Inhaltsverzeichnis

1 Einleitung und Grundlagen ... 1
 1.1 Ziele .. 1
 1.2 Einführendes Beispiel: Berechnung der Fibonacci-Zahlen 2
 1.2.1 Rekursive Berechnung ... 2
 1.2.2 Iterative Berechnung ... 5
 1.2.3 Berechnung mit Hilfe des iterierten Quadrierens 6
 1.3 Grundlagen ... 10
 1.3.1 Registermaschine (RAM) .. 10
 1.3.2 Zeitkomplexität ... 13
 1.3.3 Platzkomplexität ... 17
 1.3.4 Beschreibungskomplexität ... 19
 1.3.5 Landausche Symbole ... 19
 1.4 Übungsaufgaben .. 24

2 Sortieren .. 27
 2.1 Einfache Sortieralgorithmen ... 27
 2.1.1 Relationen, Ordnungen und Sortierungen 27
 2.1.2 Sortieren durch Auswahl ... 29
 2.1.3 Sortieren durch Einfügen .. 31
 2.1.4 Verbessertes Sortieren durch Einfügen 33
 2.2 Mergesort .. 34
 2.2.1 Rekursiver Mergesort ... 35
 2.2.2 Analyse des rekursiven Mergesort 36
 2.2.3 Iterativer Mergesort .. 39
 2.2.4 Analyse des iterativen Mergesort 40
 2.3 Heapsort ... 41
 2.3.1 Heaps und generischer Heapsort .. 42
 2.3.2 Implementierung von Heaps ... 43
 2.3.3 Standard-Heapsort ... 49
 2.3.4 Analyse von Standard-Heapsort 51
 2.3.5 Carlssons Variante von Heapsort 53
 2.3.6 Bottom-Up-Heapsort ... 56
 2.4 Quicksort .. 57
 2.4.1 Allgemeines Verfahren .. 57
4 Suchen

4.1 Wörterbücher .. 119
4.2 Ausnutzen von Sortierung ... 120
 4.2.1 Lineare Suche ... 120
 4.2.2 Binäre Suche .. 120
 4.2.3 Exponentielle Suche ... 120
4.3 Hashing ... 121
 4.3.1 Hashfunktionen ... 122
 4.3.2 Hashing durch Verkettung 125
 4.3.3 Linear Probing .. 126
 4.3.4 Quadratic Probing ... 129
 4.3.5 Double Hashing .. 130
 4.3.6 Universelle Hashfunktionen 132
4.4 Binäre Suchbäume .. 134
 4.4.1 Suchbaumeigenschaft .. 134
 4.4.2 Suchen und Einfügen im binären Suchbaum 135
 4.4.3 Löschen im binären Suchbaum 135
4.5 AVL-Bäume ... 137
 4.5.1 Höhenbalancierung ... 137
 4.5.2 Einfügen in einen AVL-Baum 140
 4.5.3 Löschen im AVL-Baum .. 143
4.6 (a, b)-Bäume .. 146
 4.6.1 Definition ... 147
 4.6.2 Einfügen in einen (a, b)-Baum 148
 4.6.3 Löschen im (a, b)-Baum .. 149
4.7 Weitere Varianten von Suchbäumen 151
 4.7.1 Vielweg-Suchbäume ... 151
 4.7.2 Balancierte Suchbäume .. 152
4.8 Tries ... 153
 4.8.1 Einfügen und Löschen in Tries 153
 4.8.2 Implementierung von Tries 154
4.9 Übungsaufgaben ... 156

5 Graphen

5.1 Grundlagen der Graphentheorie 157
 5.1.1 Ungerichtete Graphen .. 157
 5.1.2 Gerichtete Graphen ... 160
 5.1.3 Repräsentationen von Graphen 164
5.2 Traversieren von Graphen .. 166
 5.2.1 Tiefensuche (DFS) .. 166
5.2.2 Breitensuche (BFS) ... 169
5.2.3 Traversieren von Bäumen 172
5.3 Zusammenhang von Graphen 173
 5.3.1 Ungerichtete Graphen 173
 5.3.2 Gerichtete Graphen 173
5.4 Kürzeste Wege .. 178
 5.4.1 Der Algorithmus von Floyd 179
 5.4.2 Transitive Hülle von Graphen 183
 5.4.3 Der Algorithmus von Dijkstra 186
 5.4.4 Der Algorithmus von Dijkstra mit Priority Queues 188
5.5 Interludium: Fibonacci-Heaps 192
 5.5.1 Aufbau eines Fibonacci-Heaps 192
 5.5.2 Analyse von Fibonacci-Heaps 196
5.6 Minimale Spannbäume .. 199
 5.6.1 Der Algorithmus von Prim 200
 5.6.2 Der Algorithmus von Kruskal 204
5.7 Interludium: Union-Find-Datenstrukturen 206
 5.7.1 Darstellung von Mengen durch Listen 206
 5.7.2 Darstellung von Mengen durch Bäume 208
 5.7.3 Pfadkompression 210
5.8 Übungsaufgaben ... 212

