Algorithmische Bioinformatik II

Abgabetermin: Freitag, den 21. November, 900 Uhr in Moodle

Hausaufgabe 1

Zeige, dass PTAS-Reduktionen transitiv sind.

Hausaufgabe 2

Zeige, dass es für jede Instanz von MAXE3SAT eine Belegung gibt, die mindestens 7/8 der Klauseln erfüllt.

Hinweis: Betrachte eine zufällige Belegung der Variablen, wobei jede Variable mit Wahrscheinlichkeit 1/2 auf 1 und mit Wahrscheinlichkeit 1/2 auf 0 gesetzt wird.

MaxE3SAT

Eingabe: Ein Boolesche Formel $F = \bigwedge_{i=1}^k C_i$ in 3-konjunktiver Normalform über X,

wobei jede Klausel aus **genau 3 verschiedenen** Literalen über 3 **verschiedenen**

Variablen besteht.

Lösung: Ein Belegung $B: X \to \mathbb{B}$. **Optimum:** Maximiere $\sum_{i=1}^{k} I_B(C_i)$.

Tutoraufgabe 3 (Vorbereitung bis zum 19.11.25)

Zeige, dass SAT \leq_p CNF-SAT gilt.

Hinweis: Zeige zunächst, dass die Boolesche Formel $F_1 \vee F_2$ genau dann erfüllbar ist, wenn die Boolesche Formel $(F_1 \vee x) \wedge (F_2 \vee \overline{x})$ erfüllbar ist, wobei F_1 und F_2 Boolesche Formeln sind und $x \notin V(F_1) \cup V(F_2)$ eine neue Variable ist. Verwende dann dieses Ergebnis.