corresponding lower and upper thresholds are denoted by lopt(Cli) and uopt(Cli).

Each instance in T is described by t attributes, each of which gives the margin of the
specified instance for one of the t base level classifiers. Based on the margin, the prediction of
each classifier, that is its optimal abstention window is calculated. For practical reasons, the
predictions are now given as numbers with 1 denoting a positive prediction, −1 a negative
one and 0 the choice to abstain.

Definition 4.4. Let (m1(x), . . . , mt(x)) be the predicted margins of the t classifiers for an
instance x ∈ T . Then the prediction of classifier Cli on this instance is given by a function
π with

π(Cli, x) :=






1 if mi(x) ≥ uopt(Cli)
0 if lopt(Cli) < mi(x) < uopt(Cli)

−1 if mi(x) ≤ lopt(Cli)

We can use these definitions to present several concepts of weighting and combining
the predictions of the base classifiers. An intuitive way of combining different classification
models is to choose the one with minimum expected cost for each scenario. Thus the final
prediction for an instance x is given by π(Cli, x) if i = argmin1≤q≤t EC(C, aopt(Clq), S). No
weighting is involved at this stage, nevertheless this provides an useful baseline classifier to
compare against. Any method combining abstaining classifiers has to outperform the baseline
classifiers at least for some cost scenarios to be of relevance.

There are several alternative ways of weighting. Since the weight of a classifier is supposed
to increase with decreasing cost, weighting by inverse expected cost is appropriate and the
following weight is attached to each classifier Cli:

w(Cli) :=
1

EC(C, aopt(Cli), S)
. (4.3)
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This results in very high weights for models which have small values of expected cost (i.e.
close to zero), whereas classifiers with high values for expected cost are given almost no weight
at all. Unfortunately, for very small values of expected cost the resulting weights can become
very large.

To avoid such problems we can use an alternative weighting scheme. In this case, the
weight of a classifier is given by the sum over the expected costs for the remaining classifiers
divided by the sum over all values for expected costs. It is obvious that the weight of a
classifier is large if it performs distinctively better than the remaining classifiers and small
otherwise. Furthermore, dividing by the total expected cost becomes unnecessary, because
it is just a constant normalizing term which has no effect on the final outcome. Hence, the
weight of a classifier can be given by

w(Cli) :=
∑

1≤q≤t
q 6=i

EC(C, aopt(Clq), S). (4.4)

In chapter 6 both methods of weighting are compared and shown to be approximately equiv-
alent.

4.3.2 Voting

Having defined two weighting schemes, we can proceed to explain how final predictions for
an instance are determined. As predictions are given by either −1, 0 or 1, the final prediction
result on a given instance can be derived by summing up the predictions of each classifier
multiplied by the weight given to the classifier. We call this the direct sum method, which
requires only a function φ(x) to be calculated for an instance x with

φ(x) =
∑

1≤q≤t

w(Clq) · π(Clq, x). (4.5)

Thus the class prediction π(x) for the instance is determined by the sign of φ(x):

π(x) =






1 if φ(x) > 0
0 if φ(x) = 0

−1 if φ(x) < 0
(4.6)

Unfortunately this type of voting is biased against abstaining to a large extent as abstain-
ing is only exercised if either all base classifiers vote for abstaining or the sum of weights for
one class exactly equals the sum of weights for the other class, which is rather unlikely. If the
amount of abstaining has to be reduced as far as possible, this is the appropriate choice. An
alternative method consists of counting the weights for each possible prediction and eventu-
ally choosing the one with highest weight. This is called the majority vote method. For this
approach the votes for each label are calculated as

φ(x, y) =
∑

1≤q≤t,
π(Clq,x)=y

w(Clq). (4.7)
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(a) (b)

Figure 4.2: Ordering of instances imposed by different classifier. Instances with successive margin values for
one classifier (a) can be scattered widely for another one (b). In figure (a) the instances classified by an
abstention window are colored green. Figure (b) shows the same instances dispersed widely over the range of
margins of the second classifier.

Thus the final prediction matrix P for an instance is given by

π(x) = argmax
y∈{−1, 0, 1}

φ(x, y). (4.8)

The expected cost of the final higher level classifiers can be estimated by applying the
prediction rules to the test data and computing the false negative rate, false positive rate and
positive and negative abstention rate from the counts of each event. Expected cost then is
defined exactly as for the validation set.

4.4 The Separate-and-Conquer Approach

In the previous approaches all optimal abstention windows for the set of classifiers are em-
ployed simultaneously to determine the final classification. Alternatively, a sequence of ab-
stention windows can be learned which are to be applied one after the other. Let this sequence
be given by abstention windows (a1, . . . , aq). Abstention window ai is applied to those in-
stances which the previous abstention windows a1, . . . , ai−1 leave unclassified.

This approach is founded on the idea that after applying abstention windows a1, . . . , ai−1

only instances remain to be classified for which the previous abstention windows were inca-
pable of giving a confident prediction. As the order imposed on the instances by the margin
values differs greatly between classifiers, neighboring instances for one classifier may be dis-
persed widely for another classifier. This situation is illustrated in 4.2. Thus, removing a
sequence of instances determined by an abstention window from one classifier may result
only in the removal of isolated, scattered instances for another classifier. These instances
might have been exactly those for which the second classifier could not give accurate predic-
tions. Having removed them, the second classifier now might be able to resolve the remaining
instances successfully.

To learn such a sequence of abstention windows a separate-and-conquer approach is pur-
sued. Separate-and-conquer is a technique commonly applied to rule learning (see also page
77). At each steps several instances are removed from the data set which are already covered
in some way and only the remaining instances are used for the next steps. For our purpose,
the best abstention window over all instances in the validation set is computed first and
afterwards those instances are removed from the validation set which are classified by this
window. Only the instances abstained on remain in the set. This procedure is repeated until
no instances are left in the validation set or no further changes occur. The complete method
is described in algorithm 4.1.
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Algorithm 4.1 Separate-and-Conquer algorithm for combining abstention windows. Let S
be the validation set and each x ∈ S described by a vector (m1(x), . . . , mt(x)) giving the
margins of the t classifiers on that instance. A procedure computeOptimalWindow(S, C,
l) is presumed which computes the optimal abstention window for classifier Cll given the
current set of instances S and the cost matrix C. The final abstention windows are stored in
a set W and are to be executed in the exact order in which they have been determined.

1: procedure SeparateAndConquer(S, C)
2: W ← ∅
3: S′ ← ∅
4: while S 6= ∅ and S′ 6= S do
5: S′ ← S
6: aopt ← computeOptimalWindow(S, C, 1)
7: cl ← 1
8: for l ← 2 to t do
9: atmp ← computeOptimalWindow(S, C, l)

10: if EC(C, atmp, S) < EC(C, aopt, S) then
11: aopt ← atmp

12: cl ← l
13: end if
14: end for
15: W ← W ∪ {(aopt, cl)}
16: S ← {x ∈ S|lopt < mcl(x) < uopt}
17: end while
18: return W
19: end procedure

This procedure bears resemblance to the delegating classifier approach presented by Ferri
et al. [18] since by abstaining an abstention window essentially delegates the classification
to the subsequent window. This is not surprising, as delegating classifiers themselves can be
regarded as a variation of the separate-and-conquer approach. The major difference of our
method to the delegating approach is that an additional validation set is used to calculate the
optimal thresholds for delegation and that these thresholds are determined by optimization
instead of a simple frequency criterion. Furthermore, all the base classifiers are trained on
the same training set and therefore the separate-and-conquer procedure is deferred to the
next (higher) level which involves learning the sequence of optimal abstention windows.

Several changes may be imposed on the basic method presented. The sequence of ab-
stention windows obtained by the algorithm tends to abstain less often than the individual
optimal abstention windows for this cost scenario due to the design of the separate-and-
conquer algorithm which continues learning abstention windows until either all instances in
the validation set are classified or no changes occur. However, for low abstention costs, it
is often more favorable in terms of expected cost to have higher abstention rate instead of
higher (mis)classification rate. Therefore, better results with higher abstention rates can be
achieved by decreasing the abstention costs slightly during learning compared to the actual
costs. However, there appears to be no clear rule for how much the abstention costs have to
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be reduced. This depends on the application and in some cases also on the original abstention
costs.

Another disadvantage of the original method is that the first abstention window in the
sequence in general classifies the majority of instances leaving only a fraction of instances
processed further. This counteracts against the desired effect that only instances are supposed
to be classified in the first steps which can be done so with high confidence. To circumvent
this problem, abstention costs can be chosen at the beginning which are decisively lower than
the original costs. With each iteration they are increased until they have reached the level of
the original abstention costs. The false positive costs on the contrary are not changed at all
throughout the whole time. Consequently, the number of instances classified increases with
each step. The first abstention windows chosen are able to classify a fraction of instances with
great certainty and the following ones may be able to perform better after those instances
have been removed.

4.5 Conclusion

In this chapter we have introduced the idea of combining abstention windows to obtain
better predictive performance. For this purpose, two methods were presented. The first one
takes a vote among the optimal abstention windows for different classifiers. To account for
performance differences between classifiers, the votes are weighted depending on the expected
cost of each classifier. The second method learns a sequence of abstention windows which
are to be applied to an instance one after the other until a classification has been derived or
the last abstention window applied. The performance of these methods will be evaluated in
chapter 6 with the help of cost curves.

Of course, the presented methods by far do not represent a complete list of how several
abstention windows can be combined to produce higher level classifiers and a variety of
other methods may be devised. The aim of this chapter however was not to provide such a
conclusive list but to introduce the notion of combining abstaining classifiers and to exemplify
some methods to achieve this as well as to illustrate some of the problems which have to be
faced.
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Chapter 5

Computation of Cost Curves

In the previous chapters, the benefits of abstaining have been motivated and cost curves
for abstaining classifiers were introduced. However, for abstaining to be applicable to large-
scale analysis, efficient algorithms for computing optimal abstention windows and cost curves
are required. In the following we will restrict ourselves to cost curves for unknown costs
and presume fixed class distributions to make the presented results and proofs easier to
understand. Nevertheless, the algorithms can also be extended to the first type of cost curves
as well. Furthermore we assume that the validation set used to calculate optimal abstention
windows correctly reflects the underlying class distribution of the classification problem. This
allows us to use the alternative definition of normalized expected cost of an abstention window
a ∈ A:

NEC(C, a) =
FN(a) + FP (a) · µ + (UP (a) + UN(a))ν

n

Here µ = C(N, p)
C(P, n) and ν = C(⊥)

C(P, n) with µ, ν ∈ [0 : 1] and n is the number of instances in the
validation set S. The second type of cost curves is created by setting the x-axis to µ and the
y-axis to ν and plotting the expected cost of the optimal abstention window for each cost
scenario.

Although a cost curve is continuous in theory, in order to plot it we have to calculate the
optimal abstention window and its expected cost for specific values of µ and ν. Therefore,
we introduced a value ∆ on page 33 which specifies the number of values evaluated for µ
and ν, respectively. Accordingly, a cost curve was defined as a ∆ × ∆ matrix K such that
ki,j is the expected cost of the optimal abstention window for false positive costs µ = i/∆
and abstention costs ν = j/∆. Increasing values of i therefore correspond to increasing false
positive costs and increasing values of j to increasing abstention costs.

We now present two algorithms for efficiently computing cost curves. Both of them
presume that the output of the classifier has already been computed on the validation set
S = {x1, . . . , xn} which is used to learn optimal abstention windows and that the set of
margins M = {m(x1), . . . , m(xn)} has been obtained. To facilitate computation the margins
are sorted and only a vector of sorted margin values is used. As several instances may have the
same margin, only distinct margin values are stored and two additional vectors are calculated
which contain the number of positive and negative instances for each margin value.

Definition 5.1. Let S = {x1, . . . , xn} be the validation set and {y1, . . . , yn} the corresponding
class labels. With ~m = (m1, . . . , mk) we denote the vector of distinct margins such that
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m1 < · · · < mk and ∀ 1 ≤ i ≤ k ∃xj ∈ S : mi = m(xj) and ∀xj ∈ S ∃1 ≤ i ≤ k : m(xj) = mi.
Furthermore the vectors ~p = (p1, . . . , pk) and ~n = (n1, . . . , nk) are defined as

pi := |{xj ∈ S|m(xj) = mi and yj = P}|

and

ni := |{xj ∈ S|m(xj) = mi and yj = N}|.
We have that pi + ni > 0∀ 1 ≤ i ≤ k.

Note that for any algorithm with running time O(g(n)) for some function g(n) which takes
the sorted vector of margins as input an offset for sorting the margins has to be included in
the actual running time. As a consequence the final running time of the algorithm then is
O(g(n) + n log n) which still is O(g(n)) if g(n) = Ω(n log n).

The naive approach to computing the cost curve would consist of calculating the cost of
every abstention window and choosing the one with minimum cost for every cost scenario.
Obviously, the number of abstention windows in A is quadratic in the number of distinct
margins k in the validation set since the number of combinations of lower and upper threshold
is quadratic in k. Therefore, the running time of this algorithm is O(∆2k2). Although the
validation set size is in most cases relatively small, the multiplication by ∆2 leads to a
tremendous increase in running time even for small values of k and makes this algorithm
unsuitable for practical purposes

In this chapter two algorithms are presented for computing cost curves. The first one
begins with determining a relevant subset of abstention windows and continues by finding
the abstention window in this subset with minimum cost for selected combinations of µ and
ν. The second algorithm avoids memorizing abstention windows by directly computing the
window with minimum expected cost for each cost scenario. Both of these algorithms rely
on algorithms for the calculation of optimal abstention windows for specific cost scenarios.
The first one uses a variation of the naive, quadratic algorithm for calculating the optimal
abstention window, whereas the second one employs a linear algorithm as well as additional
dependencies between optimal abstention windows for different cost scenarios to additionally
improve the effective running time.

The first algorithm for calculating a cost curve is presented in section 5.1. Following this,
the running time for calculating an optimal abstention window for a specific cost scenario is
improved in section 5.2 from quadratic running time to running time in O(k log k) to linear
running time. Finally, we use this linear algorithm in section 5.3 to create an algorithm
for computing a cost curve which operates in time linear in the number of instances in the
validation set. Readers solely interested in the linear algorithm may skip section 5.1 and the
first part of section 5.2 and directly go to page 63. However, to fully understand the presented
concepts definitions and lemmas introduced in the preceeding sections are necessary.

5.1 The 3CSAW Algorithm

The 3CSAW (Computing Cost Curves from a Subset of Abstention Windows) algorithm
consists of two steps. First a subset of all possible abstention windows Â ⊆ A is derived such
that no abstention window a ∈ A \ Â can ever be optimal for any cost scenario. Afterwards
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the optimal abstention window for each cost scenario is computed from this subset by using
a combination of bounds on expected cost and dynamic programming.

To properly describe this algorithm, first the necessary notation has to be introduced.
As only µ and ν are variable in the definition of normalized expected cost above, a new
function is used to describe normalized expected cost. As the division by n does not change
the outcome of any comparisons based on this cost function, it is omitted here.

Definition 5.2. Given an abstention window a ∈ A, the function cost(a, µ, ν) denotes the
cost of this abstention window on the validation set S:

cost(a, µ, ν) := FN(a) + FP (a)µ + (UP (a) + UN(a)) ν = NEC(C, a)n

with C(P, n) = 1, C(N, p) = µ and C(⊥) = ν.

As we do not distinguish between abstaining on positive or negative instances, the counts
for each of those events are gathered in one value. Note, that we do not consider the frequen-
cies of abstaining or misclassification events, but the actual number of their occurrences.

Definition 5.3. Given an abstention window a, A(a) is defined as the number of instances
a abstains on if applied to S. Hence,

A(a) := UP (a) + UN(a)

with UP (a) the number of positive instances in the validation set a abstains on and UN(a)
the number of negative instances.

In chapter 2 abstention windows were defined such that both the lower and the upper
threshold lies exactly between two adjacent margin values. For simplification a function is
introduced which determines the value of a threshold given the index of the margin value
closest to the threshold from below. If the threshold is to lie below the lowest margin value
m1 or above the largest margin value mk, a user specified value ε gives the difference of the
threshold to m1 or mk, respectively.

Definition 5.4. Let ε > 0 be an arbitrary but constant value. The function v : {0, . . . , k} → R
is defined as

v(i) =






mi+mi+1

2 if 1 ≤ i < k
m1 − ε if i = 0
mk + ε if i = k.

Hence, the function v(i) calculates the threshold which lies between two margin values
mi and mi+1. Note that after sorting the margin values, the actual values of the margins are
no longer relevant for the calculation of the cost curve except for determining the threshold
values. The only necessary information is the number of positive and negative instances
corresponding to each margin value as well as the index of the margin values closest to the
thresholds from below. An abstention window a then is described by two indices i and j such
that the value of the lower threshold is v(i) and the value of the upper threshold v(j). The
expected cost of this abstention window is determined as

cost(a, µ, ν) =
∑

1≤s≤i

ps

︸ ︷︷ ︸
FN(a)

+µ
∑

j<s≤k

ns

︸ ︷︷ ︸
FP (a)

+ν
∑

i<s≤j

(ns + ps)

︸ ︷︷ ︸
A(a)

.
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Figure 5.1: Figure (a) shows the successors for an abstention window on ~m =
(−11,−10,−8,−7,−5,−3,−1, 1, 2, 4, 6, 9). The original abstention window is shown in yellow. The
successor windows are depicted by lines below or above the margin vector. Figure (b) shows for a threshold
v(i) the two adjacent margin values mi and mi+1. In this case pi = 3, ni = 1, pi+1 = 1 and ni+1 = 2. As
both ni > 0 and pi+1 > 0, an abstention window with lower or upper threshold v(i) cannot be excluded
beforehand.

We also define a successor function on an abstention window a which calculates all ab-
stention windows a′ that are created by increasing or decreasing the lower or upper threshold
of a by only one step. The set of these windows is denoted as the successors of a (see figure
5.1(a)).

Definition 5.5. Let a = (v(i), v(j)) be an abstention window in A. The successor function
succ : A → A+ is defined as

succ(a) =
⋃






{(v(i − 1), v(j))} if 1 ≤ i
{(v(i), v(j + 1))} if j < k
{(v(i + 1), v(j)), (v(i), v(j − 1))} if i < j
{(v(i + 1), v(j + 1))} if i = j ∧ j < k
{(v(i − 1), v(j − 1))} if i = j ∧ 1 ≤ i.

Although the number of abstention windows in A is quadratic in the number of distinct
margins, only those abstention windows are eligible for minimum cost for which no successor
has lower expected cost. The following lemma provides a characteristic for this type of
abstention windows.

Lemma 5.6. Let µ and ν be the costs for false positives and abstention respectively, with
0 < µ, ν ≤ 1. Let aopt = (v(i), v(j)) be the optimal abstention window for this cost scenario,
i.e. aopt := argmina∈A cost(a, µ, ν). Then we have that ni > 0 and pi+1 > 0 if i > 0 as well
as nj > 0 and pj+1 > 0 if j < k.