6 Texte 215
 6.1 Alphabete und Zeichenketten 215
 6.2 Der Algorithmus von Knuth, Morris und Pratt 216
 6.2.1 Die Idee .. 216
 6.2.2 Analyse des Algorithmus von Knuth, Morris und Pratt .. 218
 6.2.3 Bestimmung eigentlicher Ränder 219
 6.3 Der Algorithmus von Boyer und Moore 221
 6.3.1 Die Idee .. 221
 6.3.2 Bestimmung der Shift-Tabelle 224
 6.3.3 Analyse des Algorithmus von Boyer und Moore 226
 6.4 Tries für Texte .. 230
 6.4.1 Suffix-Tries 231
 6.4.2 Suffix-Bäume 234
 6.4.3 Suchen mit Suffix-Bäumen 238
 6.5 Interludium: Datenkompression 239
 6.5.1 Eine untere Schranke 239
 6.5.2 Huffman-Kodierung 240
 6.5.3 Lempel-Ziv-77 244
 6.5.4 Lempel-Ziv-78 245
6.5.5 Lempel-Ziv-Welch 246
6.5.6 Die Burrows-Wheeler-Transformation 247
6.6 Übungsaufgaben 249

7 Arithmetik 251
7.1 Euklidischer Algorithmus 251
7.1.1 Grundalgorithmus 251
7.1.2 Erweiterte Version 253
7.1.3 iterative Implementierungen 255
7.1.4 Effiziente Implementierungen 256
7.2 Modulare Arithmetik 258
7.2.1 Grundlagen 259
7.2.2 Modulare Gleichungen 262
7.2.3 Chinesischer Restsatz 263
7.2.4 Berechnung von Potenzen 264
7.3 Primzahlen 265
7.3.1 Elementare Ergebnisse 266
7.3.2 Primzahltests 269
7.4 Interludium: Kryptographie 273
7.4.1 Public-Key-Kryptographie 273
7.4.2 Das RSA-Verfahren 275
7.4.3 Sicherheit des RSA-Verfahrens 276
7.5 Die schnelle Fouriertransformation 277
7.5.1 Multiplikation von Polynomen 277
7.5.2 Eine alternative Methode zur Polynommultiplikation ... 278
7.5.3 Berechnung der Konvolution mittels FFT 279
7.6 Multiplikation ganzer Zahlen 283
7.6.1 Analyse der Schulmethode 283
7.6.2 Ein Divide-and-Conquer-Algorithmus 284
7.6.3 Analyse des Algorithmus von Karatsuba und Ofman ... 285
7.6.4 Verbesserung des Algorithmus von Karatsuba und Ofman 287
7.7 Optimale Klammerung von Matrizenprodukten 290
7.7.1 Einleitendes Beispiel 290
7.7.2 Anzahl verschiedener Klammerungen 290
7.7.3 Lösung mit dynamischer Programmierung 293
7.8 Matrizenmultiplikation 294
7.8.1 Der Algorithmus von Strassen 295
7.8.2 Analyse des Algorithmus von Strassen 296
7.8.3 Verbesserung des Algorithmus von Strassen 297
7.8.4 Weitere Entwicklungen 300
7.8.5 Invertierung von Matrizen 300
8 Schwierige Probleme 307
8.1 Unentscheidbarkeit 307
8.1.1 Entscheidungsprobleme 307
8.1.2 Abzählbarkeit 308
8.1.3 Gödelisierung 311
8.1.4 Universelle Registermaschinen 313
8.1.5 Unentscheidbare Probleme 314
8.1.6 Die Church-Turing These 317
8.2 \(\mathcal{NP} \)-Vollständigkeit 317
8.2.1 Die Klassen \(\mathcal{P} \) und \(\mathcal{NP} \) 318
8.2.2 Standard-Registermaschinen 319
8.2.3 Reduktionen 321
8.2.4 \(\mathcal{NP} \)-harte und \(\mathcal{NP} \)-vollständige Probleme 323
8.2.5 Erfüllbarkeitsproblem 325
8.2.6 Satz von Cook 327
8.2.7 Konjunktive Normalform und 3SAT 331
8.2.8 Beispiele \(\mathcal{NP} \)-vollständiger Probleme 333
8.3 Approximative Algorithmen 339
8.3.1 Optimierungsprobleme und Approximationen 340
8.3.2 Die Klassen \(\mathcal{NP}^0 \) und \(\mathcal{PO} \) 343
8.3.3 Die Klasse \(\mathcal{APX} \) 344
8.3.4 Die Klasse \(\mathcal{PTAS} \) 345
8.3.5 Die Klasse \(\mathcal{FPTAS} \) 347
8.4 Übungsaufgaben 353

A Literaturhinweise 355
A.1 Lehrbücher zur Algorithmmik 355
A.2 Lehrbücher zu angrenzenden Themen 356
A.3 Originalarbeiten 357

B Gofer-Skripten 359
B.1 Berechnung von Fibonacci Zahlen 359

C Index 361