Algorithmische Bioinformatik II

Abgabetermin: Freitag, den 28. November, 900 Uhr in Moodle

Hausaufgabe 1

Zeige, dass Max3SAT \leq_{PTAS} MaxSpecial3SAT.

MaxSpecial3SAT

Eingabe: Ein Boolesche Formel F in 3-konjunktiver Normalform, in der keine Klausel

mit drei negierten Variablen auftritt.

Lösung: Eine Belegung $B:V(F)\to\mathbb{B}$.

Optimum: Maximiere $\mu_F(B)$, wobei $\mu_F(B)$ die Anzahl gleichzeitig erfüllbarer Klauseln

in F ist.

Hinweis: Betrachte $(\bar{x} \vee \bar{y} \vee \bar{z})$ sowie $(\bar{x} \vee \bar{y} \vee w) \wedge (\bar{w} \vee \bar{z})$. Weiterhin nutze man aus, dass in jeder 3SAT-Formel mindestens die Hälfte aller Klauseln erfüllbar ist (Adaption von Aufgabe 2 auf Blatt 5).

Hausaufgabe 2

Sei $w:\overline{\Sigma}^2\to\mathbb{R}_+$ eine Kostenfunktion für ein Distanzmaß mit w(-,-):=0, die die Eigenschaften einer Metrik (Definitheit, Symmetrie und Dreiecksungleichung) erfüllt. Sei weiter $w':\overline{\Sigma}_0^k\to\mathbb{R}_+$ die zugehörige Consensus-Kostenfunktion für ein Distanzmaß eines k-fachen Sequenzen-Alignments.

Zeige, welche Eigenschaften einer Metrik (Definitheit, Symmetrie und Dreiecksungleichung) von w' erfüllt sind und welche nicht (Gegenbeispiel).

Tutoraufgabe 3 (Vorbereitung bis zum 26.11.25)

Konstruiere einen polynomiellen Approximationsalgorithmus für MaxE3SAT mit Approximationsgüte 8/7.

Hinweis: Sei $F = F(x_1, ..., x_n)$ eine Boolesche Formel in 3-konjunktiver Normalform über $V(F) = \{x_1, ..., x_n\}$. Sei weiter $(b_1, ..., b_{i-1})$ eine Belegung der ersten i-1 Variablen aus V(F). Wähle b_i in Abhängigkeit von den folgenden bedingten Erwartungswerten:

$$\mathbb{E}[F(x) \mid (x_1, \dots, x_{i-1}) = (b_1, \dots, b_{i-1}) \land x_i = 0],$$

$$\mathbb{E}[F(x) \mid (x_1, \dots, x_{i-1}) = (b_1, \dots, b_{i-1}) \land x_i = 1].$$