Proof. For i = j, the lemma follows directly from the optimality of aopt as for both ni = 0 or
pi+1 = 0, we could improve expected cost by decreasing or increasing the threshold.
Thus we will now assume that i < j and prove that both ni and pi+1 have to be greater than
zero for i > 0. (see also figure 5.1(b)). The proof for nj > 0 and pj+1 > 0 follows analogously.
From i < j and the definition of A, we know that A(aopt) = |{x ∈ S|mi+1 ≤ m(x) ≤ mj}| > 0.
Thus we can conclude from theorem 2.18 that

ν ≤ µ

1 + µ
< µ ≤ 1. (5.1)

Assume now that ni = 0. As a consequence, we have that pi > 0 (Def. 5.1). Now let
ac = (v(i−1), v(j)) be the successor of aopt which results from decreasing the lower threshold.
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Figure 5.2: This figure illustrates the preprocessing step for the calculation of optimal abstention windows.
Figure (a) shows example values for ~m, ~n and ~p and figure (b) the ~λ, ~υ, ~η and ~ρ which are calculated from the
original vectors in the preprocessing step.

This successor exists since i > 0. As the predictions of ac and aopt differ only for those
instances with margin mi, the difference in expected cost between ac and aopt is

cost(ac, µ, ν) − cost(aopt, µ, ν) =FN(ac) − FN(aopt) + (FP (ac) − FP (aopt))µ

+ (A(ac) − A(aopt)) ν

=(pi + ni)ν − pi = pi(ν − 1)
Equ. (5.1)

< 0,

which is a contradiction to the optimality of aopt.
If pi+1 = 0, we have ni+1 > 0. Let now ac = (v(i + 1), v(j)) be the successor of aopt to be
considered. This successor exists because i < j. The difference in expected cost between ac

and aopt then is

cost(ac, µ, ν) − cost(aopt, µ, ν) = pi+1 − (ni+1 + pi+1)ν = −ni+1 ν < 0.

This again is a contradiction.

From this lemma we can conclude that only abstention windows have to be considered
which exhibit the described characteristic. This means that if the lower threshold lies between
two margins mi and mi+1, at least one negative instance must have margin mi and at least
one positive instance must have margin mi+1. The same applies to the upper threshold. As
a consequence, if we have a sequence of margins mi, . . . , mj which either corresponds only to
positive instances – i.e. nq = 0∀ i ≤ q ≤ j – or negative instances – i.e. pq = 0∀ i ≤ q ≤ j –,
none of the thresholds v(q), i ≤ q < j is relevant as lower or upper threshold for an abstention
window. For this reason, successive margin values which correspond to instances of the same
class can be collected in a preprocessing step such that each sequence of instances of the same
class is represented by a constant number of values. Now two vectors are required to store the
margin values as a sequence of margin values is described by its smallest and largest value.
Two additional vectors give the number of positive and negative instances for each sequence
of margin values. Note that one of those numbers has to be zero except if the smallest and
largest value are equal, i.e. there are both negative and positive instances having the same
margin value. See figure 5.2 for an example.
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Definition 5.7. Given the vectors ~m, ~p and ~n the vectors ~λ = (λ1, . . . , λt), ~υ = (υ1, . . . , υt),
~ρ = (ρ1, . . . , ρt) and ~η = (η1, . . . , ηt) are defined such that λ1 < λ2 < · · · < λt, υ1 < υ2 <
· · · < υt and ∀ 1 ≤ i < t∃1 ≤ r ≤ s ≤ k : λi = mr ∧ υi = ms. Additionally,

ρi := |{xj ∈ S|λi ≤ m(xj) ≤ υi ∧ yj = P}|

and
ηi := |{xj ∈ S|λi ≤ m(xj) ≤ υi ∧ yj = N}|.

Furthermore we require that ∄1 ≤ i < t such that ρi = 0 and ρi+1 = 0 or ηi = 0 and ηi+1 = 0.
If ρi > 0 and ηi > 0 for 1 ≤ i ≤ t then we have λi = υi.

These vectors can be computed in time O(k) as described in algorithm 5.1. For this
purpose the margin vector (m1, . . . , mk) is passed over step by step. A new entry in the
preprocessed vector is created whenever different margin values which correspond to both
positive and negative instances would have to be collected in one entry. For each entry in ~m
the counts of positive and negative instances and the smallest and largest margin values are
updated in the preprocessed vectors. The length of the preprocessed vectors t in general is
much smaller than the number of distinct margin values k. This is due to the fact that the
margin of an instance reflects both the prediction for an instance as well as the confidence
associated with it. Therefore, for negative margin values we will have long sequences of

Algorithm 5.1 Preprocessing step for the computation of abstention windows. The algo-
rithm calculates the vectors ~λ, ~υ, ~ρ and ~η as introduced in definition 5.7 and takes the margin
vector as input, as well as the vectors containing the counts of positive or negative instances
for each margin value.

1: procedure preProcess(~m, ~p, ~n)
2: λ1, υ1 ← m1,
3: ρ1 ← p1

4: η1 ← n1

5: t ← 1
6: for j ← 2 to k do
7: if (pj 6= 0 ∨ ρt 6= 0) ∧ (nj 6= 0 ∨ ηt 6= 0) then
8: ¤ Create a new entry in the vector
9: t ← t + 1

10: λt ← mj

11: ρt ← 0
12: ηt ← 0
13: end if
14: ¤ Update counts and largest margin value of the sequence
15: ρt ← ρt + pj

16: ηt ← ηt + nj

17: υt ← mj

18: end for
19: return ~λ, ~υ, ~ρ, ~η
20: end procedure
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negative instances interrupted occasionally by positive instances and vice versa for positive
margin values long sequences of positive instances interrupted by negative ones.

Analogously to the function v from definition 5.4, a function ψ is introduced which oper-
ates on the preprocessed vectors instead of the original margin values.

Definition 5.8. Given the vectors ~λ, ~υ, ~ρ and ~η the function ψ : {0, . . . , t} → R is defined
as

ψ(i) =






υi+λi+1

2 if 1 ≤ i < t
λ1 − ε if i = 0
υt + ε if i = t.

The preprocessed margins represent the starting-point for the computation of potential
abstention windows. The pseudocode for this method is given in algorithm 5.2. Essentially,
any combination of lower and upper threshold on the preprocessed vector is considered. The
lower threshold is increased step by step within an outer loop, whereas the upper threshold is

Algorithm 5.2 The complete algorithm for the computation of abstention windows. It
computes a subset of abstention windows Â ⊆ A, such that none of the abstention windows
in A \ Â can be optimal for any cost scenario and takes as input the number of instances in
the validation set n and ~λ, ~υ, ~ρ and ~η (see definition 5.7).

1: procedure computeWindows(n, ~λ, ~υ, ~ρ, ~η)
2: FN, TN ← 0
3: Â ← ∅
4: l ← 0
5: while l ≤ t do
6: FP, TP ← 0
7: u ← t
8: while u ≥ l do
9: a ← (ψ(l), ψ(u))

10: FN(a) ← FN , FP (a) ← FP , A(a) ← n − FP − TP − FN − TN
11: Â ← Â ∪ {a}
12: repeat
13: FP ← FP + ηu

14: TP ← TP + ρu

15: u ← u − 1
16: until u = l ∨ (ηu > 0 ∧ ρu+1 > 0)
17: end while
18: repeat
19: FN ← FN + ρl+1

20: TN ← TN + ηl+1

21: l ← l + 1
22: until l = t ∨ (ηl > 0 ∧ ρl+1 > 0)
23: end while
24: return Â
25: end procedure
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Algorithm 5.3 Naive algorithm for the computation of the cost curve. Let Â be the set of
abstention windows computed before and ∆ the number of values between 0 and 1 that are
to be evaluated for µ and ν respectively. The cost curve is stored in a matrix K.

1: procedure computeCostCurve(Â, ∆)
2: for i ← 0 to ∆ do
3: for j ← 0 to ∆ do
4: ki,j ← min

a∈Â
cost(a, i/∆, j/∆)

5: end for
6: end for
7: return K
8: end procedure

decreased step by step within an inner loop until it meets the lower threshold. At each step
the counts for false and true positives or negatives are updated. Abstention windows are only
stored for later use if they exhibit the characteristic described in lemma 5.6. This means that
among the instances closest to both lower and upper threshold from below is at least one
negative instance and among the ones closest from above at least one positive instance. By
using the preprocessed vectors, we have already excluded a large number of windows from Â
which can never fulfill the criterion from lemma 5.6, because the threshold would be within
a sequence of instances of the same class. The abstention windows omitted additionally in
this algorithm have thresholds separating a sequence of only positive instances below the
threshold from a sequence of only negative instances above the threshold. Any of these
windows could be improved by changing the thresholds, therefore they cannot be optimal for
any cost scenario and are irrelevant for our purpose.

The running time of this algorithm is linear in the number of abstention windows consid-
ered and accordingly quadratic in the length of the preprocessed vectors.

Theorem 5.9. The subset of potential abstention windows can be computed in O(t2), where
t is the length of ~λ, ~υ, ~ρ and ~η, respectively.

Proof. From the pseudocode of the algorithm it is obvious, that the running time is deter-
mined by the number of combinations of l and u considered, as for each of those combinations
only a constant number of operations is performed. As we have that 0 ≤ l ≤ u ≤ t there are
only O(t2) such combinations, thus the running time is quadratic in t.

We know that t ≤ k ≤ n, with k the number of instances with different margin values and
n the total number of instances. Thus in the worst case the running time of the algorithm
is quadratic in the number of instances. Nevertheless, in most cases t will be much smaller
than both n and k, as we have seen before.

From the subset of abstention windows Â the cost curve can be calculated. The naive
implementation finds the optimal abstention window for every combination of µ and ν by
calculating the expected cost for each abstention window in Â and then choosing the one with
minimal cost (see algorithm 5.3). The running time of this naive implementation is O(∆2|Â|)
which is O(∆2t2) in the worst case.

We now propose an improved algorithm which uses a combination of dynamic program-
ming and bounds on expected cost to reduce the effort for finding the optimal abstention
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windows. For this purpose the abstention windows are divided into disjoint subsets of approx-
imately equal size. In each subset the value for the false negatives is constant. Furthermore,
we assume that the abstention windows are sorted in ascending order by false positives and
consequently in descending order by the number of abstained instances.

This division as well as the sorting can easily be performed while calculating the abstention
windows in algorithm 5.2 without further computational effort since for a given value of l
the false negatives are constant. Furthermore the false positives increase and the abstained
instances decrease while u is decremented. For every subset we can compute a lower bound
on the cost of each of its abstention windows by using the value for the false negatives of
the subset and the lowest number of false positives and abstained instances of any abstention
window of this subset. The minimum values can also be determined beforehand, so that
the bound for a subset of Â can be determined in constant time during the computation of
the curve. One after the other, the subsets are evaluated for the current cost scenario by
comparing the lower bound of the subset with the best value of expected cost so far. If the
lower bound on the expected cost for a subset exceeds this minimum cost, no abstention
window of this subset is evaluated, since any of them would lead to an increase in cost. If the
bound is below this value of expected cost, we calculate the expected cost of each window in
this subset.

To get a good initial guess for the minimal cost and therefore exclude many subsets of Â at
each step, the optimal abstention windows of the two cost scenarios most similar are evaluated
for the current scenario and the best of these is chosen. The most similar cost scenarios are
those for which one of the two cost types is the same as in the current scenario, and only the
other one is smaller by 1

∆ . This means that when calculating the optimal abstention window
for specific values of µ = i/∆ and ν = j/∆, we consider the optimal abstention windows for
µ = i/∆ and ν = (j − 1)/∆ and µ = (i − 1)/∆ and ν = j/∆, respectively. The idea behind
this approach is that an abstention window which is optimal for similar cost scenarios will
at least be close to the minimum cost for the current cost scenario. At this point we use
dynamic programming to avoid having to compute the optimal abstention window for the
similar cost scenarios all over again and store the indices of the optimal abstention windows
for each cost scenario together with the actual value for expected cost.

In the worst case no subset can be omitted and the running time is still O(∆2|Â|), while

in the best case all of them are omitted and the running time is O(∆2 |Â|
s

) with s the average
size of the subsets. The choice of the parameter s has a large influence on the running time.
The larger s the larger are the subsets and thus more abstention windows are skipped if a
subset is omitted. On the other hand the smaller s, the tighter is the bound for each subset
and thus more subsets can actually be excluded.

This method improves the effective running time decisively compared to the naive im-
plementation. However, even further refinements are possible as increasing the costs for
abstention without changing the costs for false positives has no effect on the expected cost of
abstention windows which do not abstain at all. Thus, the optimal abstention window will
not change any more as soon as it no longer abstains. This is stated formally in the following
lemmas.

Lemma 5.10. Let µ, ν1, ν2 ≥ 0 with ν1 < ν2 and A be the set of all abstention windows.
Let a1 := argmina∈A cost(a, µ, ν1). For any abstention window a2 with cost(a2, µ, ν2) <
cost(a1, µ, ν2), we have that A(a2) < A(a1).
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Proof. By contradiction:
Assume there exists an abstention window a2 with cost(a2, µ, ν2) < cost(a1, µ, ν2) and A(a2) ≥
A(a1). Thus we get

cost(a2, µ, ν1) − cost(a1, µ, ν1)

= FN(a2) − FN(a1) + µ(FP (a2) − FP (a1)) + ν1(A(a2) − A(a1))

≤ FN(a2) − FN(a1) + µ(FP (a2) − FP (a1)) + ν2(A(a2) − A(a1)) (5.2)

= cost(a2, µ, ν2) − cost(a1, µ, ν2) < 0 (5.3)

Equation (5.2) results from the fact that A(a2) − A(a1) ≥ 0 and that ν1 < ν2 and equation
(5.3) is a contradiction to the optimality of a1 for µ and ν1.

This lemma implies that when increasing the abstention costs, the number of abstained
instances either decreases or the expected cost of the optimal abstention window does not
change. Furthermore it can be concluded that as soon as the optimal abstention window for
a certain cost scenario does not abstain any more, it is also optimal for all cost scenarios with
the same false positive costs but higher abstention costs.

Corollary 5.11. Let µ, ν1, ν2 ≥ 0 with ν1 < ν2. If a1 = argmina∈A cost(a, µ, ν1) and
A(a1) = 0, we have that a1 = argmina∈A cost(a, µ, ν2).

Proof. By contradiction:
Assume there exists an abstention window ac ∈ A with cost(ac, µ, ν2) < cost(a1, µ, ν2).
Lemma 5.10 then implies that A(ac) < A(a1) = 0. As the number of instances abstained on
can never be negative, this is a contradiction.

Corollary 5.11 suggests a refinement of the presented algorithm. As soon as the optimal
abstention window for any ν1 and µ1 does no longer abstain on any instance, we can use this
window for any cost scenario ν2 and µ2 with ν2 > ν1 and µ2 = µ1. Therefore, only constant
time is required for these cost scenarios. Algorithm then 5.4 describes the complete method
for computing the cost curve from Â.

The complete 3CSAW procedure is composed of algorithms 5.1, 5.2 and 5.4. It is based
mostly on the fact that a large number of abstention windows can be discarded before com-
puting the cost curve as they cannot be optimal for any cost scenario. However, a large
number of abstention windows are retained which will never be optimal, but cannot be ex-
cluded without knowing the exact costs. The next step is to further improve the running
time by directly computing the optimal abstention window for each cost scenario. As this
is only possible if the optimal abstention window for a given cost scenario can be computed
efficiently, we first focus on this problem. Note that any useful algorithm for this problem
has to have a running time in o(k2) and thereby be better than the naive approach which
computes the expected cost of every abstention window.

5.2 Computing the Optimal Abstention Window

For this section the preprocessing step is avoided and the vector of distinct margins (m1, . . . , mk)
is used again, since the preprocessing step already requires linear time and the best algorithm
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Algorithm 5.4 Improved Algorithm for computing the cost curves using dynamic program-
ming and lower bounds on costs. ∆ is defined as in algorithm 5.3. We are given a set W of
subsets from Â such that ∪w∈W w = Â and w ∪ w′ = ∅ ∀w 6= w′ ∈ W . The cost values are
stored in a matrix K. Furthermore we assume that we can access any abstention window as
ar,s, where r denotes the subset in which the abstention window is contained and s the index
of the abstention window within the subset. The index of the subset containing the optimal
abstention window is stored in a matrix G and the index of the optimal abstention window
within its subset in a matrix T . Furthermore we have a function bound(w) which computes
the lower bound for a subset w of Â.
1: procedure computeCostCurve(W , ∆)
2: for i ← 0 to ∆ do
3: for j ← 0 to ∆ do
4: ¤ Test if the optimal abstention window for ν = (j − 1)/∆ does abstain at all
5: if j > 0 ∧ A(agi,j−1,ti,j−1

) = 0 then
6: ki,j ← ki,j−1

7: gi,j ← gi,j−1, ti,j ← ti,j−1

8: else
9: ¤ Initial guess for minimum expected cost

10: if i = 0 ∧ j = 0 then
11: ki,j ← ∞, gi,j ← −1, ti,j ← −1
12: else if i = 0 then
13: ki,j ← cost(agi,j−1,ti,j−1

, i/∆, j/∆)
14: gi,j ← gi,j−1, ti,j ← ti,j−1

15: else if j = 0 then
16: ki,j ← cost(agi−1,j ,ti−1,j

, i/∆, j/∆)
17: gi,j ← gi−1,j , ti,j ← ti−1,j

18: else

19: ki,j ← min

{
cost(agi,j−1,ti,j−1

, i/∆, j/∆)
cost(agi−1,j ,ti−1,j

, i/∆, j/∆)
20: Update gi,j and ti,j such that cost(agi,j ,ti,j , i/∆, j/∆) = ki,j

21: end if
22: ¤ Compute actual minimum cost using bounds
23: for all w ∈ W do
24: if bound(w) < ki,j then

25: ki,j ← min

{
ki,j

mina∈w cost(a, i/∆, j/∆)
26: Update gi,j and ti,j such that cost(agi,j ,ti,j , i/∆, j/∆) = ki,j

27: end if
28: end for
29: end if
30: end for
31: end for
32: return K
33: end procedure
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Figure 5.3: Computation of the optimal abstention window with divide-and-conquer. The vector of values is
divided into two sub-vectors. The optimal abstention window for the left vector (red) and the optimal absten-
tion window for the right vector (blue) are computed recursively. Finally the optimal window is computed
which crosses the divide (green), and then the best one of those three is taken.

we present for finding the optimal abstention window is linear as well. To begin with a divide-
and-conquer algorithm is introduced and later on its fundamental idea is extended to develop
the linear algorithm.

