Algorithmische Bioinformatik II

Abgabetermin: Freitag, den 31. Oktober, 900 Uhr in Moodle

Hausaufgabe 1

Zeige, dass CNF-SAT $\leq_p 3$ -SAT gilt.

Hausaufgabe 2

- a) Zeige, dass $TSP \in \mathcal{NPO}$.
- b) Zeige, dass das zu TSP gehörige Entscheidungsproblem \mathcal{NP} -hart ist.

TSP (TRAVELING SALESPERSON)

Ein vollständiger ungerichteter Graph G = (V, E) mit Kantengewichten, die Eingabe:

durch $w: E \to \mathbb{N}$ gegeben sind.

Lösung: Ein Hamiltonscher Kreis, d.h. eine Permutation $(v_{\pi(1)}, \ldots, v_{\pi(n)})$ der Knoten-

menge V mit $\{v_{\pi(i)}, v_{\pi((i \bmod n)+1)}\} \in E$ und n = |V|. **Optimum:** Minimiere $\sum_{i=1}^{n} w(v_{\pi(i)}, v_{\pi((i \bmod n)+1)})$ mit n = |V|.

Tutoraufgabe 3 (Vorbereitung bis zum 29.10.25)

Beweise, dass wenn $P \in \mathcal{NPO}$ ist, das zu P gehörige Entscheidungsproblem in \mathcal{NP} ist.