Algorithmen auf Sequenzen

Abgabetermin: Samstag, den 11. November, 1000 in Moodle

Aufgabe 1

Betrachte die Folge $a=(a_1,\ldots,a_{10})=(-2,+3,-1,-3,+4,-2,-2,+5,-6,+5)$. Lasse darauf den cleveren Algorithmus laufen und protokolliere für jedes $i \in [0:10]$ die Werte i,, a_i , rmax, rstart, max nach dem Schleifendurchlauf und gibt an wann jeweils die optimale Lösung max aktualisiert wird samt der zugehörigen aktuellen Lösung.

Aufgabe 2

Zeige, dass es für die Probleme MSS und AMSS aus der Vorlesung genügt, sich bei Lösungen auf Eingaben zu beschränken, die echt alternierende Folgen sind.

Hinweis: Eine Folge $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ heißt echt alternierend, wenn $a_i \cdot a_{i+1} < 0$ für alle $i \in [1:n-1]$.

Tutoraufgabe 3 (Vorbereitung bis zum 8. November 2023)

Betrachte das folgende Problem:

MAXIMAL SCORING SUBSEQUENCE WITH LOWER BOUND (MSSLB)

Eingabe: Eine Folge $(a_1, \ldots, a_n) \in \mathbb{R}^n$ reeller Zahlen und eine natürliche Zahl $B \in \mathbb{N}$. **Ausgabe:** Eine Teilfolge (a_i, \ldots, a_j) , die unter allen Teilfolgen der Länge mindestens B $(d.h. (j-i+1) \geq B)$ ihren Score $\sigma(i,j) = \sum_{\ell=i}^{j} a_{\ell}$ maximiert.

Konstruiere für die Lösung dieses Problems einen Algorithmus mit linearem Zeitbedarf.

Hinweis: Modifiziere den Linearzeit-Algorithmus aus der Vorlesung geeignet.

Laufzeitanalyse und Korrektheitsbeweis nicht vergessen.