5.2.1 The Divide-and-Conquer Algorithm

A divide-and-conquer approach typically partitions the problem at hand into several smaller
subproblems which have the form of the original problem [10]. The subproblems are then
solved recursively and the solution of the original problem is derived by combining the solu-
tions of each subproblem. Thus, three essential steps can be distinguished: the divide step,
the conquer step and finally the combine step.

In our case the divide step consists of splitting the margin vector into two sub-vectors
(m1, . . . , mp) and (mp+1, . . . , mk) with p = ⌊k

2⌋. Now the optimal abstention windows for
the left and right vector are determined recursively. In the combine step the best abstention
window a = (v(i), v(j)) is computed with i ≤ p and j ≥ p (see figure 5.3). The final solution
is created by choosing the window with minimal expected cost from the three candidates.

The combine step has a major influence on the running time achieved. If every combina-
tion of values for the lower and upper threshold had to be considered in this step, the running
time of this algorithm would be even worse than the one of the naive algorithm, since the
combine step alone would take time O(k2). What makes this algorithm more efficient than
the naive one is the fact that the optimal lower and upper threshold in the combine step can
be determined independently of each other.

Lemma 5.12. Let (m1, . . . , mk) be the predicted margins, µ and ν defined as before and
1 ≤ p ≤ k. Let L := {a = (v(i), v(j))|a ∈ A ∧ i ≤ p ∧ j = p} be the set of abstention
windows with lower threshold equal to or smaller than v(p) and upper threshold v(p), U :=
{a = (v(i), v(j))|a ∈ A ∧ i = p ∧ j ≥ p} the set of abstention windows with lower threshold
v(p) and upper threshold equal to or larger than v(p) and G := {a = (v(i), v(j))|a ∈ A ∧ i ≤
p∧ j ≥ p} the set of windows with lower threshold below v(p) and upper threshold above v(p).
Let al := argmina∈L cost(a, µ, ν) and au := argmina∈U cost(a, µ, ν). Then we have for the
abstention window ag = (ll, uu) that ag = argmina∈G cost(a, µ, ν).
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Proof. By contradiction:
Assume there exists an abstention window ac ∈ G such that cost(ac, µ, ν) < cost(ag, µ, ν).
Now we define two abstention windows ae = (lc, v(p)) and af = (v(p), uc). (See figure 5.4)
Thus we observe

cost(ae, µ, ν) − cost(al, µ, ν)

= FN(ae) − FN(al) + µ(FP (ae) − FP (al)) + ν(A(ae) − A(al))

= FN(ac) − FN(ag) + µ O + ν(A(ae) − A(al))

= FN(ac) − FN(ag) + ν(A(ae) − A(al)) (5.4)

Analogously we have

cost(af , µ, ν1) − cost(au, µ, ν1) = µ(FP (ac) − FP (ag)) + ν(A(af ) − A(au)) (5.5)

By adding up equations (5.4) and (5.5) we get

cost(ae, µ, ν) − cost(al, µ, ν) + cost(af , µ, ν) − cost(au, µ, ν)

= FN(ac) − FN(ag) + ν(A(ae) − A(al)) + µ(FP (ac) − FP (ag)) + ν(A(af ) − A(au))

= FN(ac) − FN(ag) + µ(FP (ac) − FP (ag)) + ν(A(ac) − A(ag))

= cost(ac, µ, ν) − cost(ag, µ, ν)
(∗)
< 0 (5.6)

(∗) follows from the definition of ac. But equation (5.6) implies that either cost(ae, µ, ν) −
cost(al, µ, ν) < 0 or cost(af , µ, ν)−cost(au, µ, ν) < 0 which is a contradiction to the definition
of al and au.

From this lemma we can conclude that in the combine step we can first compute the
optimal lower threshold and afterwards the optimal upper threshold and then combine these
results to yield the best abstention window crossing the split point. This is a direct conse-
quence of our definition of the cost function. The cost of any abstention window a = (l, u)
with l ≤ v(p) ≤ u can be determined by first summing up the costs of the abstention windows
al = (l, v(p)) and au = (v(p), u) and then subtracting the expected cost of the abstention
window ap = (v(p), v(p)). As the cost for ap is constant, the overall cost can be minimized by
separately minimizing the costs for al and au. Both the optimal lower and upper threshold
can be computed in linear time. Therefore the divide-and-conquer approach improves the

al au
ae af

ag

ac

p

Figure 5.4: This figure illustrates the proof for lemma 5.12. al = argmina∈L cost(a, µ, ν) and au =
argmina∈U cost(a, µ, ν). ag is the abstention window we get by combining the lower threshold from al and the
upper threshold from au. The lemma shows that this is the optimal abstention window with l ≤ v(p) ≤ u.
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Algorithm 5.5 Divide-and-conquer algorithm for computing the abstention window with
minimal cost given values for µ and ν.

1: procedure computeOptimalWindow(µ, ν)
2: return computeMinWindow(1, k, µ, ν)
3: end procedure

Algorithm 5.6 Recursive Algorithm for computing the optimal abstention window for
(mi, . . . , mj). (m1, . . . , mk), (p1, . . . , pk) and (n1, . . . , nk) are stored in global variables.

1: procedure computeMinWindow(i, j, µ, ν)
2: ¤ divide step
3: q ← ⌊ i+j

2 ⌋
4: ¤ conquer step
5: a1 ← computeMinWindow(i, q, µ, ν)
6: a2 ← computeMinWindow(q + 1, j, µ, ν)
7: ¤ combine step
8: FP (a1) ← FP (a1) +

∑
q+1≤s≤j ns

9: FN(a2) ← FN(a2) +
∑

i≤s≤q ps

10: ag ← extendWindow(i, j, q, µ, ν)
11: aopt ← argmina∈{a1,a2,ag} cost(a, µ, ν)
12: return aopt

13: end procedure

asymptotic running time for the computation of an optimal abstention window compared to
the naive algorithm. The complete procedure is described by algorithms 5.5, 5.6 and 5.7.

Algorithm 5.6 calculates the optimal abstention window on the vector (mi, . . . , mj). First
the vector is divided into two sub-vectors (mi, . . . , mq) and (mq+1, . . . , mj) with q = ⌊ i+j

2 ⌋
and then the optimal abstention windows for (mi, . . . , mq) and (mq+1, . . . , mj) respectively
are determined recursively. These are called a1 and a2. As the counts of the false positives
and false negatives for both a1 and a2 have only been determined from the sub-vector each
window was calculated on, these counts have to be updated for the whole vector (mi, . . . , mj)
(lines 8 and 9). Eventually, the optimal abstention window ag is determined which crosses
the split point. This is described in algorithm 5.7. The optimal lower threshold is determined
first by decreasing the threshold step by step until it is smaller than mi. At each step the
counts for false negatives and abstained instances are updated as these are the only values
that change and the current abstention window is compared against the best window so far.
The same steps are performed for the upper threshold with the exception that the threshold
is increased step by step until it is larger than mj and that the counts actualized are the false
positives and abstained instances.

Theorem 5.13. Let µ and ν be defined as before and k the number of distinct margins. The
optimal abstention window for µ and ν can be calculated in time O(k log k).

Proof. From lemma 5.12 it follows that the combine step can be computed in time O(k) as
the optimal lower and upper threshold of ag can be determined one after the other and the
number of possible values for the thresholds is linear in k. For each threshold only a constant
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Algorithm 5.7 Algorithm for computing the optimal abstention window ag given values
for µ and ν, two indices i and j and a cut index q, such that v(i − 1) ≤ lg ≤ v(q) and
v(q) ≤ ug ≤ v(j). ~p and ~n are stored in global variables.

1: procedure extendWindow(i, j, q, µ, ν)
2: ¤ compute false negatives and false positives for threshold v(q)
3: FNq ← ∑

i≤r≤q pr, FPq ← ∑
q+1≤r≤j nr

4: ¤ compute optimal lower threshold for the abstention window
5: FN ← FNq, FP ← FPq, A ← 0
6: al ← (v(q), v(q)), FN(al) ← FN , FP (al) ← FP , A(al) ← A
7: for r ← q to i do
8: FN ← FN − pr

9: A ← A + pr + nr

10: atmp ← (v(r − 1), v(q))
11: FN(atmp) ← FN , FP (atmp) ← FP , A(atmp) ← A
12: if cost(atmp, µ, ν) < cost(al, µ, ν) then
13: al ← atmp

14: end if
15: end for
16: ¤ compute upper threshold for the abstention window
17: FN ← FNq, FP ← FPq, A ← 0
18: au ← (v(q), v(q)), FN(au) ← FN , FP (au) ← FP , A(au) ← A
19: for r ← q + 1 to j do
20: FP ← FP − nr

21: A ← A + pr + nr

22: atmp ← (v(q), v(r))
23: FN(atmp) ← FN , FP (atmp) ← FP , A(atmp) ← A
24: if cost(atmp, µ, ν) < cost(au, µ, ν) then
25: au ← atmp

26: end if
27: end for
28: ag ← (ll, uu)
29: FN(ag) ← FN(al), FP (ag) ← FP (au), A(ag) ← A(al) + A(au)
30: return ag

31: end procedure

number of operations is performed. The counts of the false positives of a1 and false negatives
of a2 can also be updated in linear time. Thus we have for the running time T (k):

T (k) = 2T (k
2 ) + O(k)

(∗)
= O(k log k).

(∗) is a consequence of the well known master theorem [10].

5.2.2 The Linear Algorithm

Previously we have presented an algorithm which runs in O(k log k). If our only goal was to
determine the optimal abstention window for a given cost scenario, we could finish here, as
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am
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Figure 5.5: Figure (a) visualizes the relationship between the optimal abstention window am and the optimal
threshold at between positive and negative prediction. am is located around at, such that lm ≤ lt and um ≥ ut.
Note that lt = ut. Figure (b) illustrates the proof to lemma 5.14. at again denotes the optimal threshold. The
assumption is that the optimal abstention window am is not located around at. The proof essentially states
that in this case the extension of am to ag leads to a reduction of expected cost, which is a contradiction to
the choice of am.

sorting the n instances by margin already takes time O(n log n). Thus the complete algorithm
will always need O(n log n) time. However, as we later use the algorithm to compute the
optimal abstention window for several cost scenarios and sorting has to be performed only
once, further improvements are useful and necessary.

Lemma 5.12 does not only prove the correctness of the divide-and-conquer approach, it
also provides a way to design a linear algorithm. The lemma’s essential statement is that
if a position q within the optimal abstention window am is known such that lm ≤ v(q) and
um ≥ v(q), we can compute the optimal abstention window in linear time. Thus the only
prerequisite still required is a method to determine such a position efficiently. The following
lemma shows that the optimal abstention window for cost scenarios with ν ≤ µ

1+µ
is always

located around the threshold of the optimal non-abstaining classifier (see figure 5.5(a)). This
threshold can be determined efficiently. If ν > µ

1+µ
, finding the optimal threshold suffices as

abstention is too expensive anyway (see lemma 2.17).

Lemma 5.14. Let µ > 0 and ν ≤ µ
1+µ

. Define T := {a|a ∈ A ∧ l = u} and let at :=
argmina∈T cost(a, µ, ν) and am := argmina∈A cost(a, µ, ν). Then we have lm ≤ lt = ut ≤ um.

Proof. By contradiction: Assume that lm > lt or um < ut.
We only show that lm > lt leads to a contradiction to the optimality of am. The assumption
um < ut can be lead to a contradiction in the same way.
Let dy := |{xj ∈ S|lt < m(xj) < lm ∧ yj = y}| be the number of instances of class y whose
margins lie between lt and lm and d := dP + dN .
Now define two windows ag = (lt, um) and ah = (lm, lm). (see figure 5.5(b)). Thus we have

cost(at, µ, ν) − cost(ah, µ, ν)

= FN(at) − FN(ah) + µ(FP (at) − FP (ah)) + ν 0

= −dP + µ dN

(*)
< 0 (5.7)

(*) holds as at is the optimal threshold between positive and negative classification, thus ah

must have expected cost greater or equal to at. However, if at and ah have equal expected
cost, we could choose ah as optimal threshold so that the theorem holds.
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From equation (5.7) we know that

dP > µ dN ⇐⇒ dP > µ (d − dP ) ⇐⇒ dP >
µ d

1 + µ
(5.8)

Now have a look at the difference in cost between am and ag:

cost(am, µ, ν) − cost(ag, µ, ν)

= FN(am) − FN(ag) + µ(FP (am) − FP (ag)) + ν(A(am) − A(ag))

= FN(am) − FN(ag) + ν(A(am) − A(ag))

= dP − ν(dN + dP )
Equ. (5.8)

>
µ d

1 + µ
− ν d = d

( µ

1 + µ
− ν

)
≥ 0 (5.9)

But equation (5.9) is a contradiction to the choice of am as the abstention window with
minimum expected cost.

Based on lemma 5.14 we can formulate a linear algorithm for computing the optimal
abstention window for any cost scenario. The algorithm consists of two parts (see algorithm
5.8). First the optimal threshold between positive and negative prediction is determined and
afterwards – if abstention costs are low enough – the optimal abstention window located
around this threshold. The correctness of this algorithm follows from lemmas 5.12 and 5.14.

Theorem 5.15. Let µ, ν ∈ [0 : 1] be defined as before and k the number of distinct margins.
The abstention window with minimal cost can be computed in time O(k).

Proof. Lines 6-15 of the pseudocode describe the calculation of the optimal threshold. The
for-loop is iterated k times and each iteration requires only constant time, therefore this step
requires time in O(k). Extending the threshold to the optimal abstention window can be done
in O(k) as we have seen before. As a consequence, the final running time is T (k) = O(k).

5.3 Computation of Cost Curves in Linear Time

In the previous section we have introduced an algorithm which determines the optimal ab-
stention window for a given cost scenario in linear time. We can now use this algorithm to
compute the complete cost curve. A naive implementation would apply this algorithm for
each cost scenario – of which there are O(∆2) – separately, resulting in a running time of
O(∆2 k). In practice we can indeed do better by employing the relationships between op-
timal abstention windows for different cost scenarios. Furthermore, the preprocessing step
introduced in algorithm 5.1 can be used again to exclude abstention windows beforehand
which can never be optimal under any cost scenario. Therefore, the running time of the naive
algorithm is reduced to O(∆2t).

In the 3CSAW algorithm we have used corollary 5.11 which states that if the optimal
abstention window am for some cost scenario has equal lower and upper threshold, it is also
optimal for any cost scenario with the same costs for false positives and higher abstention
costs. Additionally to that we can impose further restrictions on the lower and upper thresh-
olds based on the optimal abstention windows for lower abstention costs. If the value for µ is
constant the optimal abstention window for any abstention costs is always contained within
the optimal abstention windows for lower abstention costs (see figure 5.6(a)).
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Lemma 5.16. Let µ, ν1, ν2 > 0 and ν1 < ν2. Now let am := argmina∈A cost(a, µ, ν1) and
an := argmina∈A cost(a, µ, ν2). Then it follows that lm ≤ ln and un ≤ um.

Proof. By contradiction: Assume we have for an that ln < lm or un > um.
First let ln < lm and dy := |{xj |ln < m(xj) < lm ∧ yj = y}| be the number of instances of
class y whose margins lie between ln and lm. Define a new abstention window ah := (ln, um)
(see figure 5.6(b)). As the optimal threshold between positive and negative classification at

is the same for both cost scenarios, we know that ln ≤ lt ≤ um. The definition of am then
implies

cost(am, µ, ν1) − cost(ah, µ, ν1) = dP − ν1(dP + dN ) < 0 (5.10)

(If cost(am, µ, ν1)− cost(ah, µ, ν1) = 0, we could use ah instead of am and an would fulfill the
lemma.) Now let ag := (lm, un). The difference in cost between an and ag is

cost(an, µ, ν2)−cost(ag, µ, ν2) = −dP +ν2(dP +dN ) > −dP +ν1(dP +dN )
Equ. (5.10)

> 0 (5.11)

But equation (5.11) is a contradiction to the definition of an.
For un > um, we can derive a contradiction in the same way.

Now let µ, ν1 and ν2 be defined as in the previous lemma and am the optimal abstention
window for µ and ν1 and at the optimal threshold between positive and negative classification

Algorithm 5.8 Linear algorithm for computing the abstention window with minimal cost
given values for µ and ν. The vectors (m1, . . . , mk), (p1, . . . , pk) and (n1, . . . , nk) are stored
in global variables.

1: procedure computeOptWindow(µ, ν)
2: FN ← 0, FP ← ∑

1≤q≤k

nr

3: q ← 0
4: am ← (v(q), v(q))
5: FN(am) ← FN , FP (am) ← FP , A(am) ← 0
6: for r ← 1 to k do
7: FN ← FN + pr

8: FP ← FP − nr

9: atmp ← (v(r), (v(r))
10: FN(atmp) ← FN , FP (atmp) ← FP , A(atmp) ← 0
11: if cost(atmp, µ, ν) < cost(am, µ, ν) then
12: am ← atmp

13: q ← r
14: end if
15: end for
16: if ν ≤ µ

1+µ
then

17: am ← extendWindow(1, k, q, µ, ν)
18: end if
19: return am

20: end procedure
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Figure 5.6: Figure (a) shows the relationship between optimal abstention windows for the same false positive
costs µ but different abstention costs ν1 (window am) and ν2 (window an) with ν1 < ν2. at denotes the
optimal threshold between positive and negative classification for both scenarios. Figure (b) illustrates the
proof to lemma 5.16. am is the optimal abstention window for µ and ν1 and an the one for µ and ν2. The
assumption is that ln < lm. We do not know if um ≤ un or um > un, but we only require that both um ≥ ln
and un ≥ lm. This holds as we have the same optimal threshold between positive and negative classification
for both cost scenarios.

for µ. Then lemma 5.16 allows us to limit the number of abstention windows considered for
costs µ and ν2 to those abstention windows ai ∈ A which lie within am and are located
around at, i.e. lm ≤ li ≤ lt and um ≥ ui ≥ ut.

Furthermore, we observe that with increasing costs for false positives the optimal threshold
between positive and negative classification is never moved into the negative direction. As
false positives are penalized more strongly, positive predictions on the whole are increasingly
avoided. The next lemma formalizes this observation.

Lemma 5.17. Let µ1, µ2, ν ∈ (0 : 1] and µ1 < µ2. If as = argmina∈T cost(a, µ1, ν) and
at = argmina∈T cost(a, µ2, ν), then we have that ls ≤ lt.

Proof. By contradiction: Assume that ls > lt. Note that us = ls and ut = lt.
Define dy as |{xj |lt < m(xj) < ls ∧ yj = y}| for y ∈ {P, N}. As ls > lt we must have dP +
dN > 0. Furthermore we presume that cost(as, µ1, ν) < cost(at, µ1, ν) and cost(at, µ2, ν) <
cost(as, µ2, ν). Otherwise one of the thresholds would be optimal for both scenarios. Thus
we have

cost(as, µ1, ν) − cost(at, µ1, ν) = dP − µ1 dN < 0 (5.12)

and
cost(at, µ2, ν) − cost(as, µ2, ν) = µ2 dN − dP < 0 (5.13)

From equation (5.12) we can conclude that dN > 0. By summing over equation (5.12) and
(5.13) we yield

µ2 dN < µ1 dN ⇐⇒ µ2 < µ1

which is a contradiction to the choice of µ1 and µ2.

This last lemma as well as the ones before allows several improvements from the naive
algorithm by storing intermediate results. The algorithm then consists of two parts. First
the optimal thresholds between positive and negative classification are computed for each
µ = i/∆ , 0 ≤ i ≤ ∆ as described in algorithm 5.9. For this purpose the abstention costs are
set to 1 but any other value could be used because none of the evaluated abstention windows
abstains and therefore abstention costs are irrelevant. Two vectors ~τ and ~q are used to store
the results. τi denotes the optimal abstention window for µ = i/∆ with equal lower and
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Algorithm 5.9 Algorithm for computing the optimal thresholds for µ = i/∆, 0 ≤ i ≤ ∆.
The output is stored in two vectors ~q = (q1, . . . , q∆) and ~τ = (τ1, . . . , τ∆), such that τi =
argmina∈T cost(a, i/∆, 1) and the value of the threshold of τi is ψ(qi). The vectors ~λ, ~υ, ~ρ, ~η
are defined as in definition 5.7 and stored as global variables.

1: procedure computeThresholds(∆)
2: for i ← 0 to ∆ do
3: if i = 0 then
4: qi ← 0
5: τi ← (ψ(qi), ψ(qi))
6: FN(τi) ← 0, FP (τi) ←

∑
1≤r≤t ηr

7: else
8: qi ← qi−1

9: τi ← τi−1

10: FN ← FN(τi−1), FP ← FP (τi−1)
11: for r ← qi−1 + 1 to t do
12: FN ← FN + ρr

13: FP ← FP − ηr

14: atmp ← (ψ(r), ψ(r))
15: FN(atmp) ← FN , FP (atmp) ← FP
16: ¤ No abstention, thus third argument without effect
17: if cost(atmp, i/∆, 1) < cost(τi, i/∆, 1) then
18: τi ← atmp

19: qi ← r
20: end if
21: end for
22: end if
23: end for
24: return (~q, ~τ).
25: end procedure

upper threshold and qi the index position such that the value of the optimal threshold is
ψ(qi). For computing the optimal value for qi only indices greater than or equal to qi−1 are
considered at all because for increasing false positive costs the threshold is never moved into
the negative direction (lemma 5.17). Note that increasing indices correspond to increasing
margin values. In the worst case, we have to evaluate O(t) possible thresholds for each i.
For each threshold only constant time is required, therefore the worst case running time of
algorithm 5.9 is in O(∆ t).

Subsequently, the complete cost curve is computed based on the results for ~τ and ~q. The
pseudocode for this procedure is given in algorithm 5.10. For each combination of i and
j the same steps are performed. Remember that this corresponds to false positive costs
µ = i/∆ and abstention costs ν = j/∆. If the costs for abstention exceed µ

1+µ
(i.e. j ≤ ∆ i

∆+i
)

no extra work is necessary. Otherwise, first the optimal lower threshold is determined and
afterwards the optimal upper threshold. As in the linear algorithm for the calculation of
one optimal abstention window, the lower threshold at the beginning is assigned the value
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Algorithm 5.10 The complete algorithm for computing the cost curve. The cost curve is
stored in a matrix K, the vectors ~q and ~τ are used as defined in algorithm 5.9 and the vectors
~λ, ~υ, ~ρ, ~η are stored as global variables.

1: procedure computeCostCurve(∆)
2: (~q, ~τ) ← computeThresholds(∆)
3: for i ← 0 to ∆ do
4: ki,0 ← 0, l ← 0, u ← t
5: for j ← 1 to ∆ do
6: ¤ Compute the lower threshold of the optimal abstention window
7: al ← τi, s ← qi

8: FN ← FN(τi), FP ← FP (τi), A ← 0
9: if j ≤ ∆ i

∆+i
then

10: for r ← qi to l + 1 do
11: FN ← FN − ρr

12: A ← A + ρr + ηr

13: atmp ← (ψ(r − 1), ψ(qi))
14: FN(atmp) ← FN , FP (atmp) ← FP , A(atmp) ← A
15: if cost(atmp, i/∆, j/∆) < cost(al, i/∆, j/∆) then
16: al ← atmp, s ← r − 1
17: end if
18: end for
19: end if
20: l ← s
21: ¤ Compute the upper threshold of the optimal abstention window
22: au ← τi, s ← qi

23: FN ← FN(τi), FP ← FP (τi), A ← 0
24: if j ≤ ∆ i

∆+i
then

25: for r ← qi + 1 to u do
26: FP ← FP − ηr

27: A ← A + ρr + ηr

28: atmp ← (ψ(qi), ψ(r))
29: FN(atmp) ← FN , FP (atmp) ← FP , A(atmp) ← A
30: if cost(atmp, i/∆, j/∆) < cost(au, i/∆, j/∆) then
31: au ← atmp, s ← r
32: end if
33: end for
34: end if
35: u ← s
36: ki,j ← cost(al, i/∆, j/∆) + cost(au, i/∆, j/∆) − cost(τi, i/∆, j/∆)
37: end for
38: end for
39: return K.
40: end procedure
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Figure 5.7: Figure (a) shows schematically the lower an upper thresholds of the optima abstention window in
relationship to i and j, i.e. the false positive costs µ and abstention costs ν. The yellow plane corresponds
to the optimal threshold between positive and negative classification. The upper threshold is depicted in blue
as soon as it increases, and the lower threshold in green as soon as it decreases. Figure (b) illustrates the
relationship of optimal abstention windows for fixed values of i and increasing values of j. The indices of the
preprocessed vectors range from 1 to t and the optimal threshold between positive and negative classification
lies between υqi

and λqi+1
. The blue lines indicate the change in the optimal lower and upper threshold. The

lower threshold decreases and the upper threshold increases with j until they meet each other. For each value
of j only the red range has to be evaluated for lower and upper threshold as this corresponds to the optimal
abstention window for j − 1. l and u are used to store the indices of the optimal threshold values for j − 1.

of the optimal threshold between positive and negative classification. Following this, the
threshold is decreased step by step and the counts of false negatives and abstained instances
are updated. However in this case, we do not continue until the threshold is below the smallest
margin value but use the information we have about the optimal lower threshold for i and
j − 1. In lemma 5.16 we have shown that the optimal abstention window for the current cost
scenario i and j is contained in the optimal abstention window for i and j − 1. Therefore the
last threshold we have to evaluate for this cost scenarios is ψ(l) with ψ(l) the optimal lower
threshold for i and j − 1. The same applies to the calculation of the upper threshold. The
threshold is increased step by step until we have reached the optimal upper threshold for i
and j − 1. Two variables l and u are used to store the indices of the optimal thresholds for
i and j − 1 such that the optimal abstention window for i and j − 1 is (ψ(l), ψ(u)). When
j = 0, l is initialized with 0 and u with t. The relationship between the optimal abstention
windows for different values of i and j is illustrated in figure 5.7.

The algorithm effectively calculates two abstention windows al and au for each i and j with
al = argminar∈A∧ur=ψ(qi) cost(ar, i/∆, j/∆) and au = argminar∈A∧lr=ψ(qi) cost(ar, i/∆, j/∆).
The optimal abstention window am for this cost scenario then is defined by the lower threshold
of al and the upper threshold of au. Obviously, we have that FN(am) = FN(al), FP (am) =
FP (au) and A(am) = A(al) + A(au). The expected cost of am then can be calculated as

cost(am, i/∆, j/∆) = cost(al, i/∆, j/∆) + cost(au, i/∆, j/∆) − cost(τi, i/∆, j/∆).

Determining al and au requires at most time O(t) for given i and j because we only
evaluate O(t) lower or upper thresholds and evaluating a threshold can be done in constant
time. Consequently, the asymptotic running time of this algorithm is still O(∆2 t) as for
the naive implementation. Nevertheless, the practical running time has been greatly reduced
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because for most cost scenarios only a fraction of possible thresholds has to be evaluated.
We have now presented two algorithms for efficiently computing a cost curve from the

results for the validation set. Both of these algorithms rely on characteristics of optimal
abstention windows as well as relationships between optimal windows for different cost sce-
narios. What eventually made it possible to go beyond explicitly calculating all abstention
windows and comparing their costs, was the observation that the optimal abstention window
is always located around the optimal threshold between positive and negative classification.
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Chapter 6

Evaluation

The benefits of abstaining in general as well as the presented cost curves for abstaining clas-
sifiers and the methods for combining abstaining classifiers were evaluated on two biological
classification tasks which involve the prediction of origin for EST sequences and prediction
of mutagenicity or carcinogenicity of chemical compounds. Furthermore, we analyzed the
characteristics of instances abstained on and the behavior of optimal false negative and posi-
tive rate as well as abstention rate in relationship to each other and the dependency between
optimal abstention rate and classification accuracy.

For this purpose, at least two sets of instances were required for each classification task. A
training set was necessary to calculate a classification model for distinguishing the classes and
a validation set to calculate optimal abstention windows and cost curves. When evaluating
the performance of the methods a test set was needed as well. Unfortunately, the number
of labeled instances available for each task were in general small. As a consequence, the
available data sets were not split in two (or three) separate sets but tenfold cross-validation
was used.

For cross-validation the data sets are split into ten approximately equally large subsets.
Alternately, one of these subsets is used as test or validation set and the remaining nine
subsets as training set. Each instance is used exactly once for the validation set or the test
set, therefore one unequivocal prediction is obtained for it. Although the predictions are
provided by different models, the results are treated as if only one model was applied to one

1 . . . m − 1 m

1 . . . m − 1 m

Training Set Valid. Set

Test Set

Figure 6.1: Nested loops of m-fold cross-validation. The original data set is split into m approximately equally
large subsets. At each iteration 1 subsets is used as training set and the remaining m− 1 subsets are referred
to an internal cross-validation. The remaining instances are again split into m subsets. Alternately one subset
is used as validation set and the remaining instances are used for training classifiers.
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separate validation set. This is reasonable as the training set size is only slightly smaller than
the size of the original set and hence the different models are assumed to agree to a large
extent. If three separate sets are required, an external cross-validation is performed to obtain
a test set and within each fold an internal cross-validation provides the information required
for validation (see figure 6.1).

6.1 Classification Tasks

6.1.1 Separation of mixed plant-pathogen EST collections

The first classification task involves the prediction of origin for sequences from mixed plant-
pathogen EST pools (see also [22]), that is if they correspond to plant or fungal genes. Such
EST pools are derived by extracting EST sequences from infected plants and are helpful to
determine genes involved in plant defense or pathogen virulence. Due to the high-throughput
nature of these experiments, biological methods for determining the origin of a sequence
become infeasible, thus fast and reliable computational methods are necessary.

Homology search within genome databases in many cases fails due to biased taxa rep-
resentation within genome databases and sequence homology between plant and pathogen
genes. In [22] a method is presented which relies on machine learning methods only – in this
case support vector machines – to distinguish between plant and pathogen EST sequences
based on differences in codon bias between the two organisms. Codon bias denotes the fact
that not all nucleotide triplets coding for the same amino acid are used in equal proportions.
Some codons may be preferred above others and there is decisive variation between species
as to which codons are preferred and the frequencies with which they occur [47].

The EST dataset used for training and evaluating this method contained 3217 unigene
sequences of diverse lengths from barley (Hordeum vulgare, 1315 sequences) and blumeria
(Blumeria graminis, 1902 sequences) for which the coding frame had been determined pre-
viously using the Sputnik EST analysis pipeline [43]. A minimum sequence length threshold
of 100 base pairs was imposed and unigene sequences were used to avoid redundancy, so that
each gene from the plant or fungal organism was represented by at most one EST sequence in
the data set. On account of the small size of the data set a majority of genes of each organism
were not represented in it at all. As the method does not rely on sequence homology but on
the underlying codon composition of the genes, this does not constitute a problem.

In order to derive attributes for the sequences, codon occurrences were computed starting
at the begin of the sequence up to and including the first stop codon. As some codons
may be missing in an EST sequence which in most cases represents only a part of a gene
sequence, pseudocounts were included when computing the codon frequency. Accordingly,
the frequency of a codon c was defined as

F (c) =
nc + 1∑

c′∈Codons nc′ + 64
.

where ni denotes the number of occurrences of codon i in this sequence. Consequently, an
instance of this dataset has exactly 64 attributes giving the frequencies of the 64 coding
triplets. For our purposes we restricted ourselves to the task of predicting the origin of a
sequence provided that the coding frame is known. This is of course a simplification of the
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problem as the coding frame is in general unknown for a newly sequenced EST sequence.
Nevertheless, the coding frame of a sequence can also be predicted with high confidence
using machine learning techniques [22].

6.1.2 Predictive Toxicology

As a consequence of the amount of chemicals employed in every area of human activity,
the evaluation of toxic side-effects such as carcinogenicity or mutagenicity of chemicals has
become a major issue. However, in spite of efforts on the side of the US National Toxicol-
ogy Program (NTP, http://ntp-server.niehs.nih.gov/) for example, which effects standardized
bioassay tests exposing rodents to various chemicals in order to identify compounds poten-
tially carcinogenic in humans, only a small fraction of chemicals has actually been tested. As
in the case of EST origin prediction, this is due to the time-consuming and expensive nature
of such experiments.

In order to reduce costs, the need for reliable models for toxicity predictions based only
on molecular properties and chemical structures has arisen. The major phases involved in
developing such models comprise the generation of appropriate descriptors of the chemi-
cals and afterwards the construction of models based on those descriptors. This task was
addressed in the Predictive Toxicology Challenge (PTC) 2000-2001 [29] for rodent carcino-
genicity results from the US National Toxicology Program. For our purpose, we chose only
the training set from this challenge due to structural dissimilarities between training and
test set [50], as well as a second data set derived from the carcinogenic potency database
(CPDB, http://potency.berkeley.edu/cpdb.html, [23]) which offers mutagenicity results based
on Salmonella/microsome assays [1]. This second dataset was used by Helma et al. [30] to
analyze the benefits of molecular fragments as descriptors compared to molecular properties
as well as to compare different machine learning algorithms.

For both datasets we distinguished only between the positive (carcinogenic/mutagenic)
and the negative (non-carcinogenic/non-mutagenic) class. The NTP dataset contained results
obtained for experiments in male and female rat and mice which could be of any of the
following categories: CE (Clear Evidence of Carcinogenic Activity), SE (Some Evidence), EE
(Equivocal Evidence), NE (No Evidence) and IS (Inadequate Study). For earlier experiments
the description of the result might also be P (Positive), E (Equivocal) or N (Negative).
A compound for which the result was P, CE or SE in any of the four experiments was
declared positive. If all the experiments resulted in EE, IS or E the compound was excluded.
Otherwise it was declared to be negative. The final carcinogenicity dataset was comprised
of 408 instances, 179 of which were negative and 229 positive. The mutagenicity dataset
contained 684 instances, 341 of which were positive and 343 were negative.

The instances were given as SMILES strings [53] which had been tested for validity and
if necessary corrected as described by Helma et al.[28]. Chemical compounds were described
by frequently occurring molecular fragments. This approach has been shown to produce
satisfactory classification accuracy and be superior to simple molecular properties both by
Kramer et al. [34] and Helma et al. [30]. The fragments were calculated with FreeTreeMiner
[45], a program for mining frequent free trees – i.e. un-rooted trees – in graph data. Previous
approaches used only paths but the extension to free trees appears to be at least equivalent.
For the carcinogenicity dataset frequent free trees were computed which occurred in at least
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10% of the structures and for the second set the frequency threshold was set to 5% due to its
larger size. However, those thresholds were chosen rather arbitrarily. The results of Helma et
al. [30] imply that by decreasing the frequency threshold and thus including more fragments,
classification accuracy can be increased by 1-2%, but as a consequence the computational
effort also increases tremendously.

6.2 Machine Learning Algorithms

Five machine learning algorithms were used to derive models for abstaining classifiers, those
being support vector machines (SVM, [8]), decision trees (C4.5, [42]), rule learning (PART,
[20]), Naive Bayes [37] and Random Forests [7]. For support vector machines the LIBSVM
implementations [9] were chosen, whereas for the remaining algorithms the implementations
of the WEKA workbench [54] were employed.

6.2.1 Support Vector Machines

Support Vector Machines (SVM) serve for classifying data based on linear decision rules
(see also [52] and [4]). Given a training set (x1, y1), . . . , (xn, yn) such that xi represent the
attributes of instance i and yi ∈ {−1, +1} the corresponding class, SVM aim to find a
hyperplane separating the training instances by their classes and maximizing the distance to
the closest examples. The classification of a new instance then depends on which side of the
hyperplane it is located.

As in most cases it is impossible to separate samples by a linear function in the original
space, training instances may be transformed into a higher dimensional space by a function
φ, such that a linear maximum-margin hyperplane in this higher dimensional space can be
found. For solving this problem it is sufficient to give the dot product of two instances in this
space. K(xi, xj) = φ(xi)

T φ(xj) is called a kernel function which can be, for example, linear,
polynomial, sigmoid or a radial basis function (RBF).

Support vector machines generally are not prone to overfitting and they can be computed
efficiently as there exist several fast algorithms for finding the optimal hyperplane ([32],
[38]). However, as they can describe intricate decision boundaries, the resulting classifiers are
difficult to comprehend when non-linear kernels are used.

6.2.2 Decision Trees – C4.5

A decision tree is – as the name suggests – a tree describing sequences of tests. Each internal
node prescribes a test on an attribute and has one successor node for each possible attribute
value [37]. A class label is associated with each leaf node such that the classification of an
instance can be derived by following the path from the root to a leaf. Decision trees are
generally most suitable if instances are described by a fixed set of attributes which on their
part can take on only a small number of possible values and if class labels are discrete-valued
and the training data may contain errors or missing attribute values.

C4.5 is a greedy algorithm for constructing decision trees using a divide-and-conquer
approach. At each step the training set is split into several subsets according to the values
for a certain attribute. The best split attribute is chosen based on the expected reduction in
entropy achieved if instances are sorted according to the attribute. The procedure is repeated
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recursively for each subset until all instances in the subset are in the same class or no more
attributes remain to be tested. After building the complete tree a pruning step may be
applied removing nodes at the lower levels of the tree to avoid overfitting.

6.2.3 PART

PART differs from other rule learning algorithms which first learn a set of rules and afterwards
improve it in an optimization step by learning one rule at a time and refraining from global
optimization. The algorithm is based on the generation of partial decision trees and combines
the two major paradigms of rule learning which are the construction of rules from decision
trees and the separate-and-conquer approach. In the latter one, by turns the best rule is
extracted from the data set and the instances covered by the rule are removed from the set.
A similar approach is used in chapter 4 to combine abstention windows. PART achieves a
predictive accuracy comparable to other state-of-the-art rule learning algorithms on standard
datasets while operating efficiently due to the avoidance of post-pruning.

6.2.4 Naive Bayes

The Naive Bayes algorithm relies on the Bayes theorem which makes it possible to calculate
the most probable hypothesis within a hypothesis space H, given the data D as well as prior
knowledge of the probabilities of hypothesis in H. In general, however, we are more inter-
ested in determining the most probable classification of an instance, not the most probable
hypothesis. Given a set of class labels V , the Bayes optimal classification is therefore provided
by

argmax
vj∈V

∑

hi∈H

P (vj |hi)P (hi|D). (6.1)

As the Bayes optimal classifier requires calculating the posterior probability of every
hypothesis in H, it is in most cases too expensive to apply. Alternatively, the label for an
instance may be chosen solely depending on its attribute values. The optimal label for an
instance with attribute values (a1, . . . , an) then is given by

argmax
vj∈V

P (vj |a1, . . . , an) = argmax
vj∈V

P (a1, . . . , an|vj)P (vj). (6.2)

Unfortunately, estimating the probabilities P (a1, . . . , an|vj) from the training data is im-
possible but for very large training sets. To circumvent this problem, the Naive Bayes classifier
assumes conditional independence for attribute values given the class label. As a consequence,
the previous equation simplifies to

argmax
vj∈V

P (vj)
∏

i

P (ai|vj). (6.3)

The learning step of the Naive Bayes algorithm consists of estimating the values for the
P (vj) and P (ai|vj). The classification of an instance is determined based on the estimated
probabilities by using equation (6.3).
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6.2.5 Random Forests

The Random Forests algorithm represents a variation of the bagging approach mentioned
before and grows several decision trees. Each tree is grown on a slightly different training
set, which is constructed using bootstrap sampling, i.e. sampling with replacement. The
way each tree is grown differs from the C4.5 method such that at each node a constant
number of attributes is chosen randomly and only the best test among the selected attributes
is evaluated. Furthermore, no pruning is applied. The classification for an instance by the
forest of trees is derived by calculating the prediction of each tree and then taking a vote
among the trees.

6.3 Preliminary Analysis

6.3.1 Classification Performance

The three data sets described were chosen for two reasons. First they represent interesting
biological classification tasks important for agricultural disease control on the one hand and
for the prevention of chemical hazards on the other hand. Secondly, the classification ac-
curacy, i.e. the percentage of correct predictions, which could be obtained by using any of
the described machine learning algorithms, differed greatly between these data sets. Table
6.1(a) on page 80 contains the expected classification accuracy as estimated by tenfold cross-
validation for all five algorithms as well as a baseline classifier (ZeroR) which always predicts
the majority class. For simplification in the following passages the classification algorithms
and the classifiers produced by them are used synonymously. J4.8 denotes the WEKA im-
plementation of C4.5. For the support vector machines a RBF kernel was chosen and all
classification algorithms were used with default settings.

The table shows that for carcinogenicity prediction the baseline classifier could hardly be
improved upon, whereas for mutagenicity prediction accuracies between 69% and 77% were
achieved. This is consistent with the results described by Kramer et al. [34] and Helma et al.
[30]. For EST classification the range of prediction accuracies spread from around 82% for
J4.8 up to almost 93% for SVM. For both mutagenicity prediction as well as the prediction of
EST origin the baseline classifier was clearly surpassed by any of the classification algorithms.

6.3.2 Distribution of Margin Values

The differences between the data sets become more obvious when analyzing the distribution
of margins between the positive and negative class for each data set. For the EST origin
prediction the blumeria class was proclaimed as the positive class. However, this distinction is
rather arbitrary. In fact, this may be one of the rare cases that both types of misclassifications
actually result in equal or only slightly different costs.

Figure 6.2 shows the histograms of the margin values computed by the support vector
machine classifiers which were among the top classifiers for all data sets. For carcinogenic-
ity prediction (6.2(a)) the positive and negative instances were hardly separated at all and
negative and positive margin values occurred regularly for both classes. For mutagenicity
prediction (6.2(b)) the separation appeared to be more pronounced, however for small abso-
lute values of the margin the classes still were mixed to a large extent. Only for the EST
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Figure 6.2: Distribution of margin values for instances from the carcinogenicity (a), mutagenicity (b) and
EST (c) dataset. To compute those margins, support vector machines were used. For the EST data set the
blumeria class was chosen as positive class.

dataset (6.2(c)) a largely unequivocal separation of the classes was achieved.

These observations have an important implication for the following results. Both carcino-
genicity prediction and EST classification can be expected to benefit only to a small degree
from abstention for very different reasons. In the first case, as both positive and negative
instances are scattered widely over the range of the margin values, probably no abstention
window achieves much higher accuracy than the non-abstaining classifier. In the second case,
the overlap between instances from blumeria and barley is only small. Although results can be
improved by abstaining from instances in this overlap, an additional extension of abstention
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Accuracy (in %)
Data set

SVM Random Forests Naive Bayes PART J4.8 ZeroR

Carcinogenicity data 56.9 55.8 55.1 54.7 56.1 56.1
Mutagenicity data 75.3 72.8 69.4 75.4 76.8 50.1
EST data 92.9 88.5 87.1 84.9 82.5 59.1

(a) Classification accuracies achieved for carcinogenicity and mutagenicity prediction as well as EST classifi-
cation by several machine learning algorithms. For the support vector machines a RBF kernel was chosen and
all classification algorithms were used with default settings.

Carcinogenicity Data Mutagenicity Data EST Data
Algorithm Accuracy Abst.

Rate
Accuracy Abst.

Rate
Accuracy Abst.

Rate

SVM 62.3 56.4 81.3 67.3 96.3 11.3
Random Forests 60.8 68.1 84.1 53.2 93.6 20.4
Naive Bayes 57.6 62.9 84.5 54.6 93.5 24.3
PART 54.5 62.3 79.7 65.4 87.4 9.5
J4.8 59.0 64.7 82.8 60.8 84.1 20.5

(b) Accuracy and abstention rates achieved by the optimal abstention windows of different classifiers on each
task. Misclassification costs were assumed to be equal and the abstention costs were set to 1

5
of the misclassifi-

cation costs for mutagenicity and EST origin prediction and to 2

5
for carcinogenicity prediction.

Table 6.1: Classification accuracy achieved without and with abstention. Accuracy is defined as the percentage
of correctly classified instances of all classified instances and was estimated using tenfold cross-validation. Note
that an internal cross-validation was used to calculate the optimal abstention windows for table (b). J4.8
denotes the WEKA implementation of C4.5.

windows beyond this overlap only results in abstaining of instances which would be classified
correctly otherwise and therefore increases costs.

6.3.3 Optimal Abstention Windows

As we have seen in chapter 2, we can easily calculate the optimal abstention window provided
that the costs and class distribution are known. To illustrate the benefits of abstention com-
pared to classifying all instances, equal misclassification costs were assumed for the following
analysis although for both carcinogenicity and mutagenicity prediction this clearly does not
hold true. Nevertheless, this assumption was useful as it allowed us to compare classification
accuracy obtained with the help of abstention to accuracy obtained on all instances.

For this test both a validation and a test set was required, as the estimates of prediction
accuracy of the optimal abstention window based on the validation set would have been
highly optimistic. Therefore, an external cross-validation provided the test information and
the internal cross-validation the information for validation as described before. In table 6.1(b)
the estimated prediction accuracies are given alongside with the abstention rates necessary
to achieve these results. Abstention costs of 1

5 of the misclassification costs were assumed
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for both EST and mutagenicity data, however for carcinogenicity prediction abstention costs
were raised to 2

5 , as for lower values the abstention rates yielded were close to 100%.

For each of the three datasets significant improvements could be observed. The most
notable improvement was achieved by the Naive Bayes classifier with around 6 percentage
points for EST classification and almost 15 percentage points for mutagenicity prediction.
Unfortunately, these improvements were associated with high abstention rates, especially for
mutagenicity and carcinogenicity prediction where up to two thirds of the instances were ab-
stained on. In absolute terms this means that between 364 and 448 instances were abstained
on for mutagenicity prediction and between 230 and 278 for carcinogenicity prediction. As ac-
curacies reached for EST origin prediction were already high without abstention, the required
abstention rates were much smaller with values between 9.5% and 24.3% which corresponds
to 305 to 783 abstained instances due to the larger size of this dataset.

By decreasing the abstention costs additionally, classification accuracy could be improved
even further. However there were limits to what could be achieved. For instance, the accu-
racy on EST prediction could be pushed up to 99.9% for the support vector machines with
abstention costs of 10−3 leading to an abstention rate of 70%, but these results did not change
anymore even for costs as low as 10−20. This is exactly the observation that was expected.
Abstention even at this point is more expensive than the few misclassifications because so
many correct classified instances are abstained on. On the other hand, when reducing the
abstention rates, accuracies decrease again. This illustrates strongly the trade-off between
these two quantities. We have to pay for improved predictive accuracy by reduced coverage
and what we can achieve therefore depends mostly on how much we are willing to pay.

6.3.4 Characteristics of Abstained Instances

As there are several possible explanations for instances to be abstained on, we examined
if there are any common characteristics of abstained instances. For example, instances may
either belong to a separate class not observed in the training set or alternatively show proper-
ties of both classes. Additionally, the inductive bias of the algorithm may prevent deriving an
appropriate hypothesis for all instances. The inductive bias of a machine learning algorithm
is the set of assumptions which allows it to generalize beyond the training data.

The first step was to analyze how many instances in the validation set were abstained
on by all of the classifiers involved. If these numbers were decisively higher then expected
at random, the obvious conclusion would be that the instances all classifiers agreed on to
abstain did in fact exhibit some special properties. For all of the sets the same cost scenarios
were considered as in the previous test. In most cases the number of instances all classifiers
consented on to abstain were higher than expected at random. However, they were not
high enough to suggest a great concurrence between the classifiers as to which instances are
supposed to be abstained on.

As these results were inconclusive, an additional test was performed for which a new class
was introduced composed of instances abstained on. The instances of this class were derived
by calculating the optimal abstention windows using an internal cross-validation as before and
then applying this windows to the test set of the external cross-validation. The cost scenarios
were chosen such that about 30% of the instances were abstained on and all three classes were
present in approximately equal proportions in the new data sets. Instances abstained on were
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Classifier 1 Classifier 2
SVM Random Forests Naive Bayes PART J4.8

SVM 55.4 58.9 51.5 58.8 58.2
Random Forests 58.2 61.7 52.9 59.8 61.7
Naive Bayes 77.8 78.9 74.3 80.4 78.0
PART 59.8 59.3 56.7 61.3 59.9
J4.8 67.4 66.5 59.6 66.1 67.4

Table 6.2: The table shows the classification accuracy (in %) achieved when introducing abstained instances
as a separate class for mutagenicity prediction. Classifier 1 denotes the classifier whose optimal abstention
window was used to define the instances of the third class. Classifier 2 was used to derive models based on
the modified datasets.

given the new class label, whereas the remaining instances kept their original class. These
modified datasets were used to train new models using all five of the classification algorithms.
The performance of these models was estimated by tenfold cross-validation. Of course, these
estimates were expected to be highly optimistic as the information from the same data set
was used to establish the third class.

Nevertheless, certain conclusions can be drawn from these findings as the results for
mutagenicity prediction show (see table 6.2). Here we observed that for all modified datasets
but one the classification accuracies were decisively lower than the previous results on the
original dataset which implies that the abstained instances to a large extent do not represent
a separate class or exhibit special properties. However, for the dataset modified with the
help of the Naive Bayes classifier the results were comparable to previous results even under
consideration of overfitting effects.

When analyzing an unpruned decision tree calculated for this data set an interesting
observation could be made. Almost two thirds of the instances abstained on were associated
with one leaf of the tree. The rule obtained by following the path from the root to this
leaf tested the occurrence of a number of molecular fragments. If none of these fragments
were found in an instance, it was assigned to the abstention class. A similar observation was
made on the rules calculated by PART, yet in this case different fragments were concerned.
In decision trees for the remaining modified datasets on the contrary, the instances of the
additional class were distributed over many leaves and no bias towards one individual leaf
was observed.

These results imply that instances abstained on by the Naive Bayes classifier were charac-
terized by a lack of certain molecular fragments important for an appropriate classification.
Obviously, abstaining is the most sensible decision for such instances.

6.4 Analysis of Cost Curves

For the previous section the benefits of abstaining were illustrated using fixed cost scenarios.
However, the actual cost scenarios may differ from the assumed cost scenarios decisively for
each of the three datasets involved. Both in mutagenicity and carcinogenicity costs associ-
ated with false negative predictions are distinctively higher than the costs for false positive
predictions. Furthermore, the exact values for abstaining are unclear. For EST prediction,
both types of misclassification costs probably are approximately equal but the abstention
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costs still remain difficult to set. In all those cases, determining the actual class distributions
is problematic. Thus, to further analyze and compare classifiers cost curves as presented
previously were calculated.

We use the mutagenicity dataset to illustrate the capability of cost curves for uncertain
costs (and class distributions). The mutagenicity dataset is well-suited for this purpose,
as reasonably high classification accuracies could be obtained contrary to carcinogenicity
prediction, but not as high values as for EST classification, where abstaining was only of
minor use. Furthermore, no single classifier among those calculated was optimal for all
cost scenarios, whereas for EST classification on the other hand support vector machines
outperformed all other classifiers.

Mutagenicity prediction constitutes a perfect example for the problems in assigning exact
costs and class distributions. Although we can easily establish the class with highest misclas-
sification costs, we are at a loss to determine exactly how much more expensive false negative
predictions are compared to false positive predictions as there are many factors which play
into establishing the costs. Moreover, it is unclear which percentage of chemical compounds
is mutagenic since corresponding results exist only for a minority of compounds due to high
costs for tests and ambiguous outcomes of experiments.

The benefits of abstaining in this case are obvious. We should not rely completely on a
computational model for risk assessment given a limited and noisy dataset. However, if we
can identify a subset of instances for which we are able to give predictions of high confidence,
some experimental (wet lab) tests may be avoided or prioritized differently. As we have
seen before, abstaining is only possible if the costs for it are rather low compared to costs
for misclassifications. If we defined abstention costs by the additional experiments required,
abstention clearly would be too expensive. However, we can reason that without abstaining
these experiments would have to be conducted anyway since evidently no prediction could be
relied upon.

To calculate cost curves only a validation set was required and as a consequence only
one cross-validation was performed to obtain the following curves. If the actual performance
of the abstaining classifiers was to be examined as well, nested cross-validations would have
to be used again. A corresponding analysis is described later on. The aim of the following
section is to show how to use cost curves to obtain information about optimal abstention
windows and costs if the exact cost matrix cannot be established.

6.4.1 Type I Cost Curves

As we do not know the correct class distribution between mutagenic and non-mutagenic
compounds, the first type of cost curves is the intuitive choice. The starting step in the
analysis was a comparison against the trivial classifiers which either label all instances as
positive or negative or abstain completely. As a given classifier comprises abstention windows
which do exactly that, its cost curve can never be worse than the cost curve for the trivial
classifiers. Nevertheless, the difference between the cost curves is of interest as it indicates
how much better a classifier is with respect to the trivial classifiers.

When calculating the differential cost curve relative to the trivial classifiers for all classi-
fication algorithms, we could observe a certain behavior for all of them. If either PCF (P ) or
PCF (N) was low or both were high, none of the classifiers outperformed the trivial classi-
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Figure 6.3: Differential cost curves and optimal abstention rate for cost curves which allow changing the cost
scenarios as well as changing class distributions (Type I). Figure (a) depicts the differential cost curve between
the trivial classifiers and Random Forests and figure (b) the difference in cost curves between J4.8 and Random
Forests. The cost scenarios for which no difference between the two classifiers was observed are marked by the
green line. Figure (c) then shows the optimal abstention rate for the Random Forests classifier.

fiers. As explained before, these situations either correspond to low costs for false negatives
or false positives or low costs for abstaining. In any such case, the best advice is always to
resort to the trivial classifiers. The absolute value of the difference increased with PCF (P )
or PCF (N) up to the point at which abstaining became cheap enough to improve expected
cost. For an example see figure 6.3(a).

The differential cost curves to the trivial classifiers suggested a ranking among classifiers.
The differences appeared to be smallest for Naive Bayes, thus it was assigned the last position
in our ranking. The next positions were in increasing order of performance SVMs, PART
and J4.8. The best of these classifiers appeared to be Random Forests, as the areas in which
it outperformed the trivial classifiers were most extended and also the absolute value of the
difference was slightly higher. However these differences were very subtle and probably not
statistically significant. The computation of the cost curves would have to be repeated several
times to determine the statistical significance of the differences. Interestingly enough, this
ranking differed from the ranking induced by the estimated accuracies.

The next step was to compare the pairwise differential cost curves. To avoid having to
consider all of them, the ranking induced by the differential cost curves to the trivial classifiers
was used and only Random Forests was compared to SVMs, PART, J4.8 and Naive Bayes.
The differential cost curve for Naive Bayes and Random Forests was positive in all entries,
therefore Naive Bayes was discarded because we could always do better with Random Forests.
For the other algorithms the results were more ambiguous and the corresponding differential
cost curves contained both positive and negative entries, as can bee seen in figure 6.3(b), for
example.

Instead of comparing the differential cost curves for each pair of classifiers, we instead
computed the minimum cost curve and the corresponding index matrix. As expected, Naive
Bayes did not occur at all in the index matrix. Moreover, the index matrix proved to be
additionally useful as it showed that PART minimized the cost for only very few points in the
cost space, therefore it was deemed to be reasonable to exclude this one as well. We were now
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left with three classifiers, i.e. SVMs, J4.8 and Random Forests. Yet, for those cost scenarios
where SVM performed best, the difference in expected cost to J4.8 or Random Forests was
very small and most likely insignificant, so it was eliminated as well.

The classifiers that now remained were exactly those two which already topped the list
based on classification accuracy. However, we now have a good indication for which cost
and class distributions we might take either of the two. For instance, let be P (P ) = 1

3 ,
C(P, n) = 9, C(N, p) = 4.5 and C(⊥) = 4. This implies PCF (P ) = PCF (N) = 0.3 and
figure 6.3(b) suggests using J4.8 for this cost scenario. On the other hand, for C(P, n) = 6,
C(N, p) = 7.5 and C(⊥) = 3, Random Forests would be the better choice.

So far, we only discussed which classifier to choose, but did not take into consideration if
this actually involved abstention. Figure 6.3(c) illustrates the abstention rate associated with
the optimal abstention window for Random Forests. Quite clearly for most cost scenarios,
abstention was not involved at all due to high abstention costs. Right enough, for the first
cost scenario suggested no abstention was applied. However, in the second case the optimal
abstention window did abstain on around 20% of the instances and abstention could improve
the expected cost for this cost scenario.

6.4.2 Type II Cost Curves

In order to examine the second type of cost curves, fixed class distributions were required.
Lacking further information about the actual ratio of mutagenic to non-mutagenic chemicals
in the “chemical universe”, i.e. instance space, the distribution of the data set was used. Of
course, in reality mutagenic chemicals are supposed to be distinctively less common than
non-mutagenic ones and any other fixed distribution could have been used for our tests.

The analysis was performed in the same way as before. First the differential cost curves
between the trivial classifiers and all five algorithms were computed (see figure 6.4(a) for an
example). This allowed to propose a ranking quite similar to before, the only difference being
that PART and J4.8 switched their places within the ranking.
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Figure 6.4: Differential cost curves and optimal abstention rate for cost curves which change only the cost
scenarios involved (Type II). Figure (a) presents the differential cost curve between the trivial classifiers and
the Random Forests classifier and figure (b) the difference in cost curves between J4.8 and Random Forests.
The green line shows the scenarios for which the difference is zero. The last figure illustrates the optimal
abstention rate for the Random Forests classifier.
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Again Random Forests was on top of the list and was compared against all other classifiers.
These comparisons yielded results similar to the above ones. Naive Bayes was outperformed
by Random Forests for all possible scenarios, whereas for the other three models the picture
was ambiguous. For low costs of false positive (i.e. low µ) or low abstention costs (i.e. low ν),
Random Forests had lowest expected cost, but with increasing ν and µ, the other classifiers
performed better. Analyzing the index matrix again lead to the conclusion that Naive Bayes
and PART could be ignored. SVMs were only of use for very low levels of false positives
costs. For all other cost scenarios either J4.8 or Random Forests were the best choice. In
figure 6.4(b) the decision boundaries for using either of these can be seen.

Contrary to before, the cost curves are quite easy to analyze. Suppose we have ν > 0.2
and µ < 0.3, then Random Forest should be chosen, while for ν > 0.4 and µ > 0.6 J4.8 is
the best choice. By examining the corresponding abstention rates we observe that Random
Forests are superior to J4.8 for scenarios which either have false positive costs below 0.4 or
abstention costs low enough to enable abstention. This suggests than Random Forest could
make better use of abstention on the given data. Of course, on any other dataset the situation
might be reversed.

6.4.3 Optimal Abstention Rate and False Positive and Negative Rate

After illustrating how cost curves can be used to compare classifiers, we examined how ab-
stention rate, false negative rate and false positive rate of the optimal abstention windows
change with costs (and class distributions), first using the cost curves of the second type
since they are easier to analyze. Figure 6.5 shows the abstention rates, false positive rates
and false negative rates corresponding to the optimal abstention windows in the cost curve
for Random Forests. Similar results can be obtained for all classification algorithms and each
of the presented classification tasks.

It is evident that abstaining was only a valid choice if the costs for abstaining were
distinctively smaller than the costs for false negatives and for false positives as well, which
confirms the results from chapter 2. Furthermore, we observed a negative correlation between
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Figure 6.5: This figure illustrates the relationship between optimal abstention rate (a), false positive rate (b)
and false negative rate (c). The curves were calculated using the Random Forests classifier on the mutagenicity
data set and tenfold cross-validation.
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Figure 6.6: Optimal abstention rates for the three classification tasks for varying cost scenarios. The curves
show the abstention rate of the optimal abstention window instead of its expected cost for the carcinogenicity
data (a), the mutagenicity data (b) and the EST data (c). Support vector machines were used in each case.

abstention rate and false positive rate. With increasing abstention costs ν yet constant false
positive costs µ, more and more of the abstained instances were labeled positive thus leading
to an increase in false positive rate. If costs for abstention reached the point beyond which
abstention is too expensive, false positive rate did not change as long as µ remained constant.
False negative rate on the other hand appeared to be positively correlated to both µ and ν.
This means that the more expensive abstaining or false positive classifications became, the
more instances were labeled negative, perhaps wrongly so.

Similar results could be achieved with the first type of costs curves (see 6.3(c)). Abstaining
was only put into action for small abstention costs, i.e. high values for PCF (N) and PCF (P ),
which at the same time lead to a reduction in false positive rate and false negative rate. False
negative rate was high for small values of PCF (P ) and decreased while PCF (P ) increased or
PCF (N) decreased. This is in accordance with a scenario where either the probability for the
positive class or the cost for misclassifying it is small. Similar observations were made for the
false positive rate. This makes it clear that the choice between classification and abstention
is not only influenced by costs associated with certain events but also by class distributions.
Even if misclassification costs are much higher than abstention costs but one class is very
rare, abstention is still more expensive than always predicting the majority class. However,
rareness in most cases leads to high misclassification costs for a class.

6.4.4 Optimal Abstention Rate and Classification Accuracy

In the previous tests only the cost curves for one dataset were discussed. The same evalu-
ations were of course performed on the EST and carcinogenicity dataset as well. To avoid
unnecessary repetitions this is not specified here any further. Additionally, the two datasets
were used to explore the relationship between optimal abstention rate and classification ac-
curacy achieved without abstaining. The predictive accuracies observed on the mutagenicity
data did not vary sufficiently to allow statements about this relationship on a larger scale.
Contrary to that, the accuracies obtained for the three datasets varied greatly, therefore the
optimal abstention rates were compared between classification tasks. The optimal abstention
rates for support vector machines are depicted in figure 6.6 using the second type of cost
curves. Again, similar results could be obtained for all classification algorithms and also for
cost curves of type I.
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These figures suggest a strong dependency between optimal abstention rates and classifica-
tion accuracies achieved. For carcinogenicity data where the estimated classification accuracy
for all models hardly exceeded the baseline accuracy, abstention could decrease expected cost
even for comparatively high abstention rates for which abstention on the mutagenicity data
or the EST data already was too expensive. A similar effect can be observed for mutagenicity
prediction compared to EST classification. For the last task only a small fraction of instances
was abstained on even for very low abstention costs. Therefore, abstention rates decreased
at the same time as classification accuracy increased.

These observations can be easily explained. Abstention is always the “last resort” when
classification is too expensive. This can be either due to high misclassification costs or
high misclassification rates. If classification already can be performed with high confidence,
abstention is only necessary for the most ambiguous instances.

6.5 Performance of Combined Classifiers

The mutagenicity data set was used a second time to analyze the performance of combined
abstaining classifiers within cost curves of the second type for the same reasons as before.
In the last section, cost curves were shown to be of help for determining which classifiers
to choose in which cost scenario, yet the performance of the optimal abstention windows
was not evaluated on an additional test set. Such an evaluation is performed in the next
section additionally to examining the combining approaches. Therefore nested loops of cross-
validation were again necessary.

6.5.1 Baseline Classifier

The methods for combining abstaining classifiers were compared against a baseline classifier
which always chooses the abstention window with minimum expected cost of any of the base
classifiers for each cost scenario. Although this method is optimal on the validation set it may
not be optimal on the test set and any of the base level classifiers can surpass the baseline
classifier in expected cost for certain cost scenarios. Hence, the cost curve derived by applying
the baseline classifier to the test set was compared against similar curves for each of the base
level classifiers.

The comparison showed that the baseline classifier outperformed the support vector ma-
chines for most cost scenarios but for small costs for abstention or false positives. When
comparing the Random Forest model to the baseline classifier, the results were more ambigu-
ous and for some of the cost scenarios the first classifier was better, for others the second
one prevailed. The results were clearer for the remaining classifiers. In general, they were
surpassed by the baseline classifier for those cost scenarios which allowed abstention. Yet, if
no instances were abstained on each of the classifiers outperformed the baseline classifier for
most values of false positive costs.

At first view, these results are confusing. As the baseline classifier effectively chooses only
one of the classifiers, it should have equal expected cost to one of the other classifiers for
every cost scenario. However, variation in the predictions occur due to the cross-validation.
Within each fold a different classifier may be optimal for each cost scenario and therefore the
baseline classifier does not correspond to one single classifier for each scenario. If only one
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Figure 6.7: (a) Difference in expected cost between the baseline classifier and the cost curve derived by the
direct sum method. (b) Difference in expected cost between the baseline classifier and the cost curve derived
by majority vote. (c) Difference between the cost curves derived by direct sum and majority vote.

fold is examined the above described observation can indeed be made.

6.5.2 Weighted Voting

Having compared the baseline classifier against each base model, we proceeded with analyzing
the voting methods and compared them against each other as well as against the baseline
classifier which also presents a way to combine abstaining classifiers. Two voting methods as
well as two weighting schemes were introduced before. Interestingly, the different weighting
methods differed only insignificantly given the type of voting was the same in our analysis.
This implies that the results of the votes do not depend on which of the two weighting schemes
is used. Therefore we can conclude that the two weighting schemes are equivalent and can
focus on comparing the voting methods using only one weighting scheme. In this case the
second one was used.

We have presented two voting methods which are denoted as the direct sum and the
majority vote method. Figure 6.7(a) shows the differential cost curve of the first method
compared to the baseline classifier and figure 6.7(b) the same for the majority vote. Finally,
figure 6.7(c) presents the differences between the direct sum and majority vote. The cost
curves were restricted to the region with ν ≤ 1

2 . The results for greater values of ν do not
change as no abstention is performed and consequently are of no interest.

The figures imply several conclusions. Both voting methods outperformed the baseline
classifier for abstention costs that make abstaining too expensive. But in regions for which
abstention still is possible the situation is less clear. The direct sum method was only in very
few cases superior to the baseline classifier. Majority vote appeared to be more successful,
but still for low abstention costs relative to the costs for false positives it performed worse
than the baseline classifier.

When comparing the two methods directly we observed that for expensive abstention
costs, both methods were equivalent. For moderately high abstention costs the majority
vote method was by far better, whereas for very small ones the situation was reverse. These
results can be explained by the different behavior of these methods towards abstention. The
direct sum method has a clear bias against abstention, hence it did not abstain in most cases
if the abstention windows combined were relatively small, as they were for high abstention
costs. When costs decreased, abstention windows broadened and the majority vote method
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Figure 6.8: Figure (a) shows the difference in expected cost between the baseline classifier and the original
separate-and-conquer approach, figure (b) the difference between the baseline classifier and the second mod-
ification of the separate-and-conquer approach and figure (c) the difference between the original method and
the second modification of the separate-and-conquer approach.

abstained regularly and classified even less instances than any of the abstention windows did,
quite contrary to the direct sum method.

This tendency becomes obvious in the abstention rates for the two methods. For the
majority vote method they were far higher then the corresponding abstention rates for the
direct sum method. An even more interesting observation could be made by comparing
the abstention rates for the majority vote method to the abstention rates of the baseline
classifier. For most cost scenarios allowing abstention, the majority vote method in fact had
higher abstention rates than the baseline classifier. Many of these corresponded to regions
in which the baseline classifier outperformed the majority method. As a consequence, we
can infer that a simple weighting and voting scheme is sufficient to combine non-abstaining
classifiers but not to do the same for abstaining classifiers.

6.5.3 The Separate-and-Conquer Method

As an alternative to the voting method a separate-and-conquer approach has been described
which avoids voting by using a sequence of abstention windows one after the other. Two
modifications were introduced which differ in the abstention costs considered. The first
modification uses abstention costs slightly smaller than the actual costs (in this case 90% of
the original cost) while the second one increases abstention costs with each iteration starting
from zero abstention costs until the actual costs are reached.

Again these three methods were compared against the baseline classifier (see figure 6.8).
The original method outperformed the baseline classifier for low abstention costs on the
one hand and for values of µ and ν which did not allow abstention on the other hand.
Unfortunately, the baseline classifier still appears to be superior for large regions for which
abstaining was performed. Again this may be due to the bias against abstention of the
combining method. As expected, the first modification changed the behavior of the classifier
only insignificantly. The second one, however, improved the expected costs for scenarios
in which abstention took place such that the baseline classifier was superior in fewer cases.
On the other hand, for high abstention costs the expected costs seemed to be increased.
Therefore, the difference in performance between the original and modified version is not
quite clear as figure 6.8(c) shows and no unequivocal winner could be determined.
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6.6 Conclusion

The application of abstention to carcinogenicity and mutagenicity prediction as well as EST
classification showed that the predictive performance can be improved considerably by re-
stricting classifications to a subset of all instances. However, good results are in many cases
associated with high abstention rates which makes abstention only useful if the costs for not
classifying instances are deemed low enough. Additionally to that, we could show that in
some cases abstained instances indeed exhibit specific properties which make it reasonable to
refrain from classification.

If costs are uncertain or the benefits of abstaining unclear, cost curves can be computed to
compare classification algorithms for specific tasks as well as to determine the cost scenarios
which favor abstention. If we discover that for a specific application costs have to be smaller
than a certain fraction of the false positive costs and we know that the costs are actually
higher than that, we can clearly eliminate the option to abstain. On the other hand, if we are
willing to accept the reduction in coverage involved, we can improve our results decisively.

An interesting observation could be made on the relationship between abstention rate
and false positive and negative rate. Each of these rates can be reduced at the expense of
the other two depending on the costs associated. Classification accuracy and abstention rate
interact in a similar way and optimal abstention rates for any cost scenario are much smaller
if high classification accuracy can be achieved even without abstention.

Finally, we analyzed the methods to combine several abstention windows and showed
that in this way expected costs can be reduced at least for some cost scenarios. However, to
get reliable results the analysis would have to be repeated several times based on different
cross-validation splits as in some cases the observations were inconclusive.
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Chapter 7

Theoretical Bounds for Abstaining
Ensembles

In this chapter a theoretical analysis of abstaining for ensembles of classifiers is presented.
The objective is to bound the expected cost and give a formula for the best abstention rate,
so that the optimal thresholds for abstaining for a given cost scenario can be determined
in constant time. First we introduce the setting we are working on and the PAC-Bayesian
theorem which can be used to bound the expected error of ensembles using the empirical
error on the training set.

7.1 The Learning Setting

We assume an instance space X , a space of possible class labels Y and a fixed, yet unknown
distribution D over labeled instances (x, y) ∈ X ×Y. Again the number of classes is restricted
to two, thus we can define the set of labels as Y = {−1, 1} †. An instance x ∈ X is defined
by a k-tuple (x1, .., xk), where each xj is taken from a domain Aj . A domain Aj is defined
as a finite set of possible values for xj . The training algorithm is presented with a training
set S ⊆ X × Y, which consists of m labeled instances drawn according to the distribution
D and outputs a concept c which assigns class labels to each instance. For any instance
(x, y) drawn according to D, c(x) = 1 if c classifies this instance as positive and c(x) = −1
otherwise. C denotes the class of all possible concepts and is assumed to be finite. Naturally,
the objective of any training algorithm is to generate a concept c with low error probability
Pr(x,y)∼D[c(x) 6= y] or low expected loss:

Definition 7.1 (Loss). Given a labeled instance (x, y) ∈ X × Y and a classifier c ∈ C, we
define the loss of c on (x, y) as

l(c, x, y) := I(c(x) 6= y)

where I(F ) is 1 if F is true and 0 otherwise.

Thus the loss is 0 if the prediction of c on (x, y) is correct and 1 otherwise. This is the
standard zero-one loss function. Based on this notion of loss we can define the expected and
empirical loss of a concept c.

†Here we deviate from the notation introduced in chapter 1 and 2 for practical reasons.

93



94 CHAPTER 7. THEORETICAL BOUNDS FOR ABSTAINING ENSEMBLES

Definition 7.2 (Expected and empirical loss). Let c be a classifier in C. The expected
loss of c is defined as

l(c) := E
(x,y)∼D

[l(c, x, y)].

The empirical loss of c on S is defined as the fraction of instances in S which c misclassifies:

l̂(c, S) :=
1

m

∑

(x,y)∈S

l(c, x, y).

Additionally, if we have a probability measure Q on classifiers from C, we use l(Q) for

Ec∼Q[l(c)] and correspondingly l̂(Q, S) for Ec∼Q[l̂(c, S)]. An ensemble of classifiers is effec-
tively described by a probability measure Q. The task of a training algorithm for ensembles is
to find a posterior distribution Q which minimizes the expected loss given a prior distribution
P over C. The prior distribution P is provided by the user based on potential information
about the target distribution D. If no such information is given, an uniform prior can be
chosen. The prior and posterior distribution can be compared using the Kullback-Leibler
divergence which is also called relative entropy.

Definition 7.3 (Relative Entropy). Let Q and P be a probability distribution over C.
Then the relative entropy of Q with respect to P is defined as

D(Q ‖ P ) :=
∑

c∈C

(
Q(c) ln Q(c)

P (c)

)

The smaller D(Q ‖ P ), the more similar is the posterior distribution to the prior dis-
tribution. The relative entropy, although not being symmetric, satisfies several important
mathematical properties as e.g. that it is always nonnegative and that it is only zero if
Q(c) = P (c)∀c ∈ C.

7.2 PAC Bayesian Bound for Voting Ensembles

We have now introduced all necessary terms to present the PAC-Bayesian theorem. In the
following we use the notation ∀δS φ(S) to denote that φ(S) holds for all but a fraction δ of
possible samples S. Formally, this means that

∀δS φ(S) ⇐⇒ Pr
S∼D

[φ(S)] ≥ 1 − δ.

Theorem 7.4 (PAC-Bayesian (McAllester, [35])). Let P be a prior distribution over C
and δ > 0. Then we have that

∀δS ∀Q l(Q) ≤ B(Q, P, m, δ)

where Q ranges over all distributions on C and

B(Q, P, m, δ) := l̂(Q, S) +

√
D(Q ‖ P ) + ln 1

δ
+ lnm + 2

2m − 1
.
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The PAC-Bayesian theorem bounds the loss expected if drawing a concept c from C
according to Q at random, depending on the empirical loss on the training data as well as
the divergence between prior and posterior distribution, δ and the training set size m. The
larger the training set size the smaller is the difference between expected and empirical loss.

Instead of drawing concepts at random, we can construct a voting ensemble such that the
weight of each concept is given by the posterior distribution.

Definition 7.5. Let Q be a distribution over C. Then we define the score of Q on x as
c(Q, x) := Ec∼Q[c(x)] and the voting classifier of Q as

cV (Q, x) :=

{
1 if c(Q, x) > 0

−1 otherwise

The expected error of the voting classifier is defined as lV (Q) := E(x,y)∼D[I(cV (Q, x) 6= y)].

Obviously, we have that c(Q, x) ∈ [−1 : 1]∀x and y cV (Q, x) ≥ 0 if instance x is classified
correctly and y cV (Q, x) ≤ 0 otherwise. The following theorem bounds the expected error for
any posterior distribution Q analogously to the theorem for the rule learning setting from
Rückert and Kramer [44]. We use the abbreviations Pr

D
[F ] to denote Pr(x,y)∼D[F ] and E

Q
[F ]

to denote Ec∼Q[F ].

Theorem 7.6 (Rückert and Kramer, [44]). Let P be the prior distribution over C, Q the
posterior distribution and δ > 0. Then we have that

∀δ S ∀Q lV (Q) ≤ 2B(Q, P, m, δ)

Proof. First we see that

lV (Q) = Pr
D

[y cV (Q, x) ≤ 0]. (7.1)

Furthermore,

1 − 2l(Q) = 1 − 2 E
D

[
E
Q

[I(c(x) 6= y)]
]

= 1 − 2 E
D

[
E
Q

[
1

4
(c(x) − y)2]

]
(7.2)

= 1 − 1

2
E
D

[
E
Q

[c(x)2 − 2c(x)y + y2]
]

= 1 − 1

2

(
1 − 2 E

D

[
E
Q

[c(x)y]
]
+ 1

)
(7.3)

= E
D

[y c(Q, x)] (7.4)

Equation (7.2) is a consequence of I(a 6= b) = 1
4(a− b)2 for a, b ∈ {−1, +1}, (7.3) results from

the fact that a2 = 1 for a ∈ {−1, +1}. Thus by applying theorem 7.4, we get

∀δ S ∀Q : E
D

[y c(Q, x)] = 1 − 2l(Q) ≥ 1 − 2B(Q, P, m, δ) (7.5)

Now we define a random variable M := 1 − y c(Q, x). As ∀x, y, Q : y c(Q, x) ∈ [−1, 1], we
have that M ≥ 0, which allows us to use Markov’s inequality:

∀ε > 0 : Pr
D

[
M ≥ εE

D
[M ]

]
≤ 1

ε
(7.6)
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By substituting the definition of M , we observe that

∀ε > 0 : Pr
D

[
y c(Q, x) ≤ 1 − 1ε + εE

D
[y c(Q, x)]

]
≤ 1

ε

and because of equation (7.5)

∀ε > 0 ∀δ S ∀Q : Pr
D

[
y c(Q, x) ≤ 1 − 2εB(Q, P, m, δ)

]
≤ 1

ε
(7.7)

The theorem then follows from equation (7.1) by setting

ε =
1

2 B(Q, P, m, δ)
.

7.3 Bounding the Expected Cost of Abstaining Classifiers

Based on the notion of a voting classifier, we can define an abstaining voting classifier cθ
V ,

which abstains on all instances for which the absolute value of the score is below a given
threshold θ. Note that we assume the same threshold θ for both positive and negative
classification at this point. If an instance is abstained on, it is given label 0.

Definition 7.7. The abstaining voting classifier cθ
V is defined as

cθ
V (Q, x) :=






1 if c(Q, x) ≥ θ
0 if − θ < c(Q, x) < θ

−1 if c(Q, x) ≤ −θ.

Analogously to theorem 7.6, the expected loss of the abstaining voting classifier can
be bounded by the PAC-Bayesian theorem (see also [44]). However, as our intention is to
provide a formula for the optimal abstention threshold θ, expected loss is insufficient, since it
completely ignores abstention costs. Thus, instead of bounding the expected error, the goal
now is to bound expected cost. First, we concentrate on the case of equal misclassification
costs and extend this to unequal misclassification costs in the later course.

7.3.1 Equal Misclassification Costs

We now assume equal misclassification costs – i.e. C(P, n) = C(N, p) = 1 – and that costs
for abstention are always smaller than the misclassification costs. Thus we can formulate
expected cost as a function.

Definition 7.8. Let ν ∈ [0 : 1]. The function cost(Q, x, y) is defined as

cost(Q, x, y) :=






1 if y c(Q, x) ≤ −θ
ν if − θ < y c(Q, x) < θ
0 if y c(Q, x) ≥ θ

Additionally, we define a random variable L := cost(Q, x, y). Then the expected cost of the
abstaining voting classifier γθ

V is defined as

γθ
V := E

D
[L] = 1 Pr

D
[y c(Q, x) ≤ −θ] + ν Pr

D
[−θ < y c(Q, x) < θ].
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The following theorem bounds the expected cost of the abstaining voting classifier using
the PAC-Bayesian theorem.

Theorem 7.9. Let P and Q be defined as before, let δ > 0, ν ∈ [0 : 1] and θ ∈ [0 : 1). We
then have

∀δS ∀Q γθ
V ≤ (1 − ν)

2B(Q, P, m, δ
2)

1 + θ
+ ν

2B(Q, P, m, δ
2)

1 − θ

Proof. First observe that

γθ
V = Pr

D
[y c(Q, x) ≤ −θ] + ν · Pr

D
[−θ < y c(Q, x) < θ]

= Pr
D

[y c(Q, x) ≤ −θ] + ν ·
(
1 − Pr

D
[y c(Q, x) ≤ −θ] − Pr

D
[y c(Q, x) ≥ θ]

)

= (1 − ν)Pr
D

[y c(Q, x) ≤ −θ] + ν
(
1 − 1 + Pr

D
[y c(Q, x) < θ]

)

≤ (1 − ν) · Pr
D

[y c(Q, x) ≤ −θ] + ν · Pr
D

[y c(Q, x) ≤ θ] (7.8)

By setting

ε =
1 + θ

2B(Q, P, m, δ)
and ε =

1 − θ

2B(Q, P, m, δ)

respectively, in equation (7.7) analogously to the proof of theorem 7.6 we get

∀2δS ∀Q γθ
V ≤ (1 − ν)

2B(Q, P, m, δ)

1 + θ
+ ν

2B(Q, P, m, δ)

1 − θ
.

This is, of course, equivalent to the statement of this theorem. (Substitute δ by δ
2).

The presented bound effectively consists of two parts, which are weighted according to
misclassification and abstention costs. This becomes clear by defining a function f with

f(x) =
1

1 + x
. (7.9)

Then we can rewrite the bound from theorem 7.9 as

∀δS ∀Q γθ
V ≤ 2B(Q, P, m, δ

2)
(
(1 − ν) · f(θ)︸︷︷︸

(1)

+ν · f(−θ)︸ ︷︷ ︸
(2)

)
(7.10)

(1) decreases as θ increases and thus rewards higher rates of abstention, whereas (2)
increases with θ and thus penalizes abstention (see also figure 7.1(a)). However, the growth
of (2) is much stronger than the growth of (1) and as a consequence abstention is penalized
immensely except for very low abstention costs. By differentiating equation (7.10) we can
determine θ′, i.e. the optimal value for θ:

θ′ =

{
1−
√

4ν(1−ν)

1−2ν
if ν < 1

2

0 otherwise
(7.11)

Using equation (7.11) we can now easily compute the threshold for abstention given a
certain ν. For instance if ν = 1

4 , we observe that θ′ ≈ 0.27. Figure 7.1(b) shows the optimal
value of θ for all ν ∈ [0 : 1

2).
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Figure 7.1: Figure (a) illustrates the behavior of the functions 1

1+θ
(red line) and 1

1−θ
(green line). Obviously

the second function grows much stronger than the first one declines and therefore strongly penalizes abstention.
Figure (b) depicts the optimal value for θ for values of ν between 0 and 1

2
.

Note that the presented bound does not depend on any specific characteristic of the PAC-
Bayesian bound. In fact, we could use any bound on l(Q) to get different bounds on the
expected cost of the abstaining voting classifier. Nevertheless this would have no effect on
the optimal abstention rate, as the value for the bound on l(Q) is only a constant coefficient.
Furthermore, other ways could be pursued to bound γθ

V not using Markov’s inequality or
l(Q).

7.3.2 Unequal Misclassification Costs

The above results allow us to compute the optimal abstention threshold only when misclas-
sification costs are equal. Unfortunately, misclassification costs differ more often than they
do not. Thus we also have to bound the expected cost for unequal misclassification costs.
We still make the assumption that the same threshold θ is used for positive and negative
classification. For this case analyzing the value of y c(Q, x) is insufficient as it only allows us
to differ between correct and wrong classification, but not between the types of misclassifi-
cation. We introduce an additional random variable, which makes it possible to do exactly
that.

Definition 7.10. Let (x, y) be drawn according to D. We define a random variable Z with

Z := y − c(Q, x).

We have that Z ∈ [−2, 2] and Z ≥ 0 for positive instances and Z ≤ 0 for negative ones.

Z now allows us to distinguish between the misclassification of a positive instance and
the misclassification of a negative instance. In fact, it even allows to discern abstaining on
a positive instance from abstaining on a negative one as well as correct classification on
a positive instance or a negative one. To make this clear we look at the values of Z for
different values of y and c(Q, x). We know that c(Q, x) ∈ [−1 : 1]. For a negative instance
Z = −1 − c(Q, x), which is always less or equal to zero. If the instance is misclassified we
have that c(Q, x) ≥ θ and thus Z ≤ −1 − θ. Correspondingly, we get that Z ≥ −1 + θ for a
correct classification of a negative instance and −1 − θ < Z < −1 + θ if a negative instance
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−2 20−1 − θ −1 + θ 1 + θ1 − θ

Figure 7.2: The figure shows the interesting ranges for Z. The green parts are instances which are classified
correctly. In blue we see the range for abstention. Red are negative instances which are classified incorrectly
and yellow are misclassified positive instances.

is abstained on. Similar results are obtained for positive instances. Figure 7.2 shows exactly
the ranges of values Z assumes for different events.

Again we define a function giving the cost associated with each event and presume that
false negative classifications have highest misclassification costs. Thus we use a normalized
cost matrix as presented in chapter 2 with C(P, n) = 1 and C(N, p) = µ for µ ∈ [0 : 1] as
well as C(⊥) = ν for ν ∈ [0 : 1]. Furthermore we impose the restriction that ν ≤ µ.

Definition 7.11. Let ν, µ ∈ [0 : 1]. The function cost(Q, x, y) is defined as

cost(Q, x, y) :=






1 if Z ≥ 1 + θ
µ if Z ≤ −1 − θ
ν if − 1 − θ < Z < −1 + θ ∨ 1 − θ < Z < 1 + θ
0 otherwise

L is defined as before. Then the expected cost of the abstaining voting classifier γθ
V is defined

as

γθ
V := E

D
[L] = 1Pr

D
[Z ≥ 1 + θ] + µPr

D
[Z ≤ −1 − θ]

+ ν Pr
D

[−1 − θ < Z < −1 + θ ∨ 1 − θ < Z < 1 + θ].

Again we use the PAC-Bayesian theorem to bound the expected cost of the abstaining
voting classifier with unequal misclassification costs, which results in the following theorem.

Theorem 7.12. Let P and Q be defined as before. Let δ > 0, ν, µ ∈ [0 : 1] and θ ∈ [0 : 1].
Then we have

∀δS ∀Q γθ
V ≤ (1 + µ − 2ν) · 2 + 2B(Q, P, m, δ

4)

3 + θ
+ 2ν · 2 + 2B(Q, P, m, δ

4)

3 − θ
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Proof. Observe that,

γθ
V =Pr

D
[−Z ≤ −1 − θ] + µPr

D
[Z ≤ −1 − θ]

+ ν
(
Pr
D

[−1 − θ < Z < −1 + θ] + Pr
D

[1 − θ < Z < 1 + θ]
)

=Pr
D

[−Z ≤ −1 − θ] + µPr
D

[Z ≤ −1 − θ]

+ ν
(
Pr
D

[Z < −1 + θ] − Pr
D

[Z ≤ −1 − θ]
)

+ ν
(
Pr
D

[−Z < −1 + θ] − Pr
D

[−Z ≤ −1 − θ]
)

≤(1 − ν)Pr
D

[−Z ≤ −1 − θ] + (µ − ν)Pr
D

[Z ≤ −1 − θ]

+ ν
(
Pr
D

[Z ≤ −1 + θ] + Pr
D

[−Z ≤ −1 + θ]
)

(7.12)

We now have to bound the expected value of Z. Obviously we have that Z = y(1 −
y c(Q, x)) ≥ −1 + y c(Q, x). As a consequence we can observe that

E
D

[Z] ≥ E
D

[−1 + y c(Q, x)] = −1 + E
D

[y c(Q, x)]
Equ. (7.4)

= −1 + 1 − 2l(Q)

Thus we have that

∀δ S ∀Q E
D

[Z] ≥ −2B(Q, P, m, δ) (7.13)

As Z ≥ −2 ∀x, y, Q, we can define a new random variable M := 2 − Z with M ≥ 0
∀x, y, Q. Again we can apply Markov’s inequality:

∀ε > 0 : Pr
D

[
2 −Z ≥ εE

D
[2 −Z]

]
≤ 1

ε

This is equivalent to

∀ε > 0 : Pr
D

[
Z ≤ 2 − 2ε + εE

D
[Z]

]
≤ 1

ε

Because of equation (7.13) we have

∀ε > 0 ∀δ S ∀Q : Pr
D

[
Z ≤ 2 − ε

(
2 + 2B(Q, P, m, δ)

)]
≤ 1

ε
(7.14)

and analogously

∀ε > 0 ∀δ S ∀Q : Pr
D

[
−Z ≤ 2 − ε

(
2 + 2B(Q, P, m, δ)

)]
≤ 1

ε
. (7.15)

The theorem then follows from (7.14) and (7.15) by setting

ε =
3 + θ

2 + 2B(Q, P, m, δ
4)

and ε =
3 − θ

2 + 2B(Q, P, m, δ
4)

respectively.
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−2 20−1 − σ −1 + θ 1 + θ1 − σ

Figure 7.3: The figure shows the interesting ranges for Z if different threshold are used for positive and
negative prediction. The green parts are instances which are classified correctly. In blue we see the range for
abstention. Red are negative instances which are classified incorrectly and yellow are misclassified positive
instances.

As for the case of equal misclassification costs, the new bound consists of two components,
one of which penalizes abstention massively, whereas the other one rewards it. Consequently,
when differentiating the bound to derive a formula for optimal abstention rate, we observe
that abstention is only performed for small values of ν. Thus we have that

θ′ =

{
min

{
3(1+µ)−3

√
8ν(1+µ−2ν)

1+µ−4ν
, 1

}
if ν < 1+µ

4

0 otherwise
(7.16)

If µ = 1 this results in the same restriction to abstention as before.

7.3.3 Different Thresholds for Abstention

The definition of Z makes it possible to introduce a new abstaining classifier, which has
different thresholds σ and θ for abstaining for positive or negative values of c(Q, x). Both σ
and θ are between 0 and 1.

Definition 7.13. The abstaining voting classifier cθ,σ
V is defined as

cθ,σ
V (Q, x) :=






1 if c(Q, x) ≥ σ
0 if − θ < c(Q, x) < σ

−1 if c(Q, x) ≤ −θ.

Z is still defined as before, but the ranges for false negatives, false positives, abstained
instances and correctly classified instances have changed. See figure 7.3 for the new ranges.

We define the expected cost γθ,σ
V analogously to definition 7.11. Thus we get the following

theorem bounding the expected cost for the abstaining voting classifier cθ,σ
V (Q, x).

Theorem 7.14. Let P and Q be defined as before, let δ > 0, µ, ν ∈ [0 : 1] and θ, σ ∈ [0 : 1],
then we have

∀δS ∀Q γθ,σ
V ≤(1 − ν) · 2 + 2B(Q, P, m, δ

4)

3 + θ
+ (µ − ν) · 2 + 2B(Q, P, m, σ

4 )

3 + σ

+ ν · 2 + 2B(Q, P, m, δ
4)

3 − θ
+ ν · 2 + 2B(Q, P, m, δ

4)

3 − σ
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Proof. Similar to before we have

γθ,σ
V = Pr

D
[Z ≥ 1 + θ] + µPr

D
[Z ≤ −1 − σ]

+ ν Pr
D

[−1 − σ < Z < −1 + θ ∨ 1 − σ < Z < 1 + θ]

≤ (1 − ν)Pr
D

[−Z ≤ −1 − θ] + (µ − ν)Pr
D

[Z ≤ −1 − σ]

+ ν
(
Pr
D

[Z ≤ −1 + θ] + Pr
D

[−Z ≤ −1 + σ]
)

(7.17)

The theorem then follows from (7.14) and (7.15) by setting

ε =
3 + θ

2 + 2B(Q, P, m, δ
4)

and ε =
3 − θ

2 + 2B(Q, P, m, δ
4)

as well as

ε =
3 + σ

2 + 2B(Q, P, m, δ
4)

and ε =
3 − σ

2 + 2B(Q, P, m, δ
4)

.

Note that theorem 7.12 is only a special case of the above theorem and results by setting
σ = θ. By differentiating the bound we then get for θ′ and σ′:

θ′ =

{
min

{
3−3

√
4ν(1−ν)

1−2ν
, 1

}
if ν < 1

2

0 otherwise
(7.18)

and

σ′ =

{
min

{
3µ−3

√
4ν(µ−ν)

µ−2ν
, 1

}
if ν < µ

2

0 otherwise
(7.19)

Again abstention is only performed for small values of ν.

7.4 Discussion

In this last section, we discuss the conclusions that can be drawn from the theoretical bounds
presented and compare the bounds for equal and unequal misclassification costs. As men-
tioned before, theorem 7.12 is only a special case of theorem 7.14. This is a encouraging result
since the voting abstaining classifier cθ

V is also only a special case of the voting abstaining

classifier cθ,σ
V .

At best theorem 7.9 should also be a special case of theorem 7.12. Unfortunately, this
is not the case. In fact the optimal abstention threshold as given by equation (7.16) when
setting µ = 1 to get equal misclassification costs, is exactly three times as high as the
optimal abstention threshold given by equation (7.11). This is a consequence of the fact, that
theorem 7.12 (and 7.14 as well) provides rather loose bounds as we observe when looking
at a completely random dataset. For equal misclassification costs the expected cost for an
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abstention window a which does not abstain at all is EC(C, a) = 1 · 1
2 + 1 · 1

2 = 1. From
theorem 7.12, however, we get that

∀δS ∀Q γθ
V ≤ 2 · 2 + 2B(Q, P, m, δ

4)

3
=

4

3
+ k for some k ≥ 0.

Although the bound for the expected cost is not as tight as we would prefer, we can
still use it to compute the optimal thresholds for positive and negative classifications. Here
computing expected cost has an advantage over computing the expected error as costs are
always defined arbitrarily and only their relations to each other are of interest. Hence, we
are not interested in the exact value for expected cost, but in its behavior. This means that
given two abstention window a1 and a2 with corresponding thresholds θ1 (and σ1 in case)
and θ2 (and σ2) the bound on the expected cost of a1 should be greater than the bound on
the expected cost of a2 if and only if the expected cost of a1 is greater that the expected
cost of a2. If this is not possible, the bound should at least provide a good estimate of the
optimal abstention window. This becomes clear by revisiting the random dataset example.
It depends on the costs for abstaining, i.e. ν, if the non-abstaining classifier is actually the
best possible. If ν is small, a threshold greater than zero will have lower values for the bound
and thus be chosen.

It is remarkable that the optimal values for θ (and σ) for the presented bounds do not
depend on classification error, i.e. the bound on the classification error from the PAC-
Bayesian theorem. Consequently, the optimal abstention threshold which can be regarded
as optimal abstention rate is invariable even if classification error is improved and when
comparing two ensembles characterized by distributions Q and Q′, it suffices to compare
the bounds on the expected error B(Q, P, m, δ) and B(Q′, P, m, δ). This is a consequence of
the fact that only the expected value of L is bounded using the PAC-Bayesian theorem but
not its variance which might differ between ensembles. This characteristic of the presented
bounds is also their major drawback, since in real life applications, as we have seen before,
classification accuracy does indeed have a severe effect on the optimal abstention rate and
is not necessarily a meaningful indicator for the performance of an algorithm under different
cost scenarios.

One conclusion we can draw from equations (7.16) and (7.18) is that abstaining in general
does not make sense if ν ≥ 1+µ

4 or ν ≥ µ
2 respectively. In chapter 2 we have concluded that

ν ≤ µ
1+µ

is a necessary condition for abstention. Obviously it is true that 1+µ
4 ≥ µ

1+µ
, so

this provides no further restriction. On the other hand µ
2 ≤ µ

1+µ
and therefore this condition

imposes a stronger limitation on the cost scenarios for which abstention is possible. This
condition may not be self-evident and also not true for all possible datasets. Nevertheless, it
can be made plausible by the following example. Assume we have that ν ≥ µ

2 and are given
an instance in a dataset of size m which we can either abstain on (abstention window a1) or
classify positive (abstention window a2). If we abstain on this instance we have the expected
cost EC(C, a1) = ν

m
, whereas if we classify this instance positive we have that EC(C, a2) =

P (N)µ
m

. For P (N) = P (P ) we observe that EC(C, a2) = P (N)µ
m

= µ
2m

≤ 2ν
2m

= EC(C, a1).
Thus in this situation abstaining does not make sense. Although in real datasets abstention
may still be applied if ν ≥ µ

2 , we can observe a certain correlation between optimal threshold
values and optimal abstention rate for certain datasets. Figures 7.4(a) and 7.4(b) show the
cost curves computed for the carcinogenicity dataset and from theorem 7.14 and figures 7.4(c)
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Figure 7.4: Figure (a) shows the cost curve for the carcinogenicity data for ν < 1

2
and figure (c) the corre-

sponding optimal abstention rates. Analogously, figure (b) contains the cost curve derived by calculating the
bound for the optimal thresholds provided that B(Q, P, m, δ) = 0.3. Figure (d) then shows the optimal values
for σ given by equation (7.19).

and 7.4(d) show the corresponding abstention rates/thresholds.
A consequence of allowing different thresholds for positive and negative predictions is

that the optimal threshold for positive classifications does only depend on the relationship
between µ and ν, i.e. the costs for false positives and abstained instances, but not on the
costs for false negatives, while the optimal threshold for negative classifications only depends
on the costs for false negatives and abstained instances. This is due to the fact that θ and
σ can never be negative. Thus we cannot have the situation that the threshold for positive
classification lies below 0 or the threshold for negative classifications lies above 0.

Indeed, we can make a similar observation for abstention windows calculated on real-life
data. The optimal abstention window aopt is always located around the optimal threshold at

between positive and negative prediction. Therefore we have that lopt ≤ lt and uopt ≥ lt and
the lower threshold is only determined by the ratio between false negative and abstention
costs and the upper threshold only by the ratio between false positive and abstention costs.
However, the optimal threshold at is determined by the ratio between false negative and false
positive costs.

If we would allow that θ, σ ∈ [−1 : 1], theorem 7.14 would still hold, however the con-
straint −θ ≤ σ would have to be imposed when determining the optimal thresholds. On the
contrary, if we have the same threshold for positive and negative classifications, the optimal
threshold is determined by both misclassification costs.



Chapter 8

Conclusion

8.1 Summary

Abstaining classifiers differ from common classifiers in that they are allowed to refrain from a
classification if it appears to be doubtful. In principle, several ways are conceivable to create
abstaining classifiers. In this thesis, we have presented a method by which any classification
model supplying prediction scores can be used to derive a set of abstaining classifiers described
by so-called abstention windows. An abstention window is defined by a pair of thresholds
and deemed to be optimal if it has minimal expected cost among all possible windows for the
same model.

Expected cost depends on the cost matrix which attaches costs to certain events as well
as the probabilities of these events. We showed that any cost matrix can be transformed
such that correct classifications are associated with zero costs and explored additionally the
relationship between costs and class distributions. Furthermore, we were able to obtain a
necessary – but not sufficient – condition for abstention to be possible which greatly limits
the cost scenarios for which abstention may be applied.

As costs are often uncertain and class distributions not fixed, two types of cost curves
were introduced which make it possible to examine the behavior of classification models for
different cost scenarios or class distributions. Under the assumption that the abstention rate
on the validation corresponds to the abstention rate expected on any sample from X , both
curves are indeed equivalent, yet the second type is distinctively easier to analyze.

Since the predictions of abstention windows may overlap and complement each other, they
can be combined using different approaches. The first method presented takes a vote among
optimal abstention windows produced by different models weighted by their expected cost.
For the second one a sequence of abstention windows is calculated which is to be applied one
after the other. The learning procedure iteratively computes the optimal abstention window
and then removes the instances from the validation set which are covered, that is classified,
by this window.

Cost curves as well as optimal abstention windows can be calculated efficiently and two
algorithms were presented for this purpose. Both of them rely on several characteristics of
optimal abstention windows which allow excluding abstention windows during computation
without explicitly considering them or calculating their expected cost. The major factor which
made it possible to derive linear algorithms for the computation of both optimal abstention

105
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windows and cost curves was the dependency between optimal abstaining and non-abstaining
classifiers. This dependency leads to the fact that the optimal abstention window is always
located around the optimal threshold between positive and negative prediction.

We evaluated the performance of abstaining classifiers as well as the usability of cost curves
on two classification tasks. Here, abstaining could be shown to improve predictive accuracy
decisively at the expense of coverage. For mutagenicity prediction, abstained instances were
analyzed particularly and it could be shown that for one model the choice to abstain could
be attributed to specific characteristics of instances. Additionally, cost curves were used
to compare several classification algorithms concerning their behavior on the mutagenicity
dataset and dependencies between abstention rate and false negative and false positive rate
on the one hand and accuracy on the other hand were examined. Furthermore, the analysis of
combined abstaining classifiers suggested that the predictions of different abstention windows
can be assembled successfully to obtain higher level abstaining classifiers.

In the last chapter, we presented bounds on the expected error of abstaining voting en-
sembles for equal as well as unequal abstention costs. These bounds can be used to directly
determine the optimal threshold for abstention for any cost scenario in constant time. Al-
though the results derived yield rather loose bounds, they are nevertheless useful to analyze
the behavior of the optimal thresholds for different cost scenarios.

8.2 Outlook

The results presented in this thesis raise a number of questions which can be starting points
for further research but go beyond the scope of this thesis.

8.2.1 Extension to Multi-Class Problems

Throughout this thesis only two-class problems have been considered, that is problems fea-
turing only two types of classes. In reality though, many classification tasks involve more
than two categories. Naturally, abstention is also possible in these cases, but the presented
methods have to be extended by reducing the multi-class problems to binary problems. There
are several ways to achieve this reduction such as, for example, learning a classifier for each
class against the remaining classes or for each pair of classes (pairwise coupling, [27]) or by
using error correcting output codes [12].

However, when increasing the number of classes, the complexity of the problem increases
as well. For more than two classes, abstention cannot only be performed by choosing none
of the classes, but also by choosing more than one. In this case, some classes are definitely
excluded, but the remaining ones all appear to be possible and for want of information the
classifier refuses to name a specific one of these. As the number of subsets is exponential in
the number of classes, the problem of choosing the best subset may actually be intractable
in general.

8.2.2 Abstention Costs

For our purposes we presumed that it is equally expensive to abstain on a positive instance
and a negative one. This assumption is reasonable if after being abstained on all instances
are submitted to the same procedure without regard to the class. However, applications are
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conceivable for which this is not the case. When classifying EST sequences by their codon
frequencies for example, it can make a difference if a sequence from blumeria is abstained
on or one from barley, in particular if the next step for an abstained instance is a BLAST
search. As plant genomes are clearly overrepresented in public databases compared to fungi
genomes, it is much more likely to find a close homolog for a plant gene than for a fungus
gene.

Therefore, one might consider a delegating classifier approach, i.e. an approach where
instances abstained on are delegated to a second classifier, as an example against equal
abstention costs. If the second classifier performs worse on negative than on positive instances
for example, the costs for abstaining on a negative instance are higher than the costs for
abstaining on a positive one. However, this is only valid if the two classifiers are completely
independent of each other. If the second classifier is trained on delegated instances only as
described by Ferri et al. [18], increasing the abstention costs for the negative class has a
converse effect since it will lead to less abstention on this class. This consequently leads
to an even poorer performance of the second classifier on negative instances as it has seen
even less instances of this class during training. As a consequence, abstention costs for the
negative class would have to be increased additionally and even less negative instances would
be abstained on and so on until none of the negative instances of the validation set would
actually be abstained on.

Additionally to the class, abstention and misclassification costs may depend on the spe-
cific instance. For some instances it may be beneficial to classify them even if the probability
of misclassification is high because the costs for further tests or experiments would be tremen-
dous or vice versa abstain even if the probability of misclassification is low because the correct
class can be determined easily in a different way.

Therefore unequal abstention costs and conditional costs are the major points which will
need looking into in the future. The principle idea of abstaining based on abstention windows
can be easily extended to both unequal abstention costs and conditional costs. However, the
optimal abstention window in this case probably has to be determined by the brute force
approach which explicitly calculates the expected cost of every window. Unfortunately, cost
curves can only be applied for equal abstention costs because distinguishing between the two
classes in abstaining would increase dimensionality and therefore make the curves unsuitable
for human interpretation.

8.2.3 Higher-Level Abstaining Classifiers

The subject of combining several abstention windows has been broached relatively shortly and
the presented methods still leave many possibilities to connect the predictions of the individual
models. Rule learning approaches with the inclusion of negations are conceivable as well as
graph theoretical solutions or extensions of ensemble methods. For example, bagging could
be extended to abstaining by learning optimal abstention windows from bootstrap samples
and voting among them.

8.2.4 Theoretical Bounds

As mentioned before, the presented results on expected cost for unequal misclassification
costs provide rather lose bounds. Additionally, we observe that the bound does not depend
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on the classification error either for equal or unequal misclassification costs. In reality though,
there exists a strong interaction between expected cost or optimal abstention rate and accu-
racy. These points might be addressed by using other ways to bound the probabilities for
misclassifications and abstaining than Markov’s inequality and expected error on the training
set.

8.2.5 Active Classification and Abstaining

In the introduction we mentioned active classifiers which may ask for the values of additional
attributes before classification. As such, active classification does not involve abstention.
Nevertheless, one might tackle the problem of learning active classifiers in a framework that
integrates misclassification and attribute costs using the concept of abstention. Alternatively,
the notion of abstention used in this thesis could be extended such that an abstaining classifier
can suggest which of a range of tests is to be performed in the case of abstention. For this
purpose, the methods for learning active classifiers might prove to be useful.

8.3 Conclusion

The central question of this thesis was if and how abstention can improve the reliability of
predictions. Our results suggest that indeed improvements can be achieved on the premises
that the costs for not classifying an instance are low enough. In general, there is no universally
valid rule what “low enough” actually means in each case. This depends on the application
and the predictive performance achieved without abstaining and can be explored with the
help of cost curves. Contrary to that, we can make statements about cost scenarios which
clearly prohibit abstention in any case.

As optimal abstention windows can be determined efficiently, the obvious solution for any
classification task is to apply the presented methods for deriving abstaining classifiers and
cost curves to the problem and to examine for which cost scenarios abstention is possible and
if any of these scenarios does correspond to the correct one. Based on these observations,
we can either exclude abstention completely because we know that abstention costs for the
specific tasks are not as low as required or use it as a suitable method to improve predictive
performance if they are.
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X Instance space. An instance is defined as a k-tuple (x1, . . . , xk) ∈
A1 × · · · × Ak with Ai, 1 ≤ i ≤ k, the set of possible values xi may
assume.

1

Y Set of class labels, in our case Y = {P, N}. 2
Classifier A function Cl : X → Y. 2
Abstaining
Classifier

A function Cl : X → Y ∪ {⊥}. 2

m(x) Margin of instance x ∈ X . 9
a = (l, u) Abstention window a with lower threshold l and upper threshold u. 10
π(a, x) Prediction of abstention window a on instance x. 10
A(Cl) Set of possible abstention windows for classifier Cl. Shortcut A if it

is obvious from the context which classifier is meant.
11

T (Cl) Set of possible thresholds for classifier Cl, i.e. T (Cl) = {a|a ∈
A(Cl) ∧ l = u}. Shortcut T if it is obvious from the context which
classifier is meant.

24

C Cost matrix. C(Y, y) is the expected cost of labeling an instance of
class Y with label y. Y ∈ {P, N} and y ∈ {p, n,⊥}. If C(P, ⊥) =
C(N, ⊥) we use the term C(⊥) to denote the abstention costs.

12

TP (a) True positives: Number of positive instances in the validation set
classified correctly by abstention window a.

12

FN(a) False negatives: Number of positive instances in the validation set
misclassified by abstention window a.

12

UP (a) Unclassified positives: Number of positive instances in the validation
set abstained on by abstention window a.

12

TN(a) True negatives: Number of negative instances in the validation set
classified correctly by abstention window a.

12

FP (a) False positives: Number of negative instances in the validation set
misclassified by abstention window a.

12
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UN(a) Unclassified negatives: Number of negative instances in the validation
set abstained on by abstention window a.

12

A(a) Number of instances in the validation set abstained on by abstention
window a.

51

TPR(a) True positive rate of abstention window a. 13
FNR(a) False negative rate of abstention window a. 13
PAR(a) Positive abstention rate of abstention window a. 13
TNR(a) True negative rate of abstention window a. 13
FPR(a) False positive rate of abstention window a. 13
NAR(a) Negative abstention rate of abstention window a. 13
AR(a) Overall abstention rate of abstention window a. 28
EC(C, a) Expected cost of abstention window a on the validation set given cost

matrix C.
13

EC(C, a, P ) Expected cost of abstention window a on the set P ⊆ X given cost
matrix C.

43

C̄ Equivalence class of cost matrices. Two cost matrices C and C ′ are
equivalent (C ≡ C ′) if ∃k > 0∀a ∈ A EC(C, a) = k EC(C ′, a).

17

NEC(C, a) Normalized expected cost of abstention window a given cost matrix
C.

18

µ False positive costs relative to false negative costs, i.e. µ = C(N, p)
C(P, n) . 18

ν Abstention costs relative to false negative costs, i.e. ν = C(⊥)
C(P, n) . 18

∆ Resolution of a cost curve, i.e. number of values evaluated for x and
y.

33

PCF (L) Probability-cost function for L ∈ {P, N,⊥}. 30
K(p) Cost curve for a classifier Clp represented by a ∆ × ∆ matrix. 33
D(p, q) Differential cost curve. Difference between cost curves of two classi-

fiers Clp and Clq.
33

M Minimum cost curve. Given a set of classifiers Cl1, . . . , Clp with cost
curves K(1), . . . , K(p): mi,j := min1≤s≤p ki,j(s).

35

I Index matrix. Given a set of classifiers Cl1, . . . , Clp with cost curves
K(1), . . . , K(p): ii,j := argmin1≤s≤p ki,j(s).

35

~m =
(m1, . . . , mk)

Vector of distinct margin values in the validation set S, i.e. ∀1 ≤
i ≤ k ∃x ∈ S : mi = m(x), ∀x ∈ S ∃1 ≤ i ≤ k : m(x) = mi and
m1 < · · · < mk.

49

~p =
(p1, . . . , pk)

pi denotes the number of positive instances having margin mi. 49

~n =
(n1, . . . , nk)

ni denotes the number of negative instances having margin mi. 49

Â Subset of the set of abstention windows A such that no abstention
window a ∈ A \ Â can be optimal for any cost scenario.

50
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cost(a, µ, ν) Cost of abstention window a on the validation set for false positive
costs µ and abstention costs ν. cost(a, µ, ν) = NEC(C, a)n with
n the size of the validation set and C(P, n) = 1, C(N, p) = µ and
C(⊥) = ν.

51

v(i) The value of a threshold between margin values mi and mi+1. 51
succ(a) Set of abstention windows which can be obtained by increasing or

decreasing the lower or upper threshold of a by one step only.
52

~λ =
(λ1, . . . , λt)

Result of the preprocessing step. λi is the smallest margin for a
sequence of instances of the same class.

53

~υ =
(υ1, . . . , υt)

Result of the preprocessing step. υi is the largest margin for a se-
quence of instances of the same class.

53

~ρ =
(ρ1, . . . , ρt)

ρi denotes the number of positive instances x with λi ≤ m(x) ≤ υi. 53

~η =
(η1, . . . , ηt)

ηi denotes the number of negative instances x with λi ≤ m(x) ≤ υi. 53

ψ(i) The value of a threshold between margin values υi and λi+1. 55
D Distribution D over labeled instances (x, y) ∈ X × Y. 93
c(x) Concept. c(x) = 1 if c classifies this instance as positive and c(x) =

−1 otherwise.
93

C Set of possible concepts c(x). 93
l(c, x, y) Loss of concept c on labeled instance (x, y). 93
l(c) Expected loss of concept c on the instance space. 94

l̂(c, S) Empirical loss of concept c on sample S. 94
l(Q) Expected loss of ensemble Q. 94

l̂(Q, S) Empirical loss of ensemble Q on sample S. 94
D(Q ‖ P ) Relative Entropy or Kullback-Leibler divergence. 94
c(Q, x) Score of ensemble Q on instance x. 95
cV (Q, x) Voting classifier. 95
lV (Q) Expected error of the voting classifier. 95
cθ
V Abstaining voting classifier with threshold θ. 96

cost(Q, x, y) Cost of applying ensemble Q on labeled instance (x, y). 96
L Random variable over the cost of instances. 96
γθ

V Expected cost of the abstaining voting classifier cθ
V . 96

Z Random variable used to distinguish false negative from false positive
predictions. Z := y − c(Q, x).

98

cθ,σ
V Abstaining voting classifier having different thresholds for positive

(σ) and negative (θ) predictions.
101

γθ,σ
V Expected cost of the abstaining voting classifier cθ,σ

V . 101